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Abs t rac t .  This paper describes the development and implementation of 
the MPQS factoring algorithm using multiple hypercubes customised to a 
MIMD parallel computer. The computationally most expensive steps ran 
on a Parsytec machine consisting of 1024 Inmos T805 microprocessors. 
General 100 decimal digit numbers can be factored in 1-2 days. 

1 Introduct ion 

The installation of a 1024 processor MIMD machine at our university in the 
spring of 1993, and a course on the parallelisation of number theoretical al- 
gorithms given by the second author incidentally in the winter term 1992/93 
initiated the idea to estimate the theoretical and practical effort to start  a sig- 
nificant factorisation experiment on a dedicated machine from scratch. The goal 
was to factor 100 digit numbers within 1-2 days of CPU time. 

Of course, a parallel version of the MPQS algorithm, based on ideas of Dixon, 
Pomerance and Montgomery and described in [8, 11], seemed to be the right 
point to start.  However, a straightforward approach with processors running 
independently as in [3] is impossible because of memory constraints. The analysis 
of the technical capabilities of the Parsytec machine shows there should not be 
too much communication to guarantee high performance computing. 

From the many variations of the MPQS algorithm discussed in the literature 
we felt that  Peralta 's MPQS on a hypercube [7] which was still not implemented 
could serve as an adequate basis. A careful study showed that  this idea did 
not fully exploit the internal structure but  that  considerable improvement was 
possible and useful on our machine. It seemed advantageous not to stay with 
a single hypercube but  to work on several ones in parallel. Theoretically we 
expected a loss in useful relations originating in Peralta's method, due to the 
effect tha t  a-values from the polynomials used are divided by several primes 
in the factorbase. To compensate for this effect we devised a subtle procedure 
similiar to the one used in [5] to combine partially factored numbers from the 
sieving stage. 

The next major  task was to find a parallel implementation of the algorithm 
which makes optimal use of the machine at hand. Our first method separates 
the traverse of the hypercubes from the sieving process. The MIMD property 
enables us to run the hypercube part  on a small number of processors while the 
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sieving part is performed at the majority of processors. Since the distribution 
of both parts is mainly determined by the number of processors at hand and 
the underlying hardware topology is neglected, we developed a more flexible 
parallelisation. Here the processors are grouped into rings along which the data 
is distributed. 

The first factorisation falling within the initially intended domain was com- 
pleted on December 24th after 41 hours total runnning time. As a contribution 
to the Cunningham list we give the formerly unknown 41 and 56 digit prime 
factors of the remaining 97 digit eofactor (C97) of 12 ~27 + 1. Shortly afterwards, 
a 101 digit cofactor of 527z - 1 (C101) was factored into 36 and 66 digit primes. 

The complete development, programming from scratch and debugging of the 
software took about 6 man-months. Most of the programs are written in C, only 
some modules of the multiprecision arithmetic are written in T805-Assembler. 

2 M P Q S  on  a H y p e r c u b e  

We assume familiarity with the 'Multiple Polynomial Quadratic Sieve' (MPQS) 
algorithm [8, 11] and will sketch only the improved hypercube variation used by 
US. 

Let N be the composite integer to be factored. After choosing a factorbase ~" 
of R primes Pi, 1 < i < R ,  and a sieve length M, a lot of quadratic polynomials 
Q, ab(X) = a2X  2 + 2bX + c with b ~ - N = a2c are generated. It follows that 
Q,~b(X) =-- ( a 2 X  + b)2a -2  modN. The requirement IQ,,b(--M)I ~ ]Q~b(0)l 
IQab(M)] leads to the condition a 2 ~ 2 ~ - N / M .  For every such polynomial the 
roots modulo pi, 1 < i < R ,  must be computed, the interval [-M, M[N~ is 
sieved, and the candidates are collected. 

Now for every prime p in the factorbase let tv be a square root of N modp: 
t 2 ~ N modp. If p does not divide a, then 

Qab(Z) ~ 0 modp ~ z = ( - b  -4- tp)a -2 modp. 

The tv's are independent of the Q,b and will be computed only once. But 
a -~ modp and b modp for every a and for every p E .T have to be computed. 

In [I1] the a's are (pseudo-)primes not divisible by any p G Y. Montgomery 
(quoted in [9]) and Peralta [7] independently observed that if a = r l" . . . '~q is the 
product of I primes ri (such that N is a quadratic residue modulo 7ri), there are 
2 z different values b moda ~ with b 2 = N moda 2. Since Qab(x) = Q a ( - b ) ( - z ) ,  
we get 2 I-i different polynomials with each a. 

Given ai ,  ~j with 
mod~r~ a j  = N  

and 
1 mod ~'? 

flJ-=- 0 modTr~. ,i ~ j 
l 

every b can be written uniquely as b = ~ j - - t  6j~jflj moda 2 where 6j ~ {+1, -1}. 
~2 

We fix 7j = + a j f l j  moda 2 such that 7j is less than T" 
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R. Peralta further noticed that  the solution set of b 2 - N m o d a  2 is struc- 
tured like an /-dimensional hypercube Ci = { - 1 , + 1 }  z, vertices correspond- 
ing to solutions b. Two vertices are adjacent if the corresponding solutions 
b, b ~ differ at exactly one sign 6j. He suggested to follow a certain hamilto- 
nian cycle of Cl-1 = (Cz-2 x { -1} )  U (Ci-2 x {+1}) resulting in a sequence 
ki, 1 < i < 2(l - 1) - 1, with ki = j if step i changes coordinate j ,  such that  the 
tour 

bi+l : bi + 2PiTk, mod a 2 

with Pi = +1 or - 1  depending on whether step i changes coordinate ki from - 
to + or from + to - visits all useful vertices of the hypereube Cz. Omitt ing the 

a2 
reduction of b m o d a  2, still ]b[ < l �9 T holds which is sufficient for the estimate 
of Qab(z) over [ - M ,  M[. 

Whereas Peralta devised an algorithm requiring three additions and one 
multiplication modulo every prime p in the factorbase and a table of 61R in- 
tegers to step from bi to bi+l, we use precomputed tables of 27ja -2 modp  for 
1 < j < l - 1 and every p in the factorbase to obtain from the modular roots 
xi  = (--ba - 2  -4- tpa  - 2 )  m o d p  of  Q a b , ( X )  the  roo t s  

zi+l = (xi - 2piTk,a -~) m o d p  

of Qab,+~(X) in only two additions mod p. The cost for doing this results in 
the additional space consumption of (1 - 1)R integers. As a second improvement 
we sieve many hypercubes at a t ime which allows us to choose hypercubes of 
smaller dimensions. 

Nearly factored candidates out of the sieve stage are relations of the form 

R 

ql q2 H P~' ------ z2 mod N (1) 
i=0 

with qi = 1 or qi > PR prime. This is called aful l  relation if ql = q~ = 1, a partial 
relation if exactly one of the qi's is one, and a partial partial relation otherwise. 
Exploiting the idea of using partial partial relations [5] more than compensates 
for the negative effect that  a-values from the polynomials used are divided by 
several primes in the factorbase. 

Among the techniques used to speed up MPQS this is the most efficient one. 
The factor graph G = (V, E)  is built from relations of the form (1). The first 
node in V is identified with 1. All the primes ql and q2 appearing in (1) make up 
the rest of the nodes. An edge e ---- (v, w) in the graph corresponds to a relation 
(1) with v = ql and w = q2. 

Two algorithms investigate and exploit the graph. The first one cuts off 
leaves and isolated nodes repeatedly and the second one is the breadth-first 
search algorithm. By cutting off leaves and isolated nodes we obtain structural 
information about the factor graph and reduce the memory demands when pro- 
cessing the cycles. By breadth-first search we look for cycles in G, whenever one 
is found, it is stored, the last edge traversed is deleted from G, and the search 
is continued. This gives a basis of the cycle space of G. 
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Each of the cycles found produces a full relation. Let us e.g. use a cycle of 
length 4 passing node 1, that  is a situation like 

Thus 

T"lr I1~ C2 s 1. r .  1-I/R=0 pi c',' -- z~ mod N ,  r -  s .  11~=0 Pi ' -- z~ mod N, 
s t . I ' [R  . . c a ,  xxi=0 ~', ' = zz 2 mod N ,  1. t .  l-[i=0 Pi e`,' = z42 rood N 

R 
(ZlZ2Z3Z4] 2 

H picl'i+c2''+e3''+e4'' = k rat / mod N 
i=0 

In this setting, pairs of partial relations are cycles of length 2. 
In case a multiplier m is used with MPQS there are two possibilities. Either 

it is included in the factorbase or the graph is extended by a node for m. In the 
second possibility, at the place of ql �9 q2 in (1) m �9 ql �9 q2 can appear. Using the 
corresponding edges, cycles must be treated differently depending on the parity 
of the number of such edges. 

In the meantime we have learned from two other implementations of the 
hypercube MPQS algorithm. R. Alford and C. Pomerance [1] are using polyno- 
mials Qab(X)  = a X  2 - 2 b X  + c such that  aQab(X)  -- ( a X  - b) 2 m o d N .  Taking 
a instead of a ~ makes the hypercube MPQS applicable for smaller numbers, too. 
On the other hand, the use of aQab(X)  instead of Qab(X)  increases the number 
of ones in the matr ix  used in the final step of the MPQS algorithm. Moreover, 
special care has to be taken for avoiding redundant relations which we don't  
have considered yet. 

Using only one precomputed table of 2a -2 modp  for all p E ~ ,  one still has 
to compute 7j modp,  one multiplication and two additions for all p E ~r when 
changing polynomials. 

3 M a c h i n e s  U s e d  

The Parsytec GCel installed at our university's "Zentrum fiir Paralleles Rechnen" 
consists of 1024 Inmos T805 transputers. These are clocked at 30 MHz. Every 
processor has 4 MByte RAM, 350 KB of which are occupied by the operating 
system, and 4 KB Cache, 3KB of which are occupied, too. Every 16 processors 
build a cluster in form of a 4x4-grid. The physical network topology is a two- 
dimensional grid, virtual topologies can be programmed in software. The ma- 
chine is designed for up to 16.384 processors. The communication bandwidth is 
at most 1,1 MB/sec (no intermediate links) and 0,6 MB/sec (intermediate links), 
respectively. The outside gate is a Sun workstation. 

To enable a comparison with other machines, one has to consider mainly the 
sieving capabilities of the processor. Therefore we used 'nsieve 3 1.2', which rated 
one T805 with 1.8 nsieve-MIPS independently of the array size. (A notional 1.5 
MIPS Sun 3/50 is rated 2.1-3.5 nsieve-MIPS.) 

a available from f tp .nosc  .rail in the directory pub/aburto 
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Concerning hardware and operating system (an unix-derivation called parix), 
the machine works reliably, while the support for software development could be 
improved upon. (We e.g. missed a tool logging processor activity for analysis after 
execution.) Most of the code was produced and tested on standard workstations 
running under the unix operating system. 

The software building the graph and exploiting the cycles runs at a stand- 
alone rise workstation with 128MB memory and 1GB disk storage capacity. 
Approaching 100 digits, the needs for memory and disk capacity become sub- 
stantial. However, it was still not yet necessary to use the possible improvements 
we could imagine of until now. 

4 The  Real  Paral lel isat ion 

The parallel MPQS-implementations described in [3] and [6] were not applic- 
able on our machine. Following Silverman's approach who implSmented MPQS 
in a cluster of independent workstations, every processor wou|d 'have to work 
on its own hypercube. But the need to keep (l + 3)R integers per hypercube 
does not leave enough memory for the sieve array with growing R, e.g. with 
R = 80.000, l = 10 this sums up to 4,16 MB. Additionally, every message sent 
spawns threads on the way taken by itself to the destination processor. The 
implementation of Lenstra described in [6] was done on a 'Single Instruction 
Multiple Data '  parallel computer. We were glad not to face the difficulties res- 
ulting from a single instruction machine. Moreover, a forced synchronisation of 
all processors in our machine did not seem reasonable to us. 

We sketch two parallel approaches particularly suited for MIMD parallel 
computers. The first one has been used for the results mentioned below, the 
second one will be the method of choice for even larger numbers. Both methods 
use a dedicated process (the ' root ')  whose only tasks consist in the collection 
of candidates and the input/output-operations.  Imagine having more processors 
than hypercubes to do, it is obvious that  we want to enable many processors to 
work on one hypercube. 

In the first implementation the root process runs on a dedicated node. We 
have two additional types of processors which we will call 'masters'  and 'slaves'. 
Each master creates its own set of hypercubes. After initializing its first hyper- 
cube, the first master  travels along the hamiltonian cycle described above. At 
every vertex it computes the new set of modular roots of Qab. These 2R integers 
and the coefficients of the polynomial are sent to a consecutive set of slaves 
which will sieve with the same polynomial. After making busy all slaves, the 
first master  leaves its hypercube and initializes the second one. In the meantime 
the slaves that  have finished are at the disposal of the second master, and so 
on. Each slave sieves its part  of the sieve array with the received roots. Any 
candidates found after the sieving process will be stored in a local buffer. When 
the buffer overflows its content is sent to the root (see Fig. 1). 

Critical parameters here are the number m of masters and the number t of 
slaves in a consecutive set. These values obviously depend on the number to be 
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Fig. 1. one root processor, 12 slave processors, three master processors 

factored which determines R and M and on the number of l + m + s  processors the 
program will run on. Suppose Tcube, T~hange, T~omm, Tsie~ are the times needed 
by one processor for the initialisation of one hypercube, for the move along one 
edge of the hypercube, for one communication and for the sieving, respectively. 
To avoid any idle times, m and t are then chosen accordingly to: 

s T ~( ehange + Tcomm) + Teube < m'(Tsieve W Teomm) 

This method of parallelisation seems applicable to client-server structured 
networks, too, because servers typically have enough main memory for the hy- 
percube traversal data. 

The demand for easier scalability leads to the second parallelisation idea. 
Here the root process is running on the front-end computer. All processors of 
the parallel machine are grouped into rings of r processors each. Every ring works 
on its own hypercubes. The factorbase is split into r parts of size R/r. Moving 
from one vertex to another, each processor in a ring first computes its part  of the 
modular roots of the new polynomial Qab. After 2(r - 1) communications with 
its two neighbours involving 2R/r integers every processor knows the modular 
roots of Qab for the whole factorbase. The sieve array is split into r parts, too. 
Every processor sieves its part using blocks of predefined length. Any candidates 
found after the sieving process will be stored in a local buffer as in the first 
approach (see Fig. 2). 



406 

Fig. 2. 16 processors grouped into rings of four 

While the amount of data sent among the processors is roughly the same, 
communicating processors are not as far apart as in the first approach. More 
precisely, it proved essential to have communication only between physically 
neighboured processors. 

A full description of our implementation concerning the communication as- 
pects will be given in [12]. 

5 R e s u l t s  a n d  C o n c l u s i o n s  

During development of our implementation several numbers in the range from 
39 to 91 digits were factorised. However, the factors had been known beforehand 
and we therefore do not go into detail here. 

The first new factorisation is that of the remaining 97 digit cofactor of 12z~7+ 
1, namely 

20 20744 77159 52927 76009 48240 57414 58126 58099 33659 
53308 85724 55927 69199 90416 18031 26379 12970 62041 23709 

from the Cunningham list [2]. We found the factors 

3 18472 22390 43433 91950 61801 13623 14267 55054 00394 77811 18967 

and 
6 34512 09239 59276 02546 14461 12941 14196 14827 

of 56 respectively 41 digits. 
The factorbase contained 40.000 primes, the sieve 9 �9 220 elements. From 

11.400 hypercubes with l = 7 we totally used roughly 650.000 polynomials. 
From 'partial partial relations' we split about 1.100.000 numbers into 'large 
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primes' (less than 232) that  had not been completely factored over the factorbase. 
Altogether, about 46.000 useful relations were found. Of course, little more than 
40.000 would have done. 

The overall running time was dominated by the sieving stage taking 38,5 
hours at 1024 processors. 4 The next step, the factorisation of large primes for 
'partial  partial  relations', adds approximately 2,5 hours at 1024 processors. 5 The 
linear algebra could completely be done on a single workstation. 

On a second view, the size of the factorbase was rather small (the largest 
prime in the factorbase was 1.014.649), and the sieve length was too big. These 
values were chosen mainly because the number of cycles grows nonlinearly with 
the number of relations produced (see Fig. 3). Hence, a big increase in the num- 
ber of partial  and partial partial relations seems more appropriate than a small 
gain in the number of full relations and pairs of partial relations originating from 
a larger factorbase and a smaller sievelength. 

40.000 

30.000 

20.000 

10.0(30 

full relatlcm 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

progress hi the factoda~on of C 101: / /  

upper emn, e: full relatiom from sieve aud cycles / 

_ middle cta-v�9 full re.httiom from sieve and cycle6 of lentil3 2 

I I I I I 
250.000 500.000 750.0(10 1.000.000 1.250.000 relatiom fromaieve 

Fig. 3. Growth of the number of cycles in the fa~:torisation of C101 

4 Actually, it was performed at 256 processors. In this case, scaring up is linear. 
5 The actually used factors were found at our workstation cluster. The software for 

the parallel machine then still was under development. Scaling up is very close to 
linear in this case too. 
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The graph of C101 was investigated in detail. Since we effectively did not 
use a large prime bound, it was built from 1.328.204 partial and partial relations 
(9.838 full relations from the sieve) and contained 1.470.729 nodes, 1.275.180 
edges and 235.170 connected components. About 431.000 edges built a large 
star around node 1, while the rest of about 832.000 edges was scattered around. 
39.621 cycles were in the component containing node 1. Most of the components 
only had 1 edge. The cycle lengths were 11.155 x 2 edges, 9.868 x 3, 7.554 x 4, 
5.109 x 5, 2.946 x 6, 1.638 x 7, 738 x 8, 343 x 9, 270 cycles containing from 10 
to 20 edges. 

The main finding is that  all the cycles lie in one connected component of the 
graph. The algorithm does not find a basis of cycles whose lengths are shortest, 
but this does not seem necessary because the cycles are rather short. Repeated 
deletion of leaves in the graph takes moderate computing time (25 cutoff steps 
in about 15 minutes at an ordinary workstation) and produces a much smaller 
subgraph which is equivalent to the original one when searching and exploiting 
cycles. We intend to further investigate into the structure of the factor graph 
[4]. 

Considering the use of a multiplier, we did not experience the savings in com- 
puting time reported in the literature, because we fixed the size of the factorbase 
in advance. 

In [7], Peralta estimated to gain a factor of 25 in the initialisation time for 
the polynomials. Our version reached a significantly better factor (depending on 
the choice of 1), which we at'tribute to the faster traverse of the hypercubes. Even 
the overhead for the initialization of the hypercubes does not compensate our 
improvement. [9] estimates the time to initialise the polynomials to take about 
20-30 % of the overall MPQS running time (working around 100 digits). Using 
our techniques, this initialisation time becomes very small compared to the total 
MPQS running time (less than 3% for a typical 100 digit number), which justifies 
our parallelisation effort. Also, taking full advantage of the hypercube variation 
would have been impossible if the processors would be stand-alone. Because of 
these results, we feel encouraged to further deploy the theoretical insights we 
collected and use and improve on the implementation described here. 
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