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Abs t r ac t .  In this paper, we generalize the vector space construction clue to 
Brickell [5]. This generalization, introduced by Bertiisson [1], leads to perfect 
secret sharing schemes with rational information rates in which the secret can 
be computed efficiently by each qualified group. A one to one correspondence 
between the generalized construction and linear block codes is stated. It turns 
out that the approach of minimal codewords by Massey [15] is a special case 
of this construction. For general access structures we present an outline of 
an algorithm for determining whether a rational number can be realized as 
information rate by means of the generalized vector space construction. If so, 
the algorithm produces a perfect secret sharing scheme with this information 
rate. As a side-result we show a correspondence between the duality of access 
structures and the duality of codes. 

1 Introduct ion  

A secret sharing scheme is a method of  sharing a secret among a set of  participants P 
in such a way tha t  certain subsets of  participants are qualified to compute the secret 
by combining their shares. A secret sharing scheme is called perfect if in addition 
any non-qualified subset of  participants has absolutely no information on the secret. 
The access structure F on P is the set of  all qualified subsets of  P .  In the remainder 
of  the paper only monotone access structures will be considered. For this reason it 
suffices to describe ~ by its "minimal elements": sets in F with the property tha t  
no proper subset is in F.  In the following F is not empty  and does not consist of  all 
subsets of  P .  We follow the information theoretic approach of  Capocelli et al. [7]. We 
refer to Gallager [11] for a t reatment  of  information theory. The  uncertainty about 
the shares of  the participants in a group of  participants X is denoted by It(X). 
The set of  possible secrets is denoted by S, and the uncertainty about  the secret is 
denoted by H(S). A perfect secret sharing scheme ~,.q(_r', S) for access structure F 
and set of  possible secrets S is a sharing of  secrets among  participants P such that  
(a) any qualified subset can reconstruct the secret and (b) any non-qualified subset 
has absolutely no information on the secret, i.e. 

(a) Vx r H(SlX) = O, 

(b) Vx r H(SIX) = H(S). 

We are interested in measures for the amount  of  secret information that  must  be 
given to the participants. We can use the information rate o f  a perfect secret sharing 
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scheme Jo~(F, S) defined as 

log ISI 
p( 'sCr, S)) = ma {log#Cp) : p V}'  

i.e. the ratio between the size of the secret and the maximum size of the shares 
[6] (~:(p) denotes the number of possible shares given to participant p E P).  Also, 
we can use the average information rate ~(PS(F,  S)), which is the ratio between 
the size of the secret and the arithmetic mean of the size of all shares [4, 13, 14]. 
The optimal information rate of access structure /1 on P,  p(P), is defined as the 
supremum of p(7)8(_r ', S)) over all perfect secret sharing schemes P S (F ,  S). Similar, 
one can define fi(T'), the optimal average information rate of access structure T' on 
P.  We notice that, by definition, p(P)  ~ fi(-P). 

In this paper we generalize the vector space construction clue to Brickell [5]. This 
generalization has been introduced by Bertilsson [1]. Bertilsson has investigated a 
special class of non-perfect secret sharing schemes (these are schemes for which only 
condition (a) need to be valid). We continue our investigation, started in [8], of 
perfect secret sharing schemes constructed by using the generalized vector space 
construction. This leads to perfect secret sharing schemes with rational information 
rates in which the secret can be computed efficiently by each qualified group. A one 
to one correspondence between the generalized construction and linear block codes is 
stated. It turns out that the approach of minimal codewords by Massey [15], and the 
construction of Bertilsson and Ingemarsson [2] are special eases of this construction. 

Let F be an access structure decomposed into several "smaller" access structures. 
By using composition constructions (see Stinson [17] for a general description) we 
can compose perfect secret sharing schemes for these access structures into a per- 
feet secret sharing scheme for the original access structure r'. Besides composition 
constructions we need basic constructions. Almost all examples for basic construc- 
tions are linear, that is they use subspaces. Jackson and Martin [12] describe linear 
basic constructions in their most general form by using a geometrical approach. The 
generalized vector space construction leads to a most general description by using 
coding theory. In geometry subspaces are called lines, planes, and so on. In coding 
theory they are called codes, and they are characterized by generator matrices. As 
a side-result this characterization by generator matrices leads to a correspondence 
between the duality of access structures and the duality of codes, which leads to 
useful quadratic matrix equations. 

Given an access structure F and a rational number k/p we present an outline 
of an algorithm for determining whether b/p can be realized as information rate 
by means of the generalized vector space construction for F. If so, the algorithm 
produces a corresponding perfect secret sharing scheme with information rate k/p. 

The generalized vector space construction is presented in Section 2. Its code 
description is stated in Section 3. In Section 4 the results concerning dual access 
structures are presented. Finally in Section 5 we describe an algorithm constructing 
perfect secret sharing schemes by using the generalized vector space construction. 
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2 The Generalized Vector Space Construction 

We denote the vector space of all k-tuples over GF(q) where q is a prime power by 
GF(q) i'. Let the set of secrets be 

S = GF(q) k. 

In the following P = {1, . . . ,  n) and F is an access structure on P.  Let each 
participant i E P have an ! x pi matrix Gi over GF~q), where l is some integer 
satisfying l ~ k. These matrices are not secret, they are public knowledge. Suppose 
we want to share a secret s E S. Then we uniformly choose a vector a E GF(q) t - t  
and we distribute to participant i E P the share 

(S, a)Gi. 

This construction of a secret sharing scheme is called a generalized vector space 
construction. We notice that  for all i E P the matr ix  Gi is publicly accessible and is 
not part  of  the shares of participant i. Thus one can share more secrets, s 1, s2 , . . .  E S, 
by using the same secret sharing scheme, i.e. by using the same matrices Gi. In 
the following theorem (mentioned in [8] and independently proved by Blakley and 
Kabatianskii [3]) sufficient and necessary conditions are given in order to be able 
to define a perfect secret sharing scheme for F by means of the generalized vector 
space construction. 

T h e o r e m l .  For 1 ~ i ~ n let Gi be an I x Pi matriz over GF(q). For X = 
{ i l , . . . , i r a }  C P,  with ii < . . .  < ira, we define the I x p[X] matriz G[X] over 
GF(q), with p[X] = ~ pl, by 

iEX 

G t X ]  = ( a , , I .  . .IG,, .  ) . 

The generalized vector space construction based on the matrices Gi, i E P, defines a 
perfect secret sharing scheme for access structure F on P and set of possible secrets 
S = GF(q) k iff 

X E P =~ VSES 3bEaF(q),txl (s, O) T = G[X]b T, and (1) 

X ~ P =~ VSE$\{0 } VbEGF(q),tx ! (s, 0) T ~ G[X]b T, (2) 

for all X C P. The information rate equals k /max{p l  : i ~ P )  and the average 
information rate equals k / ~-T i~ep Pi of such a perfect secret sharing scheme. 

A set of matrices Gi, i E P, is said to be suitable (to define a perfect secret sharing 
scheme for access structure F on P )  if conditions (1) and (2) are satisfied. Let the 
set of matrices Gi, 1 < i < n, be suitable for F. Thus i f X  is a qualified subset of the 
participants then for 1 < i < k the unit vectors e i E GF(q) 1 ((ei)j equals 1 if i = j 
and 0 if i ~ j )  can be expressed as a linear combination of the columns of matrix 
G[X]. If  X is a non-qualified subset of the participants then none of the non-zero 
linear combinations of { e t , . . . ,  e ~) can be expressed as a linear combination of the 
columns of matr ix  G[X]. We will prove that the generalized vector space construction 
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based on the set of matrices Gi leads to a perfect secret sharing scheme. After having 
done this we further investigate conditions (1) and (2) of Theorem ' l .  In order to 
complete the proof of Theorem 1 we need to show that  conditions (1) and (2) are 
necessary as well. This has been done in [9]. 

Let X be a qualified subset. We will show that the participants in X can compute 
the secret s. The participants in X can construct (s ,a)G[X],  because they know 
(s ,a)Gi ,  for all i 6 X. All unit vectors e i for 1 < i < k can be written as linear 
combinations of columns in G[X] (cf. (1)). Hence, the participants in X can compute 
a matrix B such that 

where It denotes the k x k identity matrix, and 0 denotes the all zero matrix of size 
( I  - k) x k. Hence 

s = (s, a)G[X]B. 

Thus the participants in X can efficiently compute s by combining their shares and 
the public matrices Gi for i 6 X, so H(SIX) = O. 

Let X be a non-qualified subset. Let s be the secret shared among the participants 
by selecting a random vector a. Then the shares distributed among the participants 
in X are given by the vector (s, a)G[X] = c. We will show that  for each s '  6 S 
there are equally many vectors a' such that (s', at)G[X] = c. As a consequence 
the shares given to the participants in X contain no information about s, hence, 

H(SIX) = H(S). 
We denote by e the dimension of the linear span of the columns of G[X]. By 

G[X]I we denote the matrix consisting of the first k rows of G[X]. By G[X]2 we 
denote the matrix consisting of the last l - k rows of G[X]. Hence 

a [ x ]  = 
\ a[x]~ J " 

From (2) we infer that  if G[X]2b T = 0 then G[X]b T = 0. Thus the rank of matrix 
G[X] (= e) equals the rank of matrix G[X]2. Hence, the rows of matrix G[X]I are 
linear combinations of the rows of matrix G[X]2. 

Choose any s '  6 S, and consider the system of equations 

(s', a ' ) a [ x ]  = r 

which is equivalent to 
dC[X]2  = r - s 'G[X]l .  

This i's a system of linear equations in the l - k unknowns given by the coordinates 
of a ' .  The coefficient matrix G[X]2 has rank e. This system of linear equations is not 
conflicting, since there exists a vector a"  such that  a"G[X]~ = (s - s')G[X]~, and 
hence (a + a")G[X]2 = c - s 'G[X]I .  So, the solution space has dimension l - k - e. 
Thus there are q t - t - ,  solutions a ' .  This number is independent of the value of s'.  
Hence X does not obtain any additional knowledge about S, so H(SIX) = H(S). 

We conclude that  the generalized vector space construction describes a perfect 
secret sharing scheme according to the information theoretic approach of Capocelli 
et al. [7] (see Section 1). Since IS[ = qk and #( i )  = qP' for i E P the information 
rate equals k/max{pl : i E P} and the average information rate equals k/[~ ~ pl. 

i 6P  
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Example 1. Let Pl = 1 for i E P and let k ~ 1. Then  conditions (1) and (2) are 
equivalent to e 1 E (Gi : i E X)  ~ X E / ' ,  which is the vector space construction 
due to Brickell [5]. 

We notice tha t  the construction of Bertilsson and Ingemarsson [2] (see also [1]) 
is the generalized vector space construction in which k = 1. The  following example  
il lustrate the generalized vector space construction. In this example  q is an arbi t rary  
pr ime power. 

Example2. Let P = {1 ,2 ,3 ,4 ,5 ,6}  and let F be defined by its min imal  elements 
{{1, 2}, {1,3}, {2, 4}, {2, 5}, {3, 4}, {4, 5}, {5, 6}}. Suppose we want  to share a secret 
s = (sl,s2), k = 2. Then we choose a vector a = (al,a2,aa,a4,a~) a t  r andom and 
we distribute to part icipants  

* 1 the share (s, a)G1 = (al ,  a2, as)  (Pl = 3), 
�9 2 the share (s, a)G2 - (sl + as,  s2 + a2, a4) (P2 "- 3), 
�9 3 the share (s, a )Gs  = (sl + a l ,  s2 + a2, as)  (P3 "- 3), 
�9 4 the share (s, a)G4 ---- (Sl -t- as,  a2, a3 + a4) (P4 = 3), 
�9 5 the share (s, a )Gs  - (s2 + a4, an, as)  (p~ = 3), 
�9 6 the share (s, a)G6 = (sl + a3 -~- as,  a4) (Pc = 2). 

The  actuM form of the I • Pl matr ices Gi, 1 < i < 6, can easily be determined 
f rom these relations but  they are omi t ted  for reasons of space. The  reader is invited 
to verify (1) and (2). The  information rate of  this scheme is 2/3 and the average 
information rate is 12/17. The  information ra te  is op t imal  (see Capocelli  et  al. [7] 
for the proof  of  p(/~) < 2/3).  

We notice tha t  Sl, s2, a l , . . ,  are in GF(q) in the scheme of the previous example.  
However, w.l.o.g, we can take them from the integer ring Zrn[ In order to use the 
generalized vector space construction one needs to compute  a suitable set of  matrices,  
which costs a lot of comput ing t ime.  In the next  section we present a description of 
the generalized vector space construction in te rms  of  codes. This  will finally lead to 
an algori thm in Section 5, and a side-result presented in Section 4. 

3 C o d e  D e s c r i p t i o n  

In this section we s tar t  introducing definitions in order to s ta te  some theorems about  
the relation between matrices defining a perfect secret sharing scheme and the linear 
block code C of length k + piP] over GF(q) defined by its par i ty  check mat r ix  

- =  (' lcI l) o (3) 
The  proofs of the theorems stated in this section can be found in [9] and in the 
Appendix.  
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D e f i n l t l o n 2 .  Let r be an access structure on P.  We denote the set of minimal 
elements of F by T0. Let X C_ P then the complement of X is defined es X c = P \ X .  
The complement of T is defined as r r - -  {X C_ P : X ~ T}. We denote the set of 
maximal  elements of pc by T1. 

D e f i n i t l o n 3 .  Let c ~ be in GF(qF ' ,  1 < i < n, and c = ( c l , . . . ,  c n) E GF(q)p[P]. 
The p-support of vector c, supp(c), is defined as the set of coordinates i, 1 < i < n, 
for which c i ~ 0, i.e. 

supp(e) = { i  : c ~ ~ 0 } .  

Let X = {!1, . . .  ,lm} C_ P,  with 11 < . . .  < Ira. Then the projection of vector e on 
X,  e x  for short, is defined as 

ex  = ( J ' , . . . ,  d ' ) .  

We notice that  c = cp. 

D e f i n i t i o n 4 .  Let F be an access structure on P.  Let T0 = { X t , . . .  ,Xr}.  Let k and 
pi, 1 < i < n, be integers. We define s as s = {( i , j )  : 1 < i < r, 1 < j _< k}. Then 
the set of vectors C - {c IJ  E GF(q) pIP] : (i, j )  E E} is said to be suitable (to define 
a perfect secret sharing scheme) for access structure T and set of possible secrets 
GF(q) k if 

�9 the T0-property: supp(c i J )  = Xi for all ( i , j )  E E, and 
�9 the "Tx'-property: for all r • k q-ary matrices B with the property that  the 

elements of at least one column in B do not add up to 0 

3Xero x c_ sups( B, j ,q ,  
( i j)ez 

axe satisfied by C. 

At the end of this section it will he clear why the second property is called the 
"Tl"-property. Now we can state the following theorem. 

T h e o r e m 5 .  Let T be an access structure on P.  Let To = { X x , . . . , X r } .  Let Gi, 
i E P,  be l x Pl matrices over GF(q) such that the set of matrices Gi is suitable for 
access structure T and set of possible secrets GF(q) ~. Then there exists a suitable 
set of vectors {c Lj E GF(q) pIP] : ( i , j )  E $} for T and set of possible secrets GF(q) t 
such that G'H T = O, where 

0 ' 

and G' is a generator matrix of the code defined by the linear span of the vectors 
( ~ , c i J ) ,  ( i , j )  E ~. 

Let the vectors c i,j E GF(q) p[PI, (i, j )  E ~, define a suitable set of vectors for T. 
Let H be a parity check matrix of the code defined by the linear span of the vectors 
(eJ , c / J ) ,  ( i , j )  e E. W.l.o.9. H is of the form 

0 " 

Then the set of matrices Gi, i E P, defined by G[P] = H' is suitable for F. 
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By using Theorem 5 it is proved in [9] that the approach of minimal code words 
by Massey [15] is equivalent to the vector space construction. We want to geherate 
a suitable set of vectors. The/ 'e-property is easy to satisfy. The "Fl"-property costs 
more effort and will be further discussed now. In the next definition the Fl-property 
for Y is defined. 

De f in l t i on6 .  Let X _C P and Y C_ s Let c iJ E GF(q)p[PI ( i , j )  E ~, define the 
set of vectors C. Then C[X, Y] is defined as a matrix consisting of the [YI rows 
c~.  E GF(q)p[xq with (i, j )  E Y. The corresponding matrix I[X, Y] has rows 
I[X, Y]z E GF(q)  t,  for 1 < ! < [YI, defined by I[X,Y]z = eJ iff there exists an i 
such that C[X, Y]z = c~, .  Set C is said to satisfy the Fl-property for Y and X E F1 
if the columns of I[X, Y] can be written as linear combinations of the columns of 
C[X, Y], that is if 

::]AEGr(q)z, tx*lx~ I[X, Y] = C[X, Y]A. 

Set C is said to satisfy the/ 'x-property for Y if it satisfies the / ' l -proper ty  for Y and 
all X E Fl.  

The following theorem is about the relation between the "Fx"-property and the 
/ ' l-property for Y. 

T h e o r e m  7. Set C satisfies the "/'1 "-property iff C satisfies the 1"l-property for g. 

The last theorem is about an inductive relation with which the algorithm in 
Section 5 systematically searches for vectors also satisfying the "Fl"-property. 

T h e o r e m 8 .  Let C, consisting of vectors e id, ( i , j )  E ~, satisfy the Fl-property for 
Y # $ and X e Ix.  Let A be a matrix such that I[X, Y] = C[X, Y]A. Let Cz[X,  Y] 
be defined as a matrix consisting of commas which form a basis of the zero space of 
C[X,Y] (i.e. a basis of {c E aF(q)  p[X'] : C[X, YIc T = 0}). Let ( i , j )  ~ Y .  Then C 
satisfies the 1"l-property for Y O {(i, j ) )  and X e 1"1 iff 

�9 c l k ~ a  = d or  
id �9 there ezists a column b of Cz[X,Y]  such thai cx,b ~: O. 

4 D u a l  A c c e s s  S t r u c t u r e s  

In this section the proofs are omitted and can be found in [9]. In the next definition 
we define a notion of duality for an access structure (see [16]). 

De f in l t i ong .  Let F be an access structure on P.  Then the dual of F is defined as 

F x = {X ~ : X  ~F~}.  

The following properties concern the structure of F • (see [16, Lemma 3] as well). 

P r o p e r t y  10. Let F be an access structure. Then (i) F • is an access structure. (it) 
I'o ~ = {X* : X E F1}. (iii) r ~  = {X" : X e/"o}- (iv) F •177 = 1". (v) r -t" = { X :  
VYero X f l Y  # 0}. (vi) & = { X  : u  3v~r. X N Y  = {z} and YYero X N Y  # 0}. 
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The following theorem characterizes suitable sets of vectors for an access struc- 
ture by using the dual access structure (its proof uses Theorem 7). - 

T h e o r e m l l .  Let F be an access structure on P .  Let F0 = { X x , . . . , X r }  and 
(F-t)0 = {Z1 , . . . ,Z t} .  We define s as g-t = {(re, j )  : 1 <_ m < t, 1 < j <_ k}. 
Let C = {c i'i e GF(q)p[t'] : ( i , j )  e g}  and H = {h m'~ e GF(q) pip] : (re, j )  e g_t } 
be sets of vectors. Then C[X], for X E Fo, is defined as a k x p[P] q-ary ma. 
trix consisting of the k rows C[X]j = e iJ ,  1 <_ j <_ k, with X = Xi .  Similarly 
H[Z], for Z. .E (F-t)o, is defined as a k x p[P] q-ary matrix consisting of the k rows 
H[Z]j = h ''~, 1 < j <_ k, with Z = Zi. 

Then set C is suitable for F iff 

�9 C satisfies the Fo-properly and 
�9 there exists a set H satisfying the (F-t)o-property such that 
* Vze(r~)o Vxero C[X]H[Z] T =  - h .  

Secondly there exists a suitable set C for F iff there exists a suitable set H for F-t. 

This immediately leads to the following corollary. 

C o r o l l a r y 1 2 .  For integer k and prime power q we define GL(k,q)  as the set of 
all invertible k • k matrices over GF(q). Then there exists a generalized vector 
space construction for F on P = {1 , . . . ,  n} leading to an ideal perfect secret sharing 
scheme (i.e. a perfect secret sharing scheme for which the information rate equals 
1) iff for some integer k and prime power q there exist matrices Mo x'~ E GL(k,q) ,  
for X E 1"o and u E X ,  and matrices M z'~ E GL(k,  q), for Z E (F• and u E Z, 
such that for all X E Fo and Z E (F-t)0 

uEXng 

Hence, if there exists a prime p such that  Vxero Vr~r~  ]XNY[ _= 1 (p) then there 
exists an ideal perfect secret sharing scheme f o r / "  (e.g. F0 = { {1, 2, 3}, {1,4, 5}, 
{2, 4, 6}, {3, 5, 6}} = F0-t). As an other consequence of Theorem 11 we conclude that 
here exists a generalized vector space construction for access structure F realizing 
information rate r and average information rate ~ iff there exists a generalized vector 
space construction for F-t realizing information rate r and average information rate 
~. Jackson and Martin proved this result by using the geometrical approach [12]. 
The diagram of Figure 1 shows the relation between the generalized vector space 
construction for F, the generalized vector space construction for F-t ,  and their code 
descriptions. 

5 A n  A l g o r i t h m  

Let F be an access structure. We will give an outline of an algorithm which decides 
whether there exists a suitable set of vectors C = {e i'j : ( i , j )  E g} or not, given q, 
k, and p~ for i E P. If so, the algorithm produces a corresponding generalized vector 
space construction for F. The basic idea is to check if a set of vectors {c i,j : (i, j )  E 
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Fig. 1. Correspondence between the duality of access structures and the duality of codes 

Y} gives rise to a suitable set of vectors by using Theorem 8 and its proof (see [9] 
or the Appendix). We introduce two arrays, A[X, Y] and B[X, Y] for X E / ' 1  and 
Y C {Yl , . . . ,  Ylrolk} = s of global variables for which I[X, Y] - C[X, Y]A[X, Y] and 
Cz IX, Y] - B[X, Y] are invariants. Other invariants of the algorithm are C satisfies 
the F0-property and C satisfies the Fl-property for Y where Y = {Yl, . . .  ,Ym} for 
some m. Initially Y = 0. The outline of the algorithm is as follows: 

S t e p  1: If m < ]-P0[k take ( i , j )  = Ym+l and continue with Step 2. If m = ]F01k 
then the set of vectors C is suitable. Hence, we can construct a perfect secret 
sharing scheme by using the generalized vector space construction (cf. Theorems 
1 and 5). After having done this the algorithm stops. 

S t e p  2: Check for all X E Px if 
�9 c~!oA[X, Y] = eJ or 
�9 Y]), # 0 for  ome t. 

If so compute B[X, YU{(i, j)}] and A[X, ru{( i , j ) }]  (using the proof of Theorem 
8), increase m, i.e. m :-- m + 1 (hence, Y := Y U {(i , j)}),  and continue with 
Step 1. If  not continue with Step 3. 

S t e p  3: Compute the next possible c I J ,  leaving the T0-property as an invariant, 
and continue with Step 2. If  there does not exist a next possible c iJ  and m ~ 1 
we decrease m, we take (i ,j)  - Ym, and we repeat Step 3 (this is backtracking). 
If  there does not exist a next possible c iJ  and m = 1 then there does not exist 
a suitable set of vectors and the algorithm stops. 

It  is possible to speed up the algorithm by using some properties mentioned in [9]. 
The storage complexity is O(p[P] ~ IPollI~l Ik). The worst case computing complexity 
of the algorithm is at most O(p[P]21P11q k')  where s = -piP] + ~xero  p[X]. Thus it 
may be fruitful to apply the algorithm to/~J- and use Theorem 11 afterwards. Usage 
of the algorithm leads to the example of Section 2. Other examples can be found in 
[9]. An implementation of the algorithm can be found in [10]. 
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6 Concluding Remarks and Acknowledgement 

We have constructed perfect secret shar ing schemes by using linear block codes. We 
show how to implement  these ideas into an a lgor i thm.  As a side result  we prove a 
correspondence between the dual i ty  of  access s t ructures  and the dual i ty  of codes, 
which leads to useful quadra t ic  m a t r i x  equations.  The  au thor  wishes to thank Perry 
Moer land  for implement ing  the a lgor i thm of  Section 5 and Henk van Ti lborg  for his 
comments  which improved the presentat ion.  
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A A p p e n d i x  

P r o o f  o f  t h e  first s t a t e m e n t  o f  T h e o r e m  5: In the sequel F0 = { X l , . .  : , X  r}. 
We are going to investigate the structure of C defined by (3). We infer from (1) that  

for (i,j) E s there exists a vector b iJ  E GF(q) p[xd such that  (eJ,0) T = G[Xi]b IJT, 
where e j is t h e j - t h  unit vector in GF(q)k..L.et c iJ E GF(q)p[PI be the vector defined 

id by Cx~ = - h  ' ~  and supp(c IJ) C_ Xi (i.e. c ~  = 0). Then (eJ, c I J )  E C. We will prove 

that  C - {c Id : (i, j )  ~ E} is a suitable set of vectors. 
Let Bid E GF(q) for (i,j) E s Then the linear combination 

(s,o)-_ E E B,:,..., E B,,,, E 
(ij)~z 1<i<_r x<i<, (id)~z 

is in C, and hence (s, 0) T = - G [ P ] c  T by (3). Thus 

(S, 0) T ---- G[supp(c)](-c,up,(c)) T. 

From (2) we infer that if supp(c) ~ F then s = 0. So either s = 0 or supp(c) E F. 
Hence, either ~ l < i < r  Bid = 0 for all 1 _< j _< k or there exists a set X E F0 such 
that  X C supp(c)Tffence, C satisfies the "Fl"-property. 

Let us consider the codewords (eJ, c Id) E C again. By the property proved in 
the paragraph above there exists a set X E F0 such that  X C_ supp(c~J). Also 
supp(c id) C Xi E Fo, and hence X C_ Xi. Since F0 consists of the minimal elements 
o f f  equality X = Xi holds. Thus supp(c I J )  -- Xi. Hence C satisfies the F0-property 
as well. Now we have proved that  C contains codewords (eJ, ciJ) ,  (i, j )  E C, such 
that  {c i,j : (i, j )  E s is a suitable set of vectors. 
P r o o f  o f  t h e  s econd  s t a t e m e n t  o f  T h e o r e m  5: Let {c iJ  : (i, j )  E s be a 
suitable set of vectors. Define code C of length k + p[P] over GF(q) by the linear 
span of the vectors (eJ, ciJ) .  Let H be a parity check matrix of C. We will prove 

H(s ,  c) T = 0 T ~ (s = o v sups(c)  ~ r ) .  (4) 

If  H(s,  c) T = 0 ~" then (s, c) 6 C. Hence, for (i,j) 6 E there exist Bi,j 6 GF(q) such 
that  

(s, c) = ~ B,,i(ei, c',~), 

i.e. sj = ~'~l<i<_r Bi~j for 1 < j _< k and c = ~(i  j)~z Bid cIJ" If  supp(c) ~ F then 
-~(3x~ro X C supp(c)) and hence, by Definition 4,'~i<i_< ~ Bi,j = 0 for all 1 _~ j < k, 
i.e. s = 0. This proves (4). Since supp(O) = 0 f~ F 

H(s, 0) T = 0 T ~ s = O. 

In other words the first/c columns of H are independent. Hence, by elementary row 
operations H can be put into the form 

H = (  I~ o I H ' )  �9 

Now, define the matrices G~, 1 < i < n, by G[P] = H ~. 
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Let X ~ F and let (s, O) T -- G[X]b T. Let vector c be defined by cx  = - b  and 
8~pp(C) C X (i.e. c x c  = 0) ,  $o H ( s ,  c)  T = 0 T. From (4) and supp(c) ~ F we infer 
that s = 0. Hence (2) is satisfied. 

Let X 6 F.  Then there exists a set X~ 6 F0 with Xi C_ X. Let 1 < j < k. 
By the definition of code C equality H ( e  i, cl,J) T = 0T,with sup(c IJ) = Xi, holds�9 
Hence, ( d ,  0) = G[P](-ci'J) T. So the j- th unit vector in GF(q) t, 1 < j < k, can be 
expressed as a linear combination of columns of matr ix G[X]. Hence (1) is satisfied. 
P r o o f  o f  T h e o r e m  7: We notice that the set of rows of C[0, s is equal to C. The 
rows of I[0, s are the corresponding unit vectors. Let B be a r x k q-ary matrix. Let 
vector b 6 GF(q) lel be defined as the concatenation of the columns of B. Thus b 
consists of all coordinates in B. Then w.l.o.g. (bI[0, s equals the addition of the 
elements of column j in B, and ~(i  j)r Bij ci'j = bC[0, E]. So the "Pl"-property 
is equivalent to each of the following'equivalent statements 

Vb~qF(,)lz I [bl[O, 8] # 0 => 3Xel'o X C_ supp(bC[O, 8])], 
VbeaFO)l~, [(Vxr X ~: supp(bC[O, s :=> bl[g, s = 0], 
Vb~Gt.(q),t, [(3x~a supp(bC[O,s C_ X) =~ bl[O,$] = 0], 
Vxe/'~ Vb~aF(q)lel [supp(bC[O, s C X =a bI[0, s -- 0], 

Vxer, Ybeef(q)let [bC[X, s = 0 => bI[X, s = 0]. 

In other words for all X E F1 the zero space of C[X, s is contained in the zero 
space of I[X, $]2' which is by elementary matrix theory equivalent to the Fx-property 
for s Vxer, 3n I[X, s = C[X, s 
P r o o f  o f  T h e o r e m  8: Let 

If c~,A = eJ then I[X, Y U {(i, j)}] = C[X, Y U {(i, j)}]A, i.e. C satisfies the F1- 
property for YU{(i, j)} and X. Now we first show that if c ~ A  # e / and C satisfies 
the Fl-prop.e.rty for Y U {(i,j)} and X then there exists a column b of Cz[X, Y] 
such that c~yb # 0. Secondly we show that if there exists a column b of Cz[X, Y] 
such that c ~ b  # 0 then C satisfies the Fl-property for Y U {(i, j )} and X, which 
finishes the proof. 

Let c~cA # e/.  Suppose that (2 satisfies the Fl-property for Y U {(i , j)} and X, 
i.e. 

I[X, Y U {(i,j)}] = C[X, Y U {(i,j)}]A' 
for some matrix A'. Then e / =  c~cA' and C[X, Y](A' - A) = O, the all zero matrix. 
Hence, the columns of A I - A are in the zero space of C[X, Y]. Thus A I = A + 
Cz [X, Y] D for some matrix D. Also 0 # e i - c~{ A = c~,  ( A ' -  A) = c~o Cz [X, Y] D. 

',3 Such a matrix D only exists if Cx.~.Cz[X,Y ] r 0 or equivalently if there exists a 
column b in Cz[X,Y] such that c~ob r 0. 

Let b be a column in Cz[X, Y] such that c ~ b  -~ 0. Since C[X, Y ] ( A + b ( c ~ b )  - I  
(eJ - c~{A)) = I[X,Y] and c~ , (A+ b(c~ob) -x ( e / -  c~{A)) = e/ 

I[X, Y o {(/, j)}] = C[X, Y o {(/, j)}](A + b ( c ~ b )  -1 ( d  - c ~ A ) ) .  

Hence, C satisfies the Fl-property for Y t9 {(i,j)} and X. 


