
Can D.S.A. be Improved ?
- Complexity Trade-Offs with the Digital Signature Standard-

David NACCACHE 1 . , David M'RAiHII, Serge VAUDENAY 2 and Dan RAPHAELI 3

1 GEMI'LUS CARD INTERNATIONAL, Cxq~pto Team, 1 place de Navarre, F-95208, Sarcelles C~.x , FRANCE
{100142.3240 and lO0145.2261}@compuserve.com

2 ECOLE NORMALE SUrERmUR~ G.R.E.C.C. - D.M.I., 45 rue d'Ulm, F-75230, Paris C~ax 5, FRANCE
serge, vaudenay@ens �9 fr

3 CALIFORNIA INsTITtrrE OF TEC'HNOLOGY, Electrical Engineering, Pasadena, CA 91103, USA
dani@romeo, caltech, edu

Abstract : The Digital Signature Algorithm (DSA) was l~Oposed in 1991 by the US National Institute
of Standards and Technology to provide an appropriate core fur applications requiring digital signatures.
Undoubtedly, many applications will include this standard in the future and thus, the foreseen
domination of DSA as a legal certification tool is sufficiently important to focus research endeavours on
the suitebility of this scheme to various sitnatic~s.

In this paper, we prcsant s~x new DSA-based protocols for :

�9 Perforn~ng a quick batch-verification o f , signatures.
The proposed scheme allows to make the economy of = 450, modular multiplications.
�9 Avoiding the cumbersome calculation of 1 / k rood q by the signer.
�9 Compressing sets ofDSA transact/ons into shorter archive signatures.
�9 Generating signatures from poe-calculated "Use & Throw" 224-bit signature-coupons.
�9 Self-~.ertifying the moduli and bit-patterning directly q on p (gain of 60.4% in key size).

All our schemes combine in a natural way full DSA compatibility and flexible U'ade-offs between
computational complexity, transmission overheads and key sizes.

1. Introduct ion

There is no doubt that the proposal of the DSA [1] as a Federal Standard will make this scheme widely
accepted and used for certifying the integrity of messages and documents. Electronic passports, ID-cards,
driving licenses and other DSA-bused purses arc thus expected to join (and partially replace) a whole ganmt of
passive devices used today in telephony and banking.

However, many potential applications will certainly remain beyond of reach because of the difficulty of
manipulating big-numbers in portable devices and although constant improvements of silicon technologies may
solve the majority of these problems, the price of crypto-dedicated chips will most certainly be the new barrier
to jump over during the next decade.

Nevertheless, DSA is aimed to be only one layer in more complex systems which will generally include phone
lines, powerful (but potentially hostile) terminals and storage or compression facilities which might be of some
help in the processing of DSA signatures.

This paper presents a family of DSA-compatible protocols precisely designed to simplify the signer and the
verifier's work whenever poss~le. For instance, one of our methods saves 450 multiplications per signature by
batch-processing simultaneously large sets of signatures, a second algorithm compresses sets of DSA
transactions into shorter archive signatures and two other protocols avoid the computations of modular inverses
and exponentials m the signer.

All these schemes combine in a natural way full DSA compatibility and flexible trads-offs between
computational complexity, transmission overheads and key sizes.

* This work was started while visiting J.P.L. and CalTech's Electrical Engineering Department in the summer of 1993.

78

2. DSA batch verification

The parallel verification of many signatures in a single algorithmic operation might be of big help in many
practical applications : banks will collect sequentially considerable volumes of transactions but compensate
them at once, toll-highway machines will process collectively many electronic tokens at rush-hour peaks and
pay-TV operators might be interested in satisfying large numbers of customers in a relatively short time.

The algorithm presented in this section isprovably as secure as the original DSA but much faster as it replaces
multiplications modulo p by additions modulo q.

For simplicity, the protocol will be descn~oed for a single signer as their extension to a community of users
(same public moduli but different public-keys) is straightforward but requires heavier notations :

for i -- I to n, the signer :

�9 picks k i ~R GF*(q), computes 2 i = g ki modp, s i

0 and sends {2 i ,s i ,m/} to the verifier.

SHA(m/)+x2i rood q,
ki

TO verify {2 i ,s i ,m i }i = 1,...,n :

�9 pick n pairwise relatively prime equation randomisers b 1 bn r GF* (q),
n n

Y.biw i SHA(m i) rood q ~biwi2 i rood q
n .b~ i= l i = l

O test ff: 1"["~i' rood p -= g y rood p
i = l

(~ and replace {A i ,s i ,mi} i = 1 n by {r i = 2 i modq,s i ,mi} i = 1,...,n

The security of this scheme is guaranteed by :

Theorem I The following statements are equivalent :

(D There is an efficient algorithm C(ml,m 2 , p, q,g,y,b,b 1 ,b 2) = {s 1 ,s 2 , 21 , 22 } such that :

~bl2b ~ =_ gbWlSHA(m 1) +biw2SHA(m2) rood q ybWl21 +biw222 rood q rood p for i = 1,2 and b 1 * b 2

(~ There is an efficient algorithm which breaks DSA.

Proof: @ ~ (D is straightforward. To prove that (D~ @, pick any b, choose {b 1,b2} such that/~ = b 1 - b 2 has

an inverse modulo q and compute P.(m I ,m 2 , p, q,g,y,b,b l,b 2) = {s I , s 2 , 21 , 22 }. Dividing the formulae :

2b12b~ =_ gbWlSHA(ml)+biw2SHA(m2) rood qybwlZ 1 +biw2:~ 2 rood q mod p for i = 1,2

we get : ~ ~ g ~w2SHA (m2) rood qybw 222 rood q rood p and/~ th roots rood p can be taken at both sides

(as/~ has an inverse modulo q) to see that {m 2 ,s 2 ,r 2 = 22 rood q} passes the sequential DSA test. l"l

An immediate consequence of theorem 1 (which can be further generalisod) is :

Lemma I I f the b l s are palrwise relatively prime, strictly smaller than q and picked in a set A then :

79

n(A)-- P,[ArCH(bi = = Raise]= IAI 2'-tAt =tAt- -2

The most naturaIA is the set of primes smaller than a certain bound (for instance, s ~ 7927}) ~ 10 -6

is suitable for most applications), but the cardinality of A can be optimised by the following t~hnique :

Denote C = {c first primes} and let f (c) be such that sf(C)c is maximal 1. To compute b 1 b f (c) , generate
, i

a random partition of C to f (c) classes tCl C f (e)) and inter-multiply the elements in each C i to form b i .

The values r = 54 or 6542 are particularly interesting as they correspond to the primes smaller than 28 and

216 which can be easily manipulated by computers.

A couple of noteworthy results is :
d!2(c -2d) !

Lemma 2 I f all the C i s have exactly the same cardinality d, then f2(C) = cl

Lemma 3 t i the his are chosen freely in {0,1} e then {0,1} e =

and f (c) can be easily approximated by Harper 's lemma [7] :

C
Lemma 4 lira ~ = ~ (where ~ = 2.71828... denotes the base of natural logarithms).

c ~ oo f (c) In(c)

Characteristic instances of the two verification strategies (sequential and batch for temma 3 and e = 20) are
compared in table I where all costs are given for n signatures.

scheme ~> NIST-DSA ProbabULClc
trade-off 6 sequential verification batch verification
#of l6Obi tmul t . 2n 4 n
o f 512 bit mult. ~ 475 n ~ 29n + 474
size ore 20 bits
transmission 40 n bytes 84 n bytes
DSA format by definitio n with r = ~ modq

Table 1 : DSA verification strategies

3. Compressing DSA signatures

DSA signatures are meant to be legal proofs and should thus be archived during a certain time. Taking as an
everyday example the case of cash dispensing machines, each money withdrawal operation makes the terminal
generate a short debit certificate (32 bytes) which is kept for future trace by the bank during four years.
Although public key techniques are ideally tailored for such situations (attacks against terminals are of no help
for forging cards), it is striking to observe that the DSA "protection layer" may turn to be as big as the protected
message itself.

Whilst messages may contain redundancies and admit a whole gamut of compression solutions, DSA signatures
(based on k and x, both of which are random and unknown to the archivist) are, d priori, impossible to
compress since log(x) + lng(k) = log(s) + log(r).

Coming back to our bank example, and assuming that the card-holder comes to the bank office from time-to-
time (even once a year), one can imagine a signer-aided compression scheme in which the bank will take
advantage of the visits to re-send to the card a set of signatures (of which the signer kept no trace), the card will
verify these and once recognised (as generated with its x), concatenate all the corresponding messages and put a
single signature on the whole. Unfortunately, this solution suffers from the heavy disadvantage of forcing the
card to perform a number of DSA verifications which might be too lengthy and unsuited to a real-life context.

I S m denotes the Stirling numbers of the 2 nd kind (that is, the # of partitions of a set ofn objects to m classes).
n

80

However, the card knows more than the verifier about its own signatures, namely, knowing x, the signer can
easily reverse the steam and compute k. Thus, by a proper redundancy in k, the card can recognise its signatures
with a minimal effort (a couple of multiplications).

.o : =, l
shorter random picked by the signer during the generation of the signature and m the signed message.

The compression protocol (now being implemented in an Asian banking application) is :

<I) The signer sets h 0 =

@ f o r i = I t o n :

{ l }
�9 The archivist sends to the signer the triple h i = SHA(m/), wi = ~-/ mod q, r/

�9 The signer checksff3 ~ [q ~ j sochthat t l ISHA(~lh i) mod2[size(q)13J)=wi(hi+xri)modq

and updates h 0 = SHA(hi[h 0) if this test succeeds and ~ ~ 0

The signer signs h 0 and the archivist checks and files this signature before erasing {s i ,~ } for i = 1 n.

Note that the 2/3-sized random was chosen to reach an optimal birthday-paradox security (e 253 for q ~ 2160).

4. 1/k-less signatures

For generating or verifying DSA signatures, one mast posses an algorithmic tool for computing modular
inverses. The NIST recommends Euclid's algorithm which is fast and suitable to software applications but
becomes of no interest when the basic tool at one's command is a ready-to-use modular multiplier ("oack-box"
implementing the operation a x b rood n).

This observation may well explain the fact all today's DSA smart-card prototypes (three different crypto-

engines and five different companies 2 ~) use the identity : x -1 = x q-2 rood q to compute modular inverses 3.
In this section we propose a simpler solution which eliminates completely l/k from the signature generation
process. The idea consists in hiding k behind a random blinder d which disappears automatically during the
verification. The proposed protocol is :

{q, p, g, y, M) in public domain ~

iSigner's secret : x] / >

enerate randomly k and d] /

r = gk mad P m~ q ~ I

a = ,SHA(M)+x*r)*d sod q] I

= k*d mod q l)
end {r, a, b} j - /

w = b/a mod q

u[l] = SHA(M)*w mod q

u[21 = r*w mod q

Verifier's test :

r = gU[l]yU[2]mod p rood q

Accept if OK and b nonzero
)

Convert to DSA format :

S = I/w mod q

2 Fora'ess-Thomson on ST16CF54, Gemplns-CCETr on 83C852 and Siemens on SLE 44C200.

�9 , (log(q) ,~2 (~ 10% for a 512-bit p) between the computation times of Ilk and r. , 'i'~s method yields a rat,o o~ L ~)

81

and its security is guaranteed by the fact that any would-be cryptanlysis C(m,p,q,g,y)={r,a,b} will break
the original DSA by post.caleulating s = a / b mad q.

5, Shor ter self-certifying primes

In memory-restricted environments (like smart-cards or other portable electronic tokens), key size is an
influential parameter in the favour of a given algorithmic solution. The standard specifies a "wild" prime
generation scheme (meant to avoid trapdoor moduti) which outputs at least 844 bits : p and q (respectively 512
and 160 bits long) and a certificate of proper prime generation (172 bits at minimum).

Our approach for reducing the size of these data (by about 60%) combines several advantages :

r q is simply the 160 most significant hits ofp.
The certificate of proper prime generation is embedded into p as well.
The "wildness" of our prime generation procedure still avoids the generation of trapdoor primes.

The algorithm is :

Steps 1 to 4. (See appendix 2) Identical to the NIST key generation algorithm with a 160-bit Seed.
Step 5. p = q [Seed I 32 zero bits [SHA(Seed)

Step 6. p = p - (p med q) + l
Step 7. p = p + q
Step 8, If the 32-bit zero pattern inp (counter) turned to 7FFFFFFF16 go to Step 1.

Step 9. Ifp is composite go to Step 7.

and an output example (Seed and q are taken from the NISTs DSA example-list) is �9

q = b20dbOblOldfOc6624 fc1392ba55 f77d577481e5
Seed = d5014e4660ef2ba8b621164062ba3224e0427dbd
counter = 0000000c
"tail" = fdblSbdb74205335fa5302667a7db7cOSa12ad41

which concatenation gives :

p = b20dbOblOldfOc6624fc1392ba55f77d577481e5 [d5014e4b60ef2baSb6211b40

62ba3224eO427dbd I O000000c I fdblSbdb74205335fa5302b67a7db7cOSa12ad41

6. Use & Throw DSA signatures

A well-known feature of the DSA, inherited from its ancestors EI-Gamal [5] and Schnorr [I0], is the
posm'oility to pro-compute r and the inverse of k before the message is known. Then, the effort needed to
produce s from m is negligible. This section introduces a coupon-based protocol exploiting this property for
helping the signer to generate signatures very quickly. In our model, a trusted authority sends public data
packets (Use & Throw coupons) to the signer who stores them for future use. Each cotrpon is only 28-byte tong
and enables its owner to generate one DSA signature (if a coupon is used twice, the signer's x is revealed). Two
noteworthy advantages of this method are that the signer has only to posses x and q (the storage of g and p,
which represents 1024 bits at minimum, can be avoided) and only a couple of multiplications is needed to
tran~orm a coupon to a signature.

The system is based on a retro-ealcolation of k from an easily compressible inverse and is ideally suited to
electronic-purse applications where card-holders interact periodically with a trusted authority for loading
money into their purses (refreshing the coupon's reserve) :

82

Isend the message m

[cheok ~r,s~

[VERIFIER)

O [SIGNER" 1
Loading a coupon

J) mod q]~send a random J

iod p rood q ~---~[store {r,J}

Signing with a coupon

~__~ s = t m + x r) s ~ u ~ t x l a) ,nod q]
send {r,s}, erase {r,J}~

This scheme was implemented on a 68HC05-based prototype 4 which generates s in less than 150 ms (4 MHz
clock) and can contain up to 91 coupons in EEPROM. A heavy-duty version (now under development) ~ l l be
30% faster and tailored to contain 279 coupons.

Note that when Montgomery's algorithm [8] is used (let Q = 2-s ize (q) mod q), the signer can shortcut his

calculations by using the key : x '= xQ-1 mod q if the authority compensates :

Q k
r =(~//-g'mod p) mod p modq

The coupon-owner will then compute s by two Montgomery rounds (instead of four) :

CD

cD

z = Montgomeryq (x' ,r) -m x'rQ =- xQ-lrQ =- xr mod q

s = Montgomeryq (z+m, SHA(d[x)) =- (z+m)SHA(J[x)Q modq

~" The signature is still DSA-compatible and the storage of 4size(q)modq (20 bytes normally needed for
converting results from Montgomery's format to the conventional number system) has been avoided.

qP" Note that coupons can be reduced to exactly 2G-bytes ff only one new common d is generated during each
loading session and inverses are diversified by 1 / k i = SHA(J[x[i) where i is the coupon's number.

The general electronic check concept (see for instance [4]) can apply more or less efficiently (size of the check
and the number of multiplications required to produce a signature) to a big variety of cryptosystems. We incite
the reader to examine and/or modify the relevant bibliography for obtaining an optimal suitability to a given
practical situation.

7. Conclusion

We showed that relatively simple considerations may greatly accelerate the processing of DSA signatures. The
main characteristics of the algorithms presented in this article (which can be easily adapted to suit different
envirolmements or even other signature schemes like the Brickell-McCurley [3] and Gnillou-Quisquater [6])
are summarised in table 2 where the first column indicates the NISTs method for reference.

4 ST16623 (no crypto-engine aboard).

83

scheme
trade-off
of16o bit,m.,~.
o./'512 bit mul l
modular inverse
transmission
size o f modull
DSA format

NIsr-nsA
(signer)

2
237

~es ,

40 bytes,
84 bytes

IA~-less DSA U& T-DSA
(signer) (signer)

3 2
= 237 none
II0 I no

6o bytes 16S bytes
84 bytes 20 bytes

! by definition

DSA-compress
(n signatures)
2(n + l)

237
~es
40(n + 1)'bytes

with s = a l b mod q yes
Gemplus Card International

8 4 ~ ,,,

yes

a,,to-~e,~f, ed p
(both sides/

! ~ m c h a ~ ,
~changcd
unchanged
unchanged
64 b~es
partial
public don~in

Table 2 : DSA signature generation methods

Acknowledgements

We thank Beni Arazi, Josh Benaloh, David.Chaum, Jacques Stern and Jean-Pierre Tillich for their
pertinent suggestions concerning this work.

References

[1] FIPS PUB XX, February 1, 1993, Digital Signature Standard.

[2] E. Brickell, D, Gordon and K. McCurley, Fast exponentiation with precomputation, technical report no.
SAND91-1836C, Sandia National Laboratories, Albuquerque, New-Mexico, October 1991.

[3] E. Brickell and K. McCurley, An interactive identification scheme based on discrete logarithms and
factoring, Journal of Cryptology, vol 5, no. 1, 1992.

[4] D. Chaum and J. Bos, Smart Cash: A practical electronic payment system, CWI-Report CS-PO035, August
1990.

[5] T. EI-Gamal, A public-key cryptosystem and a signature scheme based on discrete logarithms, IEEE TIT,
voL IT-31:4, pp 469-472, 1985.

[6] L Goillou and J.J. Quisquater, A practical zero-knowledge protocol fit ted to security microprocessor
minimising both transmission and memory, Advanves in cryptology: Proceedings of Eurocrypt'88, LNCS,
Springer-Verlag, Berlin, 330, pp 123-128, 1988.

[7] LIL Harper, Stifling behavior is asymptotically normal, Annals of Mathematical Statistics, vol. 38, pp.
410-414, 1967.

[8] P. Montgomery, Modular multiplication without trial division, Mathematics of Computation., vol. 44(170),
pp. 519-521, 1985.

[9] ,/.EL Morris, Lambda-calculus models o f programming languages, Ph.D. thesis, MIT, 1968.

[10] C. Schnorr, Efficient identification and signatures for smart-cards, Advances in cryptology: Proceedings
of Eurocrypt'89 (G. Btassard ed.), LNCS, Springer-Verlag, Berlin, 435 (1990), pp. 239-252.

84

Appendix 1
The Digital Signature Algorithm

The Digital Signature Algorithm (DSA), proposed in August 1991 by the US National Institute of Standards
and Technology, is a DLP-based cryptosystem which par-aneters are :

O Aprime modulnspwhere 2 L - I < p < 2 L for 512 ~L_< 1024andL mod64 =0.

A prime q such that 2159 < q < 2160 andp-I is a multiple ofq.

A number g = h (p - I) / q mod p for some h.

~) A 160-bit secret-key x and an L-bit pubfic-keyy defined by the relation : y = gX reed p.

The integers p, q and g are system parameters and can be public and/ur common to a group of users.
A 160-bit random ,%, used by the signer, must be kept secret and regenerated for each signature.

In order to sign a message m (hashed value of a primitive file M), the signer computes the signature {r, s} by :

() r= gk mod p rood q and s= -~ mod q

To check {r, s}, the verifier computes :

1
w = - m e d q , u l = m w m o d q and u 2 = r w m o d q $

And compares if r ==(gUly u2 modp) mod q to aceept or reject the signature

Assmulng no algorithmic sophistications1", the resources necessary for the implementation of the DSA are :

resources 6 Signer VeTifier
~of160bitmult. 2 2
#of512bltmult. !=237 ~475
m o ~ v e r ~ e l yes yes
transmisslon 40 bytes

of mobil 84 bytes

And the complete process is briefly summarised by the following figure :

{q, p, g, y, M} in public domain ~

[Send {r, s} j [: a : c ~ p [t l : ~ : : : p l~od q

Figure 3. The NIST's Digital Signature Algorithm

~" Some of which [2] may spectacularly divide all the 512-bit figures by about 6 but these tools apply exactly in
the same manner to our schemes. The important point is the ratio between the protocols which remains
constant whatever exponentiation strategy is used.

85

Appendix 2
The DSA Prime Selection Scheme

The NIST suggests to generatep and q with the following algorithm :

Step 1. Choose an arbitrary sequence ofg (2 160) bits and call it Seed.

Step 4, If q composite, go to Step 1

Step 5. Let counter = 0 and offset = 2

Step 6. For k = 0,...$ let V k = SHA (Seed + offset + k rood 2 g)

Step'/ . Let: W = V 0 + V 1 2160+...+Vn_l 2160(n-l) +Vn 2160n a n d X = W + 2 L-1 (see~)

Step 8. Set: p = X - c ~ f m o d 2 q - 1) t o m a k e p c o n g r n e n t t o l m o d u l o 2 q .

Step 9. I f p < 2 L-1 gotoStep 12

Step 10.Perform a robust primality test on p.

Step 11.Ifp passes the test in Step 10 go to Step 14

Step 12.Let counter = counter +1 and offset = offset + n +1

Step 13. If counter > 4096 go to Step 1, otherwise go to Step 6

Step 14. Save the value of Seed and the value of counter for use in certifying the proper generation ofp and q.

~" A robust primality test algorithm is one where the probability of a non-prime passing the test is < 2 -80
:g I < W < 2 L-I andhenee 2 L-I < X < 2 L

Appendix 3
A R e m a r k Concerning the SHA Subfunctions f l and f 3

Most microprocessors perform arithmetic operations in a special memory registor called accumulator (A).
In this model, most operations can be looked upon as belonging to two groups : move operations (copy of
information from one memory location to another) and arithmetic operations of the form A ~-- A operator data.

Thus, the S ~ s u b f . ~ o n ./i (x, y, z) = (x ^ y) v (- . x ^ z) will be evaluated by the sequence:

(DA e- x (~A e- x

(2) A (-- A ^ y (~) A e- -A

~) temp ~- A (E) A e- A ^ z

(2) A e- A v temp

A well-known technique, borrowed from lambda calculus [7], allows to optimise the number of data moves by
using an equivalent binary expression having a minimal number of leaves.
For f l , one can use the identity : z �9 x A (y �9 z) = (x ^ y) v (- ~ x AZ) which compiles to :

�9 A ~y ~A ~ A ^ x

~A ~ A ~ z ~A ~ A ~ z

and neods no temporary variables (this normal form is provably optimal).

Similarly, f 3 = (X A y) V (X A Z) V (y A z) yields 5 the e.xpression X A (y ~ z) ~ (z A y) and the two new

formulae speed the hashing time by ~ 2.6% (assembly on DSP 56000).

5 it is possible to prove that the evaluation of f3 will always require at least one temporary variable

