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Abs t r ac t .  The new signature scheme presented by the authors in [9] 
is the first signature scheme based on the discrete logarithm problem 
that gives message recovery. The purpose of this paper is to show that 
the message recovery feature is independent of the choice of the signa- 
ture equation and that all E1Gamal type schemes have variants giving 
message recovery and achieve five new signature schemes giving message 
recovery. These schemes have different properties as to implementation 
and security. It turns out that the scheme proposed in [9] is the only 
inversionless scheme whereas the message recovery variant of the DSA 
requires computing of inverses in both generation and verification of sig- 
natures. In [9] two applications of message recovery were proposed. In 
the present paper it is shown how to combine E1Gamal encryption and 
the message recovery scheme of [9] and how to securely integrate the 
DSA into Diffie-Hellman key exchange. 

1 Introduct ion 

Two signature schemes have received widespread attention: the RSA scheme 
which is based on the difficulty of factoring and NIST's  Digital Signature Al- 
gor i thm (DSA) [6] which is based on the difficulty of taking logarithms modulo 

a prime p. Among the commonly accepted schemes the RSA is unique in the 
sense tha t  the signature and the encryption transformations are inverses of each 
other. The  RSA signature t ransformation can be used in two modes: with text 
hashing or message recovery. On the other hand, NIST's  DSA only allows signa- 
tures in text  hashing mode. We present a general procedure how to modify all 
previously presented signature schemes based on the discrete logari thm problem 
to allow message recovery. The advantages are obvious: applications without a 
hash function are possible, smaller bandwith for signatures of small messages, 
and direct integration into other schemes such as E1Gamal encryption, identity- 
based public key systems or key agreement protocols. However, the new signa- 
ture schemes with message recovery cannot be used for encryption as the RSA 
signature scheme by interchanging the roles of the public and private keys. 

2 The  Seminal  Scheme of E1Gamal 

Let p be a prime and q equal to p - 1 or to a large integer factor of p - 1. Let 
g E Z v = G F ( p )  be an element of order q. These are the common parameters  
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in a network of users where a user or node has a private key x E Zq and a 
public key y = g= rood p. For each message rn E Zq to be signed a new and fresh 
random number k E Zq is privately generated. 
In E1Gamal's original scheme [5] q = p - 1 and k is chosen to be relatively prime 
with p -  1. The commitment part r of the signature is computed as r = gk mod p. 
The second part  s of the signature is then solved from the linear congruence 
s = k - l ( m  - r x )  rood (p - 1). Then the triplet (m; (r, s)) constitutes the signed 
message. 
For the purpose of compact treatment,  we consider in this paper a slight modi- 
fication of ElGamal 's  original signature equation 

s = k - l ( m  + r x )  rood q 

where q is any large divisor of p -  1 and one - sign is changed to a + sign. Also, 
throughout  the paper we use the notation # = r rood q. Correspondingly, the 
verification equation of E1Gamal becomes 

r s : -  g m y r '  m o d p  

In what follows this modification will be called E1Gamal* scheme. Based on 
E1Gamal's original idea several signature schemes have appeared in the litera- 
ture [13], [6], [1], [14]. In Section 5 we discuss a general description of Elgamal 
type schemes which contains all previously proposed schemes as special cases. A 
similar "meta-scheme" has also been presented in [7]. 

3 How to Obtain Message Recovery for DLP-Based 
Signature Schemes 

The currently discussed signature schemes based on the discrete logarithm prob- 
lem (DLP), such as E1Gamal and the DSA, have one major shortcoming when 
compared with the RSA. The I~SA can provide 

- message recovery: the message can be conveyed within the signature and can 
be recovered at the verifier's site. That  is, the message need not be hashed or 
sent along with the signature which saves storage space and communication 
bandwidth. 

which the DLP-hased signature schemes cannot. On the other hand the RSA 
has a property, namely 

- encryption: through reversal of the private and the public transformation 
the message can be encrypted. 

In this paper we show that  message recovery can be built as a general feature also 
into DLP-based schemes. The new schemes giving message recovery cannot be 
used as encryption algorithms. However, some of them can be naturally combined 
with E1Gamal encryption [5] as we show in Section 8.1. This feature allows 
separation of confidentiality and authenticity functions. 
Let us outline the m e s s a g e  r e c o v e r y  approach: 
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1. Multiply the exponential (or its inverse) in the commitment r with the mes- 
sage m (or m-l). 

2. Replace the message m by 1 within the signature equation. 
3. Rebuild the verification equation such that  the exponential g~ mod p is com- 

puted and the message can be recovered from the commitment part r of the 
signature (r, s). 

4 Variants  of  the  EIGamal*  S c h e m e  

4.1. T h e  E1Gamal  s c h e m e  w i t h  Message  R e c o v e r y  
We show how to extend E1Gamal* to provide message recovery. To sign a message 
m E Zp a random number k E Zq is generated and the signature (r ,s)  is 
computed as follows: 

r = m g  - k  mod p 

s = k- l (1  + f i x )  mod q 

The message m can be recovered by computing 
rl$--I 

m = g ~ l y  r m o d p  

We call this scheme MR(p)-EIGamal* scheme. 

4.2. T h e  D S A  w i t h  Message  R e c o v e r y  
With the conventions of this paper the difference between the DSA of NIST and 
E1Gamal is basically that  E1Gamal's signature (r, s) is replaced by the shorter 
signature (r mod q, s). This reduces storage space and transmission bandwidth. 
To make the verification step work it is assumed that  q is prime. 
To sign a message m E Zp with the DSA, a random number k E 7q is generated 
and the signature (r, s) is computed as follows: 

r = (g~ mod p) mod q 

s = k - l ( r n  + rx) mod q 

The corresponding verification equation for the DSA is 

r = ( g " ~ - l y  r ' -~ modp)  mod q 

We show now how to extend the DSA to provide message recovery. We will call 
the resulting scheme MR(q)-DSA to indicate that  message recovery is provided 
within Zq.  To sign a message m E Zq a random number k E 7q is generated 
and the signature (r, s) is computed as follows: 

r = m - l ( g  k modp)  mod q 

s = k- l (1  + rx) mod q 

The signature is as long and computation intensive as the DSA signature, but it 
is not necessary to send or store the message m along with the signature since 
it can be recovered from (r, s) as follows: 

m = r - l ( g ' - l y  rs-~ mod p) rood q 
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LFrom the point of view of applications the MR(q)-DSA scheme has little or no 
advantage over the original DSA. The MR(p)-E1Gamal* has potentially a much 
broader application range. 

4.3. Equ iva lences  
In this section we consider the relationship of E1Gamal and DSA and their 
message recovery variants. 

Def in i t i on .  Two signature schemes are called strongly equwalent if the signa- 
lures of the first scheme can be transformed efficiently into signatures of the 
second scheme and vice versa, without knowledge of the private key. 

T h e o r e m  1. Let q be a prime and rn E Zq. Then the following signature schemes 
are strongly equivalent: (i) E1Gamal*, (it) DSA and (iii) DSA with message re- 
covery in Zq (MR(q)-DSA). 

Proof: We first prove equivalence between (i) and (it). Let (r, s) be an E1Gamal* 
signature to be appended to the message m. Then (r mod q, s) is a DSA signa- 
ture. Conversely, assume that  (r, s) is  a DSA signature, then (y"-~g m'-I mod p, 
s) is an E1Gamal* signature. 
Secondly, we prove equivalence between (it) and (iii). Assume that  (r, s) is a 
DSA signature of m. Multiplying the commitment and the signature equation 
by m -1 yields 

m - l r  = m - l ( g  ~ modp)  mod q 

m - i s  = k- l (1  + z rm  -1) modq 

from which we see that  ( m - l r  rood q, m - i s  mod q) is a MR(q)-DSA signature 
for m. Conversely, given a MR(q)-DSA signature (r, s) of m, we first recover rn 
and obtain its DSA-signature as (mr mod q, ms rood q). 

4.4. H o w  t h e  D S A  S h o u l d  H a v e  Been  Def ined  
The reader may ask why the equivalence does not cover MR(p)- E1Gamal*. The 
reason is the incompatibility of the modulo reductions in Zp and Zq. For any 
integers a and b we must note that  

(ab) rood q 7~ (ab mod p) rood q. 

Therefore the DSA does not have a strongly equivalent version giving message 
recovery i n / ' p  To avoid this shortcoming the DSA should have been defined as 
follows: 

r = (mg -k mod p) rood q 

s = k- l (1  + rz) mod q 

This variant, which we call the reduced MR(p)-EIGamal* does not give message 
recovery and is best suited for use in text hashing mode by taking m = H(M) .  
Note that  the scheme allows the size of the hash value to be any positive number 
up to p -  1. The only essential difference between the reduced MR(p)-E1Gamal* 
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and the MR(q)-DSA (which is equivalent to the DSA) is that  in the reduced 
MR(p)-E1Gamal* the multiplication is done before reducing modulo q. 
In this scheme the signed message contains the information (m, (r, s)) and veri- 
fication is positive if the equality 

r = (rng - s - '  y - s - l r  rood p) mod q 

holds. 

T h e o r e m 2 .  Let m E Zp. Then the MR(p)-EIGamal* and its reduced version 
a r e  strongly equivalent. 

Proof: Clearly if (r, s) is a MR(p)-E1Gamal* signature for m, then m can be 
recovered and the reduced signature is (r mod q, s). Conversely if m and its 
reduced signature (r ,s)  is given, then its MR(p)-E1Gamal* signature can be 
efficiently computed as (mg -s-1 y-S-~r mod p, s). 

5 The  N E W  Schemes  

5.1.  S e a r c h  for  an I n v e r s i o n l e s s  S c h e m e  
For the schemes presented above either the computation of signatures or the 
procedures for verification or message recovery involve inversion of elements in 
Zq which requires q to be a prime if one wants to avoid repeated trials in the 
random parameter k. Specifically, we wish to find a scheme where 

1. signatures can be computed without inverses; 
2. the verification equation can be computed without inverses; 
3. the verifier is able to recover gk mod p, thereby allowing us to apply the 

message recovery technique. 

Let us consider the following general description of E1Gamal type DLP-based 
signature schemes. For all schemes the commitment is fixed as 

r = gk mod p 

The generalized signature equation for E1Gamal type schemes can be written as 

ak + bx + c = 0 mod q (1) 

where the coefficients (a, b, c) involve the values of (r', s, m). 
All previously proposed E1Gamal type schemes are included in the cases where 
(a, b, c) is a permutation of (+r ' ,  +s, +m),  (+r 'm,  +s, +1) or (+r ' ,  +sm, +1). 
Let us now apply the message recovery approach presented in Section 3 to all 
these schemes. For all schemes the commitment r is computed as follows 

r = rng -k mod p 

and the signature part s is solved from the equation 

ak + bz + c = 0 mod q 
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where (a, b, c) is a permutation of (+r' ,  +s, 5=1). For each of the six permuta- 
tions we fix one combination of + signs. The different signature equations for 
computing the second part s of the signature and the corresponding message 
recovery equations are the following. 

Signature Equation Message Recovery Equation 

(S1) s k  - r~x - 1 --- 0 rood q 
($2) r~k  + s x  - l = O m o d  q 

($3) k - r ~ x - s = O m o d q  

($4) s k  - x - r ~ = O m o d  q 

($5) r ' k  + x - s = O m o d  q 

($6) k - s x  - r '  = O m o d  q 

m - g S - l y S - % ~ r  modp 
m = g ( r ' ) - I  y - S ( r ' ) - l r  mod p 
m = gS yr '  r mod p 
m - -  y S - l g S - l r ' r  modp 

m = y ( ~ ' ) - ~ g  - s ( ~ ' ) - I  r mod p 
m = yS gr '  r mod p 

We have chosen the -t- signs in such a way that there is a direct correspondence 
to the existing E1Gamal type schemes. Scheme (S1) is the MR(p) variant of 
E1Gamal* scheme discussed in Section 4. The scheme proposed by Agnew, Mullin 
and Vanstone in [1] originally for use in GF(2 ~) leads to ($2). Scheme ($5) is 
the MR(p) variant of the scheme of Yen and Laih [14]. 
A message recovery signature scheme satisfies requirements 1-3 if and only if s 
and k can be solved from the signature equation without computation of inverses. 
As we immediately see ($3) is the only scheme to satisfy this requirement. On the 
other hand scheme (S1) derived from the DSA involves computation of inverses 
of different elements every time a signature is generated and verified. Let us 
notice that the Agnew-Mullin-Vanstone scheme was motivated by the fact that 
in signature generation it suffices to compute only one inverse z -1. But the 
MR(p) variant ($2) of this scheme requires also inversion of r'. How to handle 
this problem if q is not prime was discussed by Piveteau in [12]. 

5.2. The  N E W  Signa ture  Scheme and  its Variants  
There is no reason to presume that the number of inverses that have to be 
computed would be related to the security of the scheme. Therefore we choose the 
inversionless scheme ($3) to present a set of five signature schemes corresponding 
to the five variants of E1Gamat* discussed in Section 4. Requirements 1 and 2 
also apply also to the q-versions of the scheme. The three signature equations 
of the form (1) leading to ($3) are k m -  r~x - s = O, k - r ' m x  - s = 0 and 
k - r~x  - s m  = 0, from which only the second one allows the computation of s 
and k without inverses. 

1. p-NEW scheme (corresponding to E1Gamal*) 
2. MR(p)-NEW scheme with message recovery (corresponding to MR(p)-E1Ga- 

maP) 
3. q-NEW scheme (corresponding to the DSA) 
4. MR(q)-NEW scheme with message recovery (corresponding to MR(q)-DSA) 
5. reduced MR(p)-NEW scheme (corresponding to the DSA variant presented 

in Section 4.4.) 
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The first two have a long commitment part, the other three are short. 

IScheme ISignature 

k - r~mx mod q 

MR(p)-NEW I r = m g  - k  rood p 

I s = k -  r~x rood q 

IRecovery / Verification 

r = gSyr'm m o d p  

I m =  gSyr 'r  m o d p  

Iq-NEW ] r = 
8 

IMR(q)-NEW I r = 

S - -  

'Reduced r = 
MR(p)-NEW s 

g : m o d p )  mod q Ir = (g~yrm modp)  mod q 
r m x  mod q I 

m(g  mod p) mod q Im = (g'yr rood p)- lr  mod q 
k - rx mod q t 
(rag - k  m o d p )  m o d q  r = ( rng- sy  - r  modp)  mod q 
k - rx mod q 

We have the following strong equivalences. 

T h e o r e m  3. Let q be pr ime and m E 7 q. Then the following signature schemes 
are strongly equivalent: (i) p-NEW, (iN) q-NEW and (iii) q-NEW with message 
recovery in Zq (MR(q)-NEW). 

Proof: We first prove equivalence between (i) and (ii). If (r, s) is a p-NEW signa- 
ture to be appended to the message m then (r mod q, s) is a q-NEW signature. 
Conversely, if (r, s) is a q-NEW signature, then (gSy,.,~ mod p, s) is p-NEW sig- 
nature. 
Secondly, we prove equivalence between (iN) and (iii). If (r, s) is a q-NEW sig- 
nature of m then (mr ,  s) is a MR(q)- NEW signature. Conversely; if (r, s) is 
MR(q)-NEW signature of m, then ( m - l r ,  s) is a q-NEW signature provided 
that the inverse of m exists. 

Note that  the definitions and equivalence of p-NEW and q-NEW schemes do 
not impose any requirements on q, but MR(q)-NEW signatures can be properly 
defined and proved to be equivalent with the other two schemes only if q is a 
prime divisor of p -  1. This will be the case for all MR(q) schemes. Note also that, 
for the same reason as MR(p)-E1Gamal* is not covered by the equivalences in 
Theorem 1, we cannot include MR(p)-NEW in Theorem 3. However, analogously 
to Theorem 2 we have the following equivalence. 

T h e o r e m 4 .  For messages in Zp the MR(p)-NEW scheme and its reduced ver- 
sion are strongly equivalent. 

The reduced MR(p)-NEW does not provide message recovery and we propose 
its use for signatures with text hashing in an environment where authentication 
is based on the MR(p)-NEW scheme. 
To conclude this section, let us notice that  a similar set of five schemes with sim- 
ilar strong equivalences can be derived starting from any E1Gamal type scheme. 
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6 T e x t  R e c o v e r y  a n d  T e x t  H a s h i n g  

The previous DLP-based schemes were not able to provide message recovery. 
For such schemes the signature is appended to the message and the verification 
is only possible if the message is known. All discussed E1Gamal type schemes 
are vulnerable to substitution attack: given a valid signature for a message it is 
easy to modify the given signature in such a way that it is a valid signature for 
some other known message [5]. This attack is typically prevented by the use of 
a cryptographic hash function. This is inevitable also for the scheme in [14] too 
optimistically claimed to be secure without use of a hash function (see [3], [11]). 
In the verification procedure the hash value of the message is computed first and 
then the hash value is entered into the verification equation. The validity of the 
signature is established through checking the verification equation. 
For schemes with message recovery the process runs differently. The verification 
equation recovers the message itself, but we need an additional step which tells us 
that the recovered message is the correct one. This is typically achieved through 
adding redundancy to the message before it is signed and through checking the 
redundancy after recovery. A good example for a redundancy generating function 
can be found in [8]. 
Of course, if a signature scheme provides message recovery, it can always be used 
in text hashing mode. Then the message is hashed and the hash value is signed. 
At the verifier the hash value is recovered (using the message recovery feature 
of the signature scheme) and the authenticity of the message is verified through 
comparison of the such recovered hash value with the locally computed hash 
value of the message. This is the process that most of us are accustomed to with 
applications of RSA. 
To conclude this section let us mention the relationship between two variants 
of the NEW scheme and Schnorr's scheme [13]. Let H be a cryptographic hash 
function which maps messages M of arbitrary length to Zq and set h(g ~, M) = 
H(M)(g k mod p)mod q. If the MR(q)-NEW scheme is used in text hashing 
mode it coincides with Schnorr's scheme [13] with the hash function h. This 
particular example of a hash function shows that to prevent non-repudiation of 
Schnorr's signatures it is essential that h is collision-resistant with respect to M. 
The reduced MR(p)-scheme gives a second example of Schnorr's schemes if we 
choose the hash function h to be h(M,g k) = (H(M)g -k modp)mod q, where 
H is any collision-resistant hash function with values in Zp. 

7 S e c u r i t y  C o n s i d e r a t i o n s  

7.1. Security Classes 
To forge a signature for a given message without the knowledge of the private 
key one has to solve the signature (r, s) from the verification equation. Hence 
the security depends on the difficulty of the following problem: 

G i v e n g E / p ,  y E l p  a n d m E Z p f i n d r E l p a n d s E l q  
such that the message recovery equation is satisfied. 
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In this sense, some of the MR(p)-schemes offer equivalent security. Indeed, (S1) 
and ($4), ($2) and ($5), ($3) and ($6) are pairs of schemes providing equivalent 
security since they are obtained from each other by interchanging the roles of 
the given quantities y and g. Note that the corresponding security equivalences 
hold for the p-variants of the schemes. For example, the Agnew-Mullin-Vanstone 
scheme and the Yen-Laih scheme are of equivalent security. 
It is an open problem whether there exist other security equivalences. Specif- 
ically, it seems hard to say in what degree a p-scheme and the corresponding 
MR(p)-scheme are related. For example, no relevant definition of equivalence is 
known to justify the claimed equivalence in [12]. Of particular importance is 
the question whether the message recovery equations are as hard as the discrete 
logarithm problem. In the next subsection we discuss one aspect in which the 
proposed six MR(p)-schemes offer different security and which is of particular 
importance when message recovery signatures are combined with other DLP- 
based cryptosystems. 

7.2. F o r g e r y  o f  S i g n a t u r e s  fo r  a K n o w n  M e s s a g e  w i t h  K n o w n  Log 
As a consequence of the message recovery property it is possible to forge signa- 
tures of any given user with a known message. As discussed above this forgery 
is typically prevented by redundancy in the message. For some of the DLP- 
based message recovery signature schemes a stronger forgery is possible, which 
has to be taken into account in applications like authenticated key exchange or 
distribution of public keys described in [9]. 

T h e o r e m 5 .  Let q be a p m m e  dwisor of  p -  1. Then given a user U and a 
message M �9 Zp st is possible in schemes (SI) ,  ($2), (S~) and ($6) to find 
e �9 l_q, r �9 Zp a n d s  �9 Z a such that (r ,s)  is a szgnature of  Ugzving message 
recovery of  the message m = M g  e rood p. 

Proof: Without  loss of generality we can consider the signature equation ak + 
bx + c = 0 rood q where (a, b, c) is a permutation of (r ~, s, 1). Then the message 
recovery equation is 

rn = g - k r  = ya-Xb ga-lCr mod p 

where y is the public key of U. By substituting m = M g  e mod p we get the 
equation 

M r  -1 = ya-lb g a -%-e  m o d p  (2) 

and we look for its solution r, s and e. We start  by choosing any A and B in l q  
and computing 

r = y - A g - B M  mod p. 

The schemes can be devided in three cases. 
1. r ~ = a. Then A = a - l b  mod q can be solved for b if and only if b = s and then 
s = A t '  mod q. Hence c = 1 and we get e = r ~-1 - B mod q. Consequently, this 
attack works for scheme ($2) but not for ($5). 
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2. r ~ = b. In this case A = a - l b  mod q has always a solution b = Aa if and only 
if a = s. Then c = 1 and with e = s -1 - B mod q we have a solution of (2). 
From this we see that  the forgery succeeds for scheme (S1) but not for ($3). 
3. r' = c. Similarily, as in previous cases we can see that  the forgery is possible 
for both schemes ($4) and ($6). 

8 A p p l i c a t i o n s  

8.1. Signing and Encrypting 
One of the main advantages of the new MR(p) signature schemes over the tra- 
ditional E1Gamal-type schemes is that they may be combined with EIGamal 
encryption in a natural manner. This is due to the mathematicM fact that  the 
messages are now elements of GF(p) .  We show in detail how this combination 
works for ($3). It works equally well for ($5). But due to Theorem 5 this method 
is unsecure for the other MR(p) schemes, since the receiver can forge senders 
signatures for any given messages. 
Let M be a message that  A wants to send to B encrypted and signed. First A 
generates its MR(p) signature of M 

r = f ( M ) g  - k  mod p 

s = k -  # x  mod q 

where f is a redundancy generating function. After that A encrypts r using 
E1Gamal encryption [5] with the public key YB of B and a privately generated 
random K.  Then the signed and encrypted message consists of three parts 

cl = gK mod p 

c2 = f ( M ) g - k y ~  m o d p  

C 3 ~---8 

When receiving (cl, c2, c3) B decrypts r from c2 using Cl and its private key and 
then recovers f ( M )  from r using c3 and A's public key. 
A second application of the MR(p) schemes and E1Gamal encryption is the secret 
key establishment procedure described in [9] for the MR(p)-NEW scheme ($3). 
Using this procedure two parties can securely establish a shared secret session 
key by transfering only one message from one party to another. After a certain 
change this key establishment procedure is secure also if ($3) is replaced by any 
other MR(p) scheme. An implementation of this method is given in the next 
section. 

8.2. How to Securely Integrate the DSA to Key Distribution 
The parties who want to establish a shared secret and authenticated key can 
naturally authenticate their Diffie-Hellman key exchange messages ([4]) by sign- 
ing them using the DSA of NIST. A more straightforward procedure proposed 
by Arazi [2] fails to give sufficient protection for the secrecy of the keys as shown 
in [10]. 
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The purpose of this section is to show that  Diffie-Hellman key establishment can 
be securely integrated to the DSA. Our starting point is to use the key estab- 
lishment procedure of [9] with the MR(p)-E1Gamal* signature scheme. Then we 
show that  the most computation intensive parts of the procedure can be imple- 
mented using the DSA of NIST and essentially only some interface values need 
to be changed. 
To generate the key exchange message the sender A 

1. generates two random numbers K and k; 
2. computes r = ygg-k mod p; 
3. reduces r ~ = r mod q as in the DSA; 
4. computes s = k-l(H(M)+r'xA) mod q as in the DSA but with H(M) = 1; 
5. sends r and s to the other party B. 

Then A computes the key as gK mod p. Let us point out that  in 2. we raise YB, 
instead of g as in [9], to the exponent K to prevent the forgery described in 
Theorem 5. The receiving party B 

1. recovers the value gk mod p by computing 

gs-lH(M)y~ lr' mod p 

as in the DSA with H(M) = 1 but without reducing it modulo q; 

2. computes y~ = rg k m o d p  and the session key as (y~B)*~ ' modp .  

9 S u m m a r y  

We have presented a general idea how to derive new digital signature schemes 
giving message recovery from the previous schemes based on the difficulty of the 
discrete logarithm problem. Since the message recovery modulo p and modulo q 
can be combined with every signature equation we obtain many new schemes 
which we relate to each other in a systematic way within a general framework. 
Specifically, the framework allows us to compare the properties and functional- 
ity of the schemes. For example, we have seen that  the NEW-schemes can be 
implemented without inverses modulo q and hence it is not necessary to choose 
q prime. 
Although our new schemes give message recovery in the same way as the RSA, 
they cannot be used as encryption algorithms, since the signature and recovery 
transformations do not commute. 
The benefits of the message recovery are: applications without a hash function, 
smaller bandwidth for signatures of short messages, direct use in other schemes 
such as identity-based public key systems (see [9]) or key agreement protocols 
and natural  combination with E1Gamal encryption. We also show how to securely 
integrate the DSA to secret key establishment. 
We have seen that  message recovery variants exist for all signature schemes 
based on the discrete logarithm problem in GF(p). Further, it is obvious that 
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message recovery schemes can be considered over any group with a large cyclic 
subgroup, for example over GF(2 '~) or over an elliptic curve, that  is, where 
ever E1Gamal-type signature schemes exist. The main difference between the 
old E1Gamal-type schemes and the new schemes giving message recovery lies in 
the fact tha t  in the new schemes the messages to be signed are down in the 
group itself and not in the exponent set of integers as in the old schemes. As we 
have seen this mathematical  fact is not only of theoretical significance but offers 
wider functionality and integrability to other cryptographic systems based on 
the discrete logarithm problem. 
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