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Abstract 

In this paper we improve Davies' attack [2] on DES to become capable of 
breaking the full 16-round DES faster than the exhaustive search. Our attack 
requires 250 complexity of the data collection and 250 the complexity of analysis. 
An alternative approach finds 24 key bits of DES with 2 ~2 known plaintexts and 
the data analysis requires only several minutes on a SPARC. Therefore, this 
is the third successful attack on DES, faster than brute force, after differential 
cryptanalysis [1] and linear cryptanalysis [5]. We also suggest criteria which 
make the S-boxes immune to this attack. 

1 I n t r o d u c t i o n  

Davies [2] described a potential attack on DES[6] that is based on the non-uniformity 
of the distribution of the outputs of pairs of adjacent S-boxes. Theoretically one can 
gain up to 16 parity bits of the key with this attack. However the direct application 
of Davies' attack is impractical since the resulting distribution is too uniform. The 
variant based on the best pair $7/$8 requires 2 ss'6 known plaintexts and finds two 
parity bits of the key with 95.5% success rate. 

In this paper we improve Davies' attack to break the full 16-round DES faster 
than brute force. We describe a tradeoff between the number of plaintexts, the 
success rate and the time of analysis. The best tradeoff requires 250 known plaintexts 
and 2 s~ steps (249 in average) of analysis. An alternative attack finds 24 key bits for 
which it requires 2 s2 known plaintexts. The data analysis phase is independent of the 
number of rounds and runs only several minutes on a SPARC. We also suggest how 
to make S-boxes immune to this attack. 

In all further discussions we ignore the existence of the initial permutation IP  and 
the final permutation IP  -1, since they have no influence on the properties of DES 
that are studied in this paper. 
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2 D a v i e s '  a t t a c k  

The expansion operation of DES duplicates data bits to enter into two adjacent S- 
boxes. Each pair of adjacent S-boxes share two data bits. These bits are XORed with 
different key bits before they serve as inputs to the S-boxes. As a result, the output 
of adjacent pairs (and triplets, etc.) of S-boxes has non-uniform distribution. Davies 
found that this distribution depends only on the parity of the four key bits which are 
mixed with the shared data bits. We denote this parity by p~ and the mean value of 
the various values of the distribution by E(D1). The distribution of the output of a 
pair of S-boxes can be written as: 

Dl(x ,  y, pl) -- E(D~) + ( -1 )  pl. d~(x, y), (1) 

where x is the output of the left S-box of the pair and y is the output of the right 
S-box. The XOR of the outputs of the F-functions in the eight even (odd) rounds can 
be calculated by XORing of the right (left) half of the plaintext with the left (right) 
half of the ciphertext and applying the inverse permutation p-1.  Davies found that 
the n-fold XOR distributions of the outputs of adjacent pairs of S-boxes have a form 
similar to equation (1): 

n,~(x,y,pn) = E(Dn) + ( -1)  p"- dn(x,y) ,  (2) 

where p ,  is the parity of the 4n subkey bits which are mixed with the data bits in the 
n even (odd) rounds, and E(Dn)  = 2 ~~ is the mean of the distribution. D,~(x, y, p,~) 
can be calculated by the recurrent formulae: 

Dn(x ,y ,O)  = ~_, D,~- l (x l ,y l ,0) .Dl(x2,y~,O)  n = 2 . . . 8 ,  

Yl ~Y2 = Y 

= 2 E ( D n ) - D , , ( x , y , O ) .  Dn(x,  y, 1) 

Davies suggested to use the indicator function: 

I = ~'~(D'(x,y,pn) - E(D,~)). 
dn(x,y)  

d,~(x,y) 2 
(3) 

21~ �9 E ( D , )  ~ 2 2~ 

N =  ~_~fl,(x,y)2 -~_~fl~(x,y)2.  
x , y  x , y  

(4) 

whose sign observes the parity bit of the key: if I > 0 the parity is zero and if I < 0 
the parity is one. D'(x,y,p,~) is the empirical distribution received from the data 
collection phase of Davies' attack. Given sufficiently many known plaintexts, the sign 
in the D~ distribution can be identified, along with one parity bit of the key. 

Davies estimated the required amount of data for his attack as: 
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Rounds Distribution S1/2 S2/3 S3/4 S4/5 S5/6 S6/7 $7/8 $8/1 
2,3 D1 26.4 26"1 2 s's 26.7 2 TM 27'1 26.2 27"~ 
4,5 D2 216"3 215'7 220.4 2 ~6"7 217"6 2 ~6"s 214"5 2 ls'5 
6,7 D3 225.2 224.9 231.4 226.o 227.o 225.4 221.s �9 228.6 
8,9 D4 233.6 233.9 242.3 235"1 236"1 233"7 225"9 235"5 

10,11 D5 241.8 242.8 253.1 244.1 245.0 241.8 235.9 248.2 
12,13 D6 240.9 251"6 264.o 252'9 253.9 2499 242"s 25~'9 
14,15 D7 25.7.9 260.5 2 .74"s 261"8 262.8 257.9 249.7 267.6 

16 Ds 2 ~'~ 269"3 2 s5"6 2 r~ 2 n'6 266.0 256.6 27.7'3 

Table 1: The complexities of Davies' attack. 

With this amount of data 97% success rate is achieved. Table 1 summarizes the 
complexities of Davies attack on different S-box pairs and different numbers of rounds 
(to find two bits for the even rounds, and one bit for the odd rounds). The best pair of 
S-boxes $7/8 requires 256.6 known plaintexts [2, 3] to find two parity bits. Therefore, 
Davies' attack is not practical and is only of theoretical interest. 

3 The Improved Attack 

In this section we present an improved version of Davies' attack which breaks the full 
16-round DES faster than exhaustive search. 

We observed that the distribution D7 can be used instead of Ds (a similar obser- 
vation was made independently by H. Gilbert and mentioned in [3]). D7 is much less 
uniform than Ds and thus a smaller number of known plaintexts is required. In order 
to use DT we should peel up one round of DES - -  we do that by guessing all the 
possible values of the key bits of the pair of S-boxes, and calculating the distribution 
that results for each value of the key bits entering the pair of S-boxes in the last 
round after XORing the plaintext and ciphertext bits with the output of the S-boxes. 
We receive 212 distributions, of which the one which corresponds to the right value 
of the 12 key bits should be similar to Dr. The analysis of this distribution is similar 
to the original analysis of the 15-round variant. Still we should identify the right 
distribution out of the 212 distributions. We select the distribution which has the 
highest absolute value of the indicator I. This analysis recovers both a parity bit 
of the key and additional 12 actual key bits entering the pair of adjacent S-boxes. 
We study only the distribution of the S-box pair $7/8 which is the least uniform 
(see Table 1). All other pairs of adjacent S-boxes result with complexity higher than 
exhaustive search. 

Davies' attack on the 15-round DES uses D7 and finds one parity bit of the key in 
249.74 steps. Our improved attack adds one round to this attack and can find 24 bits of 
the key of the 16-round DES by applying the analysis twice: both to the even rounds 
(with the additional last round) and to the odd rounds (with the additional first 
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round) (the 24 bits are two parity bits of subsets of the key bits plus 12 + 12 - 2  = 22 
actual key bits: two key bits are common to the first and the last rounds). 

We calculate the output of the pair of S-boxes in the last round by performing 
one-round partial decryption of the pair of S-boxes. The value of the.12 bits of 
the key entering these S-boxes is unknown. We try all the 212 possibilities, doing 
the counting for 4096 different distributions (each distribution has 2 s counters) - -  
a distribution for each possible value of the 12 key bits. Since for each ciphertext 
about 1/64 of a DES decryption is performed, the complexity of this attack is more 
than 249.74 �9 212/64 ~ 25e. Later we will describe an efficient algorithm to solve this 
problem. Once we get 4096 distributions we use a statistical technique to distinguish 
the right distribution from the 4095 random distributions (This technique is described 
in the full paper). Since we should distinguish the right distribution, we require about 
four times the number of plaintexts than if the distribution is known. We identify 
the actual distribution and the 13 bits of the key with 0.73 probability of success. 
The mean of the indicator should be greater than four times the standard deviation. 
With probability 0.53 we find 24 key bits by applying the method twice. There is a 
tradeoff between the number of bits that the attack finds and the number of known 
plaintexts it requires, since we can consider the n maximal indicators rather than 
only one indicator. This is equivalent to finding of the m = 13 - log 2 n bits of the 
key. 

In the efficient algorithm the attack incorporates a data collection phase and a 
data analysis phase. Only 10 ciphertext bits are required for the partial decryption. 
The data collection phase counts the number of occurrences of each possible value 
of the eight distribution bits (which are received as XOR of plaintext and ciphertext 
bits) together with these ten ciphertext bits (entering the pair of S-boxes in the last 
round), and outputs an array of the 2 is counters. Note that the data collection phase 
only increments one counter for each plaintext that it encrypts. 

The data analysis phase starts by calculating the 212 distributions. For each 
possible value of the 12 key bits and 10 ciphertext bits (cr) entering the pair of S- 
boxes, the output of the pair of S-boxes is calculated. The result (eight bits) is 
XORed to each possible 8-bit value (8) and the corresponding entry (fK(c~) @ 8) in 
the distribution generated with the particular value of the key is increased by the 
value of the corresponding counter (or, 8)- We get 212 distributions which we analyze 
(as described above) to find the right value of the key. We receive 12 key bits of 
the subkey IQ6 of the last round plus one parity bit of the key. The cost of the 
data analysis phase is about 212 �9 2 l~ �9 ~ = 216 DES encryptions, plus 230 counter 
increments. It runs only several minutes on a SPARC station. 

This attack is repeated twice, once for the even rounds and once for the odd rounds 
(with the only difference that one round encryption of the first round is applied, 
guessing 212 bits of subkey K1). The data collection phase counts simultaneously 
into the two counting arrays, and the data analysis phase is applied for each array. 
Among the 24 actual key bits found during the attack two bits are common to both 
rounds and are used to discard some wrong keys that are left after the data analysis 
phase. Finally we obtain 24 bits of the key. The other 32 key bits can be found by 
exhaustive search. 
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Figure 1 compares the known attacks on DES. It shows the success rate of each 
attack versus the number of known/chosen plaintexts it requires. Our attack is rep- 
resented by the five curves corresponding to the different numbers of effective bits 
found. We have cut the success curves when they reach the probability of. a random 
guess. These cut points differ for each curve, since the number of key bits is different. 
There is a tradeoff between the number of bits the attack finds, and the data com- 
plexity of the attack for particular success rate. We found that the best tradeoff is 
reached when the attack finds six effective bits with 25~ known plaintexts and success 
rate 51.3% and the rest 50 key bits are found by exhaustive search. 

We wrote a program that implements our improved attack and finds 13 bits of 
the key of reduced round variants of DES. In tests we made, this program found the 
key with the success rate expected by our probabilistic calculations (from which the 
Figure 1 was generated). 

4 D i s c u s s i o n  

Davies estimates that the correlations of the outputs of the pairs of the S-boxes were 
reduced in DES. He claims that much stronger reductions are possible. In this section 
we suggest additional design principles to immune DES-like S-boxes against Davies' 
attacks. 

S-boxes immune to Davies' attack must have uniform joint distribution: 

Da (x, y, 0) = D1 (x, y, 1) = E(D1). (5) 

In order to make DES-like S-boxes immune, either the differential property abcdOOb 7 
0 or the differential property OOefghb 74 0 suffices (we denote binary numbers by the 
subscript b). In DES all the patterns of the described type (except for 00xy01b) 
are impossible, or were intentionally lowered by the designers to prevent differential 
cryptanalysis. 

Following Davies we define D(x, k) to be the distribution of x and E(y, k) be 
the distribution of y, when the value of the two common bits is constrained to be k 
(k E {0. . .  3}). For DES S-boxes Davies received the formula: 

D~(x,y,O) = 4 + (D(x,O) - D(x, 1)). (E(y,O) - E(y, 2)) (6) 

(this formula holds for any S-boxes with the differential property OabcdOb 74 0). Thus, 
any pair of DES-like S-boxes must have a uniform joint distributions if and only if 

D(x,0) = D(x, 1) or E(y,O) = E(y,2) (7) 

The following two additional differential properties lead to uniform joint distribution: 

01xyllb 74 0 , 00xyllb 7z*0, (8) 

since they cause D(x, O) = D(x, 1). Alternatively, the following two additional differ- 
ential properties lead to uniform joint distribution: 

llxyOOb ~ 0 , llxylO1, 7L-> O, (9) 
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Figure 1: Comparison of the success probability of differential cryptanalysis, linear 
cryptanalysis, Davies' attack, and the improved attack. 

since they cause E(y ,0 )  = E(y,2) .  Note that  llxy00b 74 0 is already a design 
principle of DES. The s 3 D E S  S-boxes [4] were designed with the additional criteria 
l lxy l0b  7L* 0, and are thus immune to Davies' attack and to the improved attack. 
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5 Summary  

We improved Davies' attack on DES. We describe a tradeoff between the number 
of plaintexts, the success rate and the time of analysis. The best tradeoff requires 
25~ known plaintexts and 250 steps (249 in average) of analysis and has about 51% 
success rate. An alternative attack is capable of finding 24 bits of the key with 252 
known plaintexts with 53% success rate. The data analysis phase of this attack is 
independent of the number of rounds and runs only several minutes on a SPARC. We 
also suggest how to make S-boxes immune to these attacks. 
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