
MMH: Software Message Authentication
in the Gbit/Second Rates

Shai Halevi 1 and Hugo Krawczyk 2

1 Lab. for Computer Science, MIT, 545 Tech Square, Cambridge, MA 02139, USA.
Email: shaih@theory.lcs.mit .edu. Work was done while the author was visiting the

IBM Watson Research Center.

2 IBM T.J. Watson Research Center, PO Box 704, Yorktown Heights, New York
10598, USA. Email: hugo@watson, ibm. corn

Abstract . We describe a construction of almost universal hash func-
tions suitable for very fast software implementation and applicable to
the hashing of variable size data and fast cryptographic message authen-
tication. Our construction uses fast single precision arithmetic which is
increasingly supported by modern processors due to the growing needs
for fast arithmetic posed by multimedia applications.
We report on hand-optimized assembly implementations on a 150 MHz
PowerPC 604 and a 150 MHz Pentium-Pro, which achieve hashing speeds
of 350 to 820 Mbit/sec, depending on the desired level of security (or
collision probability), and a rate of more than 1 Gbit/sec on a 200 MHz
Pentium-Pro. This represents a significant speed-up over current software
implementations of universal hashing and other message authentication
techniques (e.g., MD5-based). Moreover, our construction is specifically
designed to take advantage of emerging microprocessor technologies (such
as Intel's MMX, 64-bit architectures and others) and then best suited to
accommodate the growing performance needs of cryptographic (and other
universal hashing) applications.
The construction is based on techniques due to Carter and Wegman for
universal hashing using modular multilinear functions that we carefully
modify to allow for fast software implementation. We prove the resultant
construction to retain the necessary mathematical properties required for
its use in hashing and message authentication.

1 Introduct ion

Universal hash functions, which were first introduced by Carter and Wegman in
[CW79], have a wide range of applications in many areas of computer science,
including compilers, databases, search engines, parallel architectures, complex-
ity theory, cryptography, and many others. The use of universal hashing for
message authentication (introduced by Wegman and Carter [WC81] as well) re-
ceived much attention lately. In particular, many recent works deal with efficient
implementation of universal hashing as a tool for achieving fast and secure mes-
sage authentication (e.g., [St94, Kr94, Kr95, Ro95, AS96, H J96, Sh96, AGS97]).

MMH: Software Message Authentication in the Gbit/second Rates 173

This is also the motivation for our work; however, the construction presented
here applies to the other (non-cryptographic) uses of universal hashing as well.

Roughly speaking, universal hash functions are collections of hash functions
that map strings (or messages) into short outputs such that the probability of
any given pair of messages to collide (i.e., have the same hash value) is small.
This probability does not depend on any particular distribution of the input data
but only on the random choice of the particular function used to hash the data
from the set of all hash functions in the universal family. A stronger version of
universal hash functions guarantees that elements are mapped into their images
in a pairwise independent way.

These properties make universal hashing a prime tool for data storage and
retrieval. In addition, as originally observed in [WC81], universal hashing can be
used for building secure message authentication schemes where the adversary's
ability to forge messages is bounded by the collision probability of the hash
family. In such a scheme, a message is authenticated by first hashing it and then
encrypting the hash value with a one-time pad (where the pad is of the length of
the hash output rather than of the length of the message). The resultant encrypted
hash is transmitted together with the message as an authentication tag that is
recomputed and validated by the receiver.

In this setting the communicating parties share a secret and random index
to a particular function in the hash family as well as the random one-time pads
used for encryption. The security of such a message authentication scheme is
unconditional, namely, no adversary (not even a computationally unlimited one)
can forge a message with probability better than the collision probability of
the universal hash family. In practice, one time pads are usually replaced with
pseudorandom pads (or pseudorandom functions) and the security conditioned
on the strength of this encryption.

The attractiveness of using universal hashing in the context of message au-
thentication comes then from two sources. First, it allows decoupling the crypto-
graphic work (reduced to the encryption of the hash value) from the bulk work
on the data. Second, given the simplicity of the requirements from a universal
hash function it allows for potentially efficient constructions.

In this paper we strongly demonstrate the validity of these properties. We
show how to build very fast universal hash families with good (and controllable)
levels of security. Our emphasis is on high speed implementation using software
only. (For hardware optimized universal hashing see [Kr94].) To this end, we
exploit todays' microprocessor technology as well as the current trends in micro-
processor design.

On a very high level, this construction is obtained by implementing a well-
known family of universal hash functions and then modifying the implementation
so as to eliminate costly software operations. The result can be thought of as a
"buggy implementation" of the original functions, but with a much faster software
implementation. Most importantly, we can prove that the obtained construction
is "almost as good" (for its collision probability and security) as the original
function.

174 Shai Halevi, Hugo Krawczyk

We report on a hand-optimized assembly implementations on a 150 MHz
PowerPC 604 and a 150 MHz Pentium-Pro, which achieve hashing speeds of 350
to 820 Mbit/second, depending on the desired collision probability. The same
implementation in a 200 MHz Pentium-Pro exceeds the 1 Gbit /second speed
(for a 32 bit hash value).

This represents a significant speed-up over current software implementations
of universal hashing, or any other secure message authentication technique. An
exact comparison is not possible since the data available on the most efficient
implementations of other functions are based on different platforms. The reader
is referred to [Sh96] for results on the implementation of division hash (or cryp-
tographic CRC [RAT9, Kr94]), and to [BGV96] for results on the implementation
of MD5 and SHA-1 which are currently the most popular bases for software im-
plementation of message authentication codes (e.g, [BCK96]). The best reported
time on these functions is 114 Mbit/sec for a hand-optimized assembly imple-
mentation of MD5 in a Pentium 90 MHz, and half of it for SHA 3. (See also [To95]
for an analysis of the inherent performance limits of MD5 and for motivation of
the needs for faster message authentication techniques.)

Very importantly, our construction is specificMly designed to take further ad-
vantage of emerging microprocessor technologies (such as Intel's MMX, 64 bit ar-
chitectures and others) in order to accommodate the growing performance needs
of cryptographic applications. (In particular, single precision scalar-products are
increasingly supported in these new architectures as a means to accelerate multi-
media and graphic applications; MMH takes direct advantage of that acceleration
by using single precision scalar-products as its most basic operation.) It is worth
remarking that the need for performance in the Gbit /sec range is not just for
Gbit networks; the goal is that machines will spend only a small portion of their
power (say less than 10%) in cryptographic operations while they can use most
of that power to do other operations (e.g. doing something "useful" with the
authenticated data, like playing a multimedia title).

What's in the name. The name MMH stands for Multilinear-Modular-Hashing.
It is also intended to hint to MultiMedia applications, which serve both as mo-
tivation for the need of fast software message authentication (for example, to
verify the integrity of an on-line multimedia title), and as the motivation for the
improved support of integer scalar-products in modern microprocessors, which
is a crucial factor for MMH high performance.

Organization. In Section 2 we briefly go over the notions of universal hashing
and the connections between those and message-authentication, and recall a well-
known construction for universal hashing. In Section 3 we describe our modific-
ations of this well-known construction and our implementation of the resulting
function, and provide some experimental results. In Section 4 we show that the

3 By extrapolating these figures one could expect a maximal rate of about 300 Mbit/sec
for MD5 in a Pentimn-Pro 200 MHz, though no such actual implementation is known
to us.

MMH: Software Message Authentication in the Gbit/second Rates 175

resulting function is "almost as good" as the original one, and thus suitable for
secure message authentication applications as well as other universal hashing
uses. Finally, a related and alternative construction is discussed in Section 5. In
Appendix A we present sample C code for the implementation of the core routine
in MMH.

2 P r e l i m i n a r i e s

2.1 Notat ion

For integers y, z, p, we write y = z to assert that they are equal (over the integers)
and y - z (mod p) to assert that they are congruent mod p. By z mod p we
denote the residue of the division of z by p. We denote vectors by boldface small
letters, e.g., x = (xl . . . x~). Also we identify bit strings with binary-represented
integers, and in particular we identify {0, 1} 32 with {0, 1, . . .232 - 1}.

2.2 Universal hashing

In the definitions below, H is a family of functions from a domain D to a range R
and e is a constant l / JR I < e < 1. The probabilities below, denoted by PrheH ['],
are taken over the choice of h E H according to a given probability distribution
on H (usually, the uniform distribution). These definitions and terminology are
due to Carter and Wegman [CW79, WC81], Krawczyk [Kr94], aogaway [Ro95]
and Stinson [St95].

Definit ion 1. 1. H is a universal family of hash functions if for all z # y E D,
Prh~H [h(z) = h(y)] = I~1
H is an e-almost-universal (e-AU) family of hash functions if for all z # y E
D, Prh~H [h(z) = h(y)] < r

2. Assume that R is an Abelian group and denote by ' - ' the group subtraction
operation. H is a A-universal family of hash functions if for all z # y E D

1 and all a E R, Prh~H [h(z) - h(y) = a] =
H is an c-almost-A-universal (e-AAU) family of hash functions if for all
z # y E D a n d a l l a E R , P r h ~ H [h (x) - h (y) = a] < r
(We stress that A-universality is relative to a given group operation in the
set R.)

3. H is a strongly universal family of hash functions if for all x # y E D and
all a, b E R,
PrheH [h(x) = a, h(y) = b] = 1 IRI 2

H is a e-almost-strongly universal (e-ASU) family of hash functions if for all
x # y E D and all a,b E R, PrheH [h(x) = a, h(y) = b] < ~-T

176 Shai Halevi, Hugo Krawczyk

2.3 U n i v e r s a l h a s h i n g a n d m e s s a g e a u t h e n t i c a t i o n

In this work we consider a typical communication scenario in which two parties
communicate over an unreliable link where messages can be maliciously altered
by an adversary. To authenticate the communications over this link, the legitimate
parties share a secret key which is unknown to the adversary. They use this secret
key to compute a message authentication code (MAC) on every message they send
on the link. A MAC is a function which takes the secret key x and the message
m and returns a tag # +-- MAC~ (m). The sender sends the pair (m, #) over the
untrusted link. On receipt of (m t, #~), the receiver repeats this computation and
verifies that #l = MAC,(ml) .

We evaluate the security of a MAC function in the usual model which was
introduced in [GMR88]. The adversary A, which is not given the shared secret
key, has as a goal to forge the MAC value for a message not sent between the
legitimate parties. In order to do so, A can eavesdrop the communication between
these parties, choose the messages to be sent between them (i.e., to see the output
of M A C , computed on messages of its own choice), and can also modify the
message and tags in their way between sender and receiver. In the later case A
gets to see whether the replaced values are accepted or not by the receiver; we
call these attempts "verification queries". If any of these verification queries uses
a message not previously sent between the legitimate parties and is accepted by
the receiver (i.e., the right M A C , was computed by the adversary) then the MAC
is broken. For a MAC function to be "good", any adversary with "reasonable"
resources (time, memory, number of queries, etc.) should have only a negligible
probability of breaking the MAC. We refer to [BKR94] for a formal definition of
security of MAC functions.

In the Wegman-Carter paradigm [WC81], the secret key shared by the com-
municating parties consists of a hash function h drawn randomly from a family
of hash functions H and a sequence of random pads dl, d2, �9 �9 .. To authenticate
the i-th message mi, the sender computes the authentication tag h(mi) § di, that
is, MACh,d(mi) def = h(mi) § di. If h is drawn from an e-AAU-universal family
the probability of an adversary (even one with unlimited computational power)
to forge a single message is bounded by e [WC81, Kr94]. If the attacker is al-
lowed to perform q verification queries then its probability to successfully forge
a MAC is at most qe. (Notice that in this case passive gathering of information
does not buy anything to the attacker, only active tampering with messages and
authentication tags can help him, thus making the attack harder to mount and
easier to detect.) Hence, universal hashing provides with a simple paradigm for
achieving secure cryptographic message authentication.

One important thing to notice is that in this approach one first processes the
message m using a non-cryptographic operation (universal hashing), and then
applies a cryptographic operation (one-time-pad encryption) on h(m), which is
typically much shorter than m itself. In practical implementations, the random
pad may be replaced by a pseudo-random one, so the parties only need to share
the function h and the seed s to the pseudo-random generator (s can also be a
key to a pseudorandom function). One can also directly apply a pseudorandom

MMH: Software Message Authentication in the Gbit/second Rates 177

function to the output of the hash function concatenated with a counter. The
reader is referred to [WC81, Br82, St94, Kr94, Ro95, Sh96] for more elaborate
discussions of these issues.

In the reminder of this paper we concentrate on the construction of an effi-
cient ~-A AU-universal family of hash functions for small c.

2.4 A W e l l - K n o w n C o n s t r u c t i o n

The starting point for our construction is a well known construction due to
Carter and Wegman [CW79]. This construction works in the finite field Zp for
some prime integer p. The family of hash functions consists of all the multilinear
functions over Zp k for some integer k. Namely,

D e f i n i t i o n 2 . Let p be a prime and let k be an integer k > 0. Define a family
MMH* of functions from Z k to Zp as follows

MMH* def {gx: Zkp --~ Zp I x e Zp k }

where the functions gx are defined for any x = (x l , . . . x k) , m = (m l , . . . , ink),
Xi, rni E Zp~

k
g.(m) dof = m �9 x mod p = mixi rood p

i----1

T h e o r e m 3 . The family MMH* is A-universal.

Proof. Fix some a E Zp, and let m, m ' be two different messages. Assume w.l.o.g.
that rnl ~ m~. Then for any choice of x 2 , . . . x a we have

Pr~, [g~(m) - gx(m') -- a (mod p)]
= Pr~, (ml - m l) x l =- a - ~ i=2(mi - m~)xi (mod p) - p - 1

[]

Reducing the collision probability. Depending on the choice of p and the applic-
ation at hand, collision probability of 1/p may be insufficient (i.e., too large).
A simple way to reduce the collision probability is to hash the message twice
using two independent keys. This yields a collision probability of 1/p 2, at the ex-
pense of doubling the computational work and length of output. It also requires
double-size keys.

The last aspect (key size) can be resolved by recurring to a "Toeplitz matrix
construction". That is, instead of choosing two independent k-vectors x, x ' , we
choose k + 1 scalars x l , ' " X k + l and set x = (Z l , . . . , Xk) , x t : (x 2 , ' ' ' , Zk -b l) .
It is a well-known fact that such a choice of keys will still result in a reduced
col]ision probability of l i p 2 while increasing the key size by a single scalar xk+l.
The same methodology can be applied to further reduce the collision probability
to 1/p n for any integer value n. In this case the computational work and output
are increased by a factor of n, while keys are only increased with n scalars.

178 Shai Halevi, Hugo Krawczyk

Dealing with arbitrary long messages. The above function can only be applied
to a fixed-size messages (namely, to vectors in Zpk). The standard approach
for dealing with messages of arbitrary length is to use tree-hashing as already
suggested by Carter and Wegman [WC81]. That is, we break the message into
blocks of k elements (over Zp) each and hash each block separately (using the
same hash function). We then concatenate the hash results of all these blocks
and hash them again using an independent key, and so on. (The drawback of
this approach is that both the key-size and the collision probability grow linearly
with the height of the tree. A suggestion to counter this problem appears in
section 3.4.)

3 M u l t i l i n e a r M o d u l a r H a s h i n g

The MMH family described here is a variant of the construction MMH* described
in section 2.4 designed to achieve fast software implementations while preserving
the low collision probability. For the sake of simplicity, we describe the function
for a specific set of parameters (particularly suited for 32-bit word architectures);
however, the approach is general and can be used with different parameters
according to application needs and hardware platform.

The main characteristics of our implementation are

- We work with 32-bit integers (as said the same approach can be used in
machines with different word-length).

- We work with the prime integer p = 232+ 15, so we can implement a division-
less modular reduction. 4

Therefore our starting point is a specific "very slightly modified" instance of
MMH* :

MMH~ de~ {g, , : ({0, 1}32)k --+ Zp I x E ({0, 1}32) k }

where the functions gx are defined for any x = (z l , . . . xk), m = <m l , . . . , mk),

= m �9 x rood + 15) = m i x i mod +
i=1

Similarly to Theorem 3, we have

T h e o r e m 4. The famzly MMH~2 is c-AAU w~th e = 2 -32.

Notice that this function is only defined for fixed-length messages (namely,
messages of 32k bits). To handle arbitrary-length messages we use the tree con-
struction from Section 2.4.

4 The idea is adopted from a suggestion by Carter and Wegman [CW] to use the primes
216 + 1 or 231 - 1. In our approach, any prime which satisfies 2 a2 < p < 232 + 216
will do; 232 + 15 is the smallest among those primes.

MMH: Software Message Authentication in the Gbit/second Rates 179

3.1 I m p l e m e n t i n g the " i d e a l " f u n c t i o n

Modular reduction. The one operation in MMH~2 which is by far the most expens-
ive is the modular reduction. However, since we work with the pr ime p = 232+ 15,
we can implement a division-less modular reduction as follows.

Let x be an (unsigned) 64-bit integer, and denote x = 232a + b, where a, b
are both unsigned 32-bit integers. Then we note that

2 3 2 a T b = (2 3 2 a T b) - a . (2 3 2 q - 1 5) = b - 1 5 a (m o d 2 3 2 + 1 5)

Moreover, since a,b E [0 ,232 - 1], then b - 15a E [- 1 5 . (2 3 2 - 1), 2 3 2 - 1].
Thus, if we denote y = b - 15a, then y = x (mod 232 q- 15), and y can be
represented as a signed 64-bit integer (in two's complement) y = c �9 232 q- d,
where c E { - 1 5 , . . . , 0} and d is an unsigned 32-bit integer.

We can now repeat this process once more and compute z = d - 15c. Then
z = y = x (mod 232+ 15), and z E { 0 , . . . 2 3 2 + 152}. Finally, we test to see i f z
is still larger than 232 + 15. If not we return z, otherwise we return z - (232 + 15).

Inner-product. Even the above implementation of a division-less reduction still
takes about 10-15 machine instructions, which is very expensive if we need to
execute it too often. Therefore, we carry the whole inner-product operation over
the integers and then do just one modular reduction at the end. This approach
forces us to deal with addition of integers of 64-bits. This, in particular, involves
the use of machine instructions for addition-with-carry.

To implement the integer multiplications, we take advantage of machine in-
structions for multiplying two 32-bit integers and obtaining the 64-bit result.
Both addition-with-carry and 32-by-32 multiplication are available in just about
all the architectures of todays ' computers (in 32-bit word architectures the 64
bit result of the multiplication is returned in two 32-bit registers). However,
there is no (official) syntax in high-level programming language to access these
operations, so we write our implementation in assembly language. 5

Fixing the value ofk. The value of k (the length of the message- and key-vectors)
has two effects on the implementation.

- Since we amortize the costly modular reduction over k (cheaper) multiply-
and-add operations, increasing k should increase the speed.

- Since the key x consists of k 32-bit integers, increasing k results in a longer
key.

As a reasonable tradeoff between these conflicting objectives, we work with
k = 32. For this value of k, the cost of modular reduction amounts to only about
10-15% of the total cost of the implementation.

Even if not part of the language definition, some C compilers support 64 bit types
(long long integers). See Appendix A.

180 Shai Halevi, Hugo Krawczyk

3.2 M o d i f y i n g t h e i m p l e m e n t a t i o n

We make two modifications to the implementat ion of MMH~2

- We make the output of the function a 32-bit integer rather than an element
in Zp. This is done by ignoring the most-significant bit in the output of the
original function, which is equivalent to reducing it modulo 232 .

- In the inner-product operation, we ignore any carry-bit out of the 64 bit-
location. This is equivalent to computing the sum mod 264.

These two modifications together define the following family of functions.

D e f i n i t i o n 5 . Set p = 232 + 15 and k = 32. Define a family MMH of functions
from ({0, I}32) k to {0, I} 32 as follows

where the functions hx are defined for any x -- (x l , ' " xk>, m = (m l , . . . , ink>,

= m i x i mod 264 mod (2 a2 + 15 mod 2 a2

_ _ 1 . 5 In Section 4 we show that MMH32 is e-AAU with e - ~ .

Instruction count. To give an estimated instruction count for an implementation
of MMH, we consider a machine with the following properties

- 32-bit machine integers.
- Arithmetic operations are done in registers.
- A multiplication of two 32-bit integers which yields a 64-bit result takes two

machine instructions.

A pseudo-code for MMH on such machine may be as follows

MMH(msg, key)
.

2.
3.
4.
5.
6.
7.
8.

SumHigh = SumLow = 0
For i = 1 to k

load msg[i]
load key[i]
(ProdH igh, ProdLow) = msg[i] �9 key[i]
SumLow = SumLow + ProdLow
SumHigh = SumHigh + ProdHigh + carry

Reduce (SumHigh, SumLow> mod 232 + 15 and then mod 232

Each mult iply-and-add operation takes total of about 7 instructions: 2 for load-
ing the message- and key-words to registers, 2 for the multiplication, 2 for the
addition, and 1 more to handle the loop. We repeat these operation k = 32 times,
and then we need about 10-15 instructions for the modular reduction. This yields

MMH: Software Message Authentication in the Gbit/second Rates 181

an instruction count of about 7k + 15 to handle a k-word message. Tha t is, we
have about about 7.5 instructions per-word, or less than 2 instructions per-byte.

This instruction-count can be further reduced by unrolling the loop a few
times and by working on several messages (more precisely, several k-word mes-
sage blocks) at the same time, so we can load a key word just once and use it on
several messages. For example, in our implementation on the PowerPC we have
about 6 instructions per-word. On a 64-bit machine we may be able to get as
low as 4 instructions per 32 bits of input. (An even faster implementation in a
64-bit machine can be achieved by working on 64-bit words using a pr ime mod-
ulus which is slightly larger than 264 - e.g. 264 -}- 13 - as long as the architecture
supports the integer multiplication of two 64 bit words.) The implementation of
the hashing-tree adds less than 10% to the total work of the function.

Moreover, the structure of the hashing procedure (and in particular the inner-
product operation) leaves plenty of room for parallelization. Emerging micropro-
cessor technologies which are aimed at mult imedia applications tend to include
a good support for inner-product operations (e.g., Intel 's MMX, Sun's VIS, etc.)
even for standard processors; therefore, we can expect even faster implementa-
tions of MMH in the near future.

3 . 3 E x p e r i m e n t a l r e s u l t s

Below we describe the results of a few experimental implementations of MMH.
We implemented MMH on PowerPC and Intel x86 architectures. The basic MMH
function itself was hand-optimized in assembly language on each machine and
the tree structure and various initializations were implemented in C. For each of
these architectures we implemented two variants of MMH:

1. The basic MMH construction with tree-hashing. This variant has a 32-bit
output and collision probability of 1.5 times the height of the tree.

2. A "high-security" version, where each hashing operation is repeated twice
using "the Toeplitz matr ix construction". This variant has a 64-bit output
and collision probabili ty of ~ times the height of the tree.

For each version we performed two different tests: First we tested what happens
when the message is long and resides in a memory buffer. We evaluated the hash
function on a 4 Mbyte buffer and repeated it 64 times. This yields total length
of 256 Mbyte = 2 Gbit . Below we refer to this test as the "message in memory"
test. Then we performed another test to find how much of the running time is
spent on cache misses. For that we modified the code so that whenever it access
data, it always takes it f rom the same memory buffer (of size a few Kbytes). We
refer to this test as the "message in cache" test.

To get a good assessment of the performance potential of our construction in
different architectures, we tested our implementation on the following platforms

- A 150 MHz PowerPC 604 RISC machine running AIX.
- A 150 MHz Pentium-Pro machine running Windows NT.
- A 200 MHz Pentium-Pro machine running Linux.

182 Shai Halevi, Hugo Krawczyk

The results which we got for these variants are summarized in the following table.

[150 MHz PowerPC 604Hmessage in memory[message in cache I
6'~l-bit output 390 Mbit/second 417 Mbit/second
32-bit output 597 Mbit/second 820 Mbit/second

[150 MHz Pentium-Prollmessage in memorYlmessage in cache I
64-bit output 296 Mbit/second 356 Mbit/second
32-bit output 556 Mbit/second 813 Mbit/second

[200 MHz Pentium-ProHmessage in memory[message in cache
64-bit output [[380 Mbit/second 500 Mbit/second
32-bit output][645 Mbit/second 1080 Mbit/second

Table 1: Timing results for various implementations of MMH.

We also tested MMH on a Pentium machine. However, the integer multiplic-
ation in the Pentium is slow and therefore we obtained our best results by using
the floating-point unit for the multiply-and-add operations. 6 This implementation
achieves a rate of about 160 Mbit/second on a 120 MHz Pentium for the 64-bit
variant (message in memory). This is somewhat faster than the performance re-
ported in [Sh96] for the polynomial division function and in [BGV96] for MD5,
but not as impressive as the other speeds reported above.

It is important to note that the above results are for bulk data processing.
For particular applications, the actual effect of these faster functions depends on
the details of the application, the length of authenticated (or hashed) data, etc.
In particular, when used for message authentication the operation of encrypting
the hash value (e.g., the generation of a pseudorandom one-time pad) can be a
significant overhead for very short messages. However, we remark that MMH
does not need of particularly long messages in order to achieve its superior
performance relative to other universal hash functions (this is to be contrasted,
for example, with bucket hashing [Ro95]).

3.4 Fur the r issues and variants

Variants . Some further optimizations to our implementation can be achieved by
introducing some changes to the definition of MMH. In particular, by exploiting
some architecture-specific optimizations we have achieved performance improve-
ments of about 10% over the above reported figures. In the Pentium-Pro 200
MHz, for example, this brings the 32-bit function speed to 1.2 Gigabit/second
(at the cost of a slight increase in the collision probability of the function).

Mixing hash funct ions . Most of our description above concentrated on the
basic MMH function as applied to fixed length messages (e.g., k-word long).

This requires some modification in the definition of MMH.

MMH: Software Message Authentication in the Gbit/second Rates 183

The techniques described in Section 2.4 were used to implement the function for
arbitrary length messages (the experimental results of section 3.3 correspond to
this general construction). A drawback of this implementation is that the length of
the keys not only depends on the parameter k but also on the height of the hash-
tree (a different key is needed for each level in the tree even if that key is seldom
used by the function). One approach to overcome this drawback is to apply the
proposed function MMH only to the top levels of the tree (one or two levels) and
then to use a different hash family to hash the result from these levels. The idea
is to use for this second hashing a hash family that requires shorter keys even if
it is slower than MMH. Since the data hashed by this function is much shorter
than the original message (e.g., by a factor of 1/k 2) the inferior performance of
the second function would not be noticeable. A reasonable choice for the second
hashing scheme can be the polynomial-evaluation-hashing. The reader is referred
to [Sh96, AGS97] for a description and implementation details of this scheme.

Hashing short data i tems. Our hash functions are particularly flexible as for
the way they deal with information of different sizes. While long streams of data
can be processed as explained above, short strings of data can also be hashed
very efficiently by just choosing a key which is not shorter than any such string.
For example, a compiler that hashes a symbol table where no such symbol exceeds
1 Kbit in length can choose a 1 Kbit long key and hash all the symbols using
that single key. In this case, there is no need for the hash tree technique. (Notice
that shorter than 1 Kbit strings will just use the part of the key corresponding
to their length.)

Padd ing to block boundar ies . Another issue related to dealing with variable
length messages is the need to pad data to some block boundary. This can be
easily handled by appending some prescribed pad to the end of the data. In
the case of message authentication it is particularly important that the padding
will be unambiguous, namely, two different messages are mapped into different
padded strings. (For example, a pad formed by concatenating a '1' followed by
a suitable number of 'O's could be appended to every message.)

Genera t ion and shar ing of long keys. Depending on the variant and ap-
plication of MMH one may need long keys (e.g., a few Kbits). These keys can
be generated using a strong pseudorandom generator. In particular, in the case
of such a key being shared by two parties, only the seed to the pseudorandom
generator needs to be exchanged (such a seed will be considerably shorter than
the key, e.g. 100-200 bit long).

By te ordering. For the purpose of hashing we identify streams of data with a
sequence of integer numbers (e.g., 32-bit integers). However, different computer
architectures load data bytes into words in different orders. Thus, when interested
in inter-operability between different machines one needs to specify a particular
loading order (little-endian or big-endian). Any such specification will favor one
architecture or the other. We do not provide such a specification at this point. One
thing to notice is that while all architectures provide instructions for switching

184 Shai Halevi, Hugo Krawczyk

their default order this conversion can cause a degradation in the performance of
the function in these architectures. (See [BGV96, To95] for a related discussion.)

4 A n a l y s i s o f t h e c o l l i s i o n p r o b a b i l i t y

In this section we analyze the collision probability of the Multilinear Modular
Hash function. For simplicity, we concentrate on the parameters of MMH32,
however, the same analysis works for similar constructions using word-length
other than 32 bits.

We start by analyzing the collision probability of a hybrid construction which
is half-way between the ideal family MMH~2 and the actual construction MMH32.

D e f i n i t i o n 6 . Set p = 232 -{- 15 and k = 32. Define a family H32 of functions
from ({0, 1}32) k to Zp as follows

where the function hx is defined for any x = (x l , . . . xk), m = (ml , " " , ink),

]] = mix i mod 264 mod (232 + 15)
i=1

Note that H32 is defined like MMH32, but without the reduction mod 232 at the
end.

L e m m a 7. H32 is an c - A A U family o f hash funct ion with c _< 2 . 2 -32.

Proof. Fix any a E Zp, and any two different message-vectors m r m ~, and
assume w.l.o.g, that m l r m~. We prove that for any choice of x 2 , . . . , x k ,
Prxl[hx(m) - hx(m ~) -- a (mod p)] _< 2/232, which implies the lemma.

Since x l m l < 264 for any value of xl , then for any choice of x 2 " " x k the
term x l m l adds at most one carry bit to the sum. Fix some choice of x2. . "xk

def k 264. and denote s = [~-'~i=2 ximi] mod We conclude that

] x imi m o d 2 6 4 = x l m l q - s - 2 6 4 b for some b C {0, 1}

Similarly we denote s' def k = ~ i = 2 xim~ mod 264, and we get

xim~ mod 264 : xlm~ -}- s I - 264b I
L i = I J

for some b I E {0, 1}

MMH: Software Message Authentication in the Gbit/second Rates 185

Notice that s, s ~ do not depend on the choice of z l , but b, b ~ may depend on it.
We stress this below by writing b(zl), b'(r We can now write h~(m) - hx(m')
a s

hx(m) - hx(m') (modp)

=[~=lximimod264]-[i=~lxim~mod264] (mod p)

= (~7/1 - - m ~) x 1 - - 2 6 4 [b (x l) - b t (x l)] -]- 8 - 8 t (mod p)

Since b(xl) - b'(zl) E {-1 , 0, 1} for all xl , then

Pr [h x (m) - h x (r n ') ~ a (mod p)]

= P r [(r n l - m ~) x l - 2 6 4 [b (X l) - b ' (x 1)] + s - s ' = - a (modp)]

< P r [(m l - m ~) x l = a - s + s ' - 2 6 4 (modp)]

+ P r [(m l - m ~) x l ~ _ a - s + s ' (modp)]
+ Pr [(r l - mq) l = a - s + s' + 264 (m o d p)]

X l
< 3 �9 2 -32

This bound can be improved to 2 �9 2 -32 by noticing that the difference b(zl) -
b '(zl) cannot assume simultaneously the values 1 and -1 . Namely, if there exists a
value of z~ for which b(zl) = 1 and b'(x~) = 0 then there cannot be another value
z~ for which b(z~) = 0 and b'(z~) = 1, and vice-versa. Indeed, having b(zl) =
1, b'(zl) = 0 for a given Xl means that z lml + s > 264 while xam~ + s' < 264.
Since the expressions x l m l +s and zlm~ +s' are monotonic increasing in z l , then
there cannot be another value z~ for which z~ml + s < 264 while Xlml+s' ' ' >_ 264.
That is, there is no z~ for which b(z~) = 0 and b'(x~) = 1. []

We now show MMH32 to be a good -AAU universal family (relative to the
mod232 subtraction).

T h e o r e m 8. MMH32 is an e-AAU family of hash functions with e < 6 �9 2 -32.

Proof. Recall that MMH32 is obtained from H32 by reducing the result modulo
232. That is, for any x, m, hx(m) = hx(m) mod 232.

Fix any value v, 0 < v < 232 and two different message-vectors m, m ~, and
let x be a key-vector so that hx(m) - hx(m') =- v (mod 232). Equivalently, we
have hx(m) - hx(m') -= v (mod 232). Since the values h . (m) and hx(m') are
both between 0 and p - 1 we get that their difference (over the integers) lies
between - p + 1 and p - 1. As p = 232 -Jr 15, we get

{ v - 2 3 ~ , v , v + 2 a2} 0 < v < 15
hx(m) - hx(m') e {v - 232, v} 15 < v < 232 - 15

{v - 2 �9 232, v - 232, v} 2 3 2 - - 15 < v < 232

That is, if hx(m) - hx(m') =- v (mod 2 a2) then over the integers the differ-
ence hx(m) - hx(m') can assume at most 3 values. But then this is also true

186 Shai Halevi, Hugo Krawczyk

for this difference when taken mod p. Lemma 7 tells us that for any value v I the
probability (over the choice of x) that h ~ (m) - hx(m') ~ v I (mod p) is at most
2/232. And then the probability for any value of v that x solves the equation
h~(m) - hx(m ~) - v (rood 232) is at most 3 times larger. In other words,

P r [h x (m) - h x (m ') - v (mod232)] _ < 3 . 2 . 2 -32 .
x

[]

5 F u r t h e r W o r k

Recently, Mark Wegman has suggested to us the use of an unpublished univer-
sal hash function invented by Larry Carter and himself many years ago. This
function is related to the construction, by the same authors, that we presented
in section 2.4 and which we called MMH*. This "new" function is not linear and
then we denote it by NMH* (for Non-linear).

De f in i t i on9 . Let p be a prime and let k be an even positive integer. Define a
family NMH* of functions from Z k to Zp as follows

NMH * ~ f {gx :Z~ --+ Zp [x e Z~}

where the functions gx are defined for any x = (x , , . . . Xk), m = (m l , ' ' ' , mk),
x i , m i E Zp,

k/2
gx(m) d=ef Z (m 2 i _ 1 -[- x2,-1)(m2i § x2i) m o d p

i=1

It is not hard to see that NMH* is A-universal. This function uses the same
number of arithmetic operations as MMH* but requires half of the number of
multiplications (at the expense of more additions). At least in machines where
multiplication is significantly slower than addition its performance should be
expected to be better than that of MMH*. We modify NMH* as we did with
MMH* for improved performance and define NMH32 as follows.

Def in i t i on10 . Set p = 232+ 15 and k -- 32. Define a family NMH32 of functions
from (10, 1}32) k to {0, 1} 32 as follows

NMH32 ~f { h x : ({0, 1}32) k --+ {0,1} 3~ {x E ({0, 1}32) k }

where the functions hx are defined for any x = (Xl,. . "Xk),m = (m l , ' ' ", mk),
as

hx(m) de f | Z (r n 2 1 _ l -4- x2i_l)(rn2i 4- x2i) mod 264 mod (232 + 15) mod 232
Li----1

(the symbol 4- denotes addition modulo 232):

MMH: Software Message Authentication in the Gbit/second Rates 187

We can show in a similar way as we did for MMH32 that NMH32 is e-AAU
for e close to 2 -32.

We have not yet implemented this function. Report on such an implementa-
tion will be presented in the future.

A c k n o w l e d g m e n t s . We thank Mark Wegman for invaluable comments and
suggestions on this work, and Robert Geva for his help with the Pent ium-Pro
implementation. We also wish to thank Matteo Frigo for suggesting the 'C ' imple-
mentation in Appendix A and Dave Wagner for helping us to get the Pent ium-Pro
200 performance measurements.

References

[AGS97] V. Afanassiev, C. Gehrmarm and B. Smeets. Fast Message Authentication
using Efficient Polynomial Evaluation Appeares in these proceedings.

[AS96] M. Atici and D. Stinson. Universal Hashing and Multiple Authentication A d -
vances in Cryp to logy - C R Y P T O '96 Proceedings, Lecture Notes in Computer
Science Vol. 1109, N. Koblitz, ed., Springer-Verlag, 1996. pp. 16-30.

[BCK96] M. Bellare, R. Canetti and H. Krawczyk. Keying hash functions for message
authentication. A d v a n c e s in Cryp to logy - C R Y P T O '96 Proceedings, Lecture
Notes in Computer Science Vol. 1109, N. Koblitz, ed., Springer-Verlag, 1996.
pp. 1-15.

[BKR94] M. Bellare, J. Kilian and P. Rogaway. The security of cipher block chaining.
A d v a n c e s in Cryp to logy - C R Y P T O '94 Proceedings, Lecture Notes in Com-
puter Science Vol. 839, Y. Desmedt, ed., Springer-Verlag, 1994. pp. 341-358.

[BGV96] A. Bosselaers, R. Govaerts, J. Vandewalle. Fast Hashing on the Pentium,
A d v a n c e s in Cryp to logy - C R Y P T O '96 Proceedings Lecture Notes in Com-
puter Science Vol. 1109, N. Koblitz, ed., Springer-Verlag, 1996. pp. 298- 312.

[Br82] G. Brassard. On computationally secure authentication tags requiring short
secret shared keys, A d v a n c e s in Cryp to logy - C R Y P T O '82 Proceedings,
Springer-Verlag, 1983, pp. 79-86.

[CW79] L. Carter and M. Wegman. Universal Hash Functions. J. of Computer and
System Science 18, 1979, pp. 143-154.

[CW] L. Carter and M. Wegman. Private Communication.
[GMR88] S. Goldwasser, S. Micali and R. Rivest. A digital signature scheme se-

cure against adaptive chosen-message attacks. S I A M Journal o f Comput ing ,
vol. 17, no. 2 (April 1988), pp. 281-308.

[HJ96] T. HeUeseth and T. Johansson. Universal Hash Functions from Exponential
Sums over Finite Fields A d v a n c e s in Cryp to logy - C R Y P T O '96 Proceed-
ings, Lecture Notes in Computer Science Vol. 1109, N. Koblitz, ed., Springer-
Verlag, 1996. pp. 31-44.

[Kr94] H. Krawczyk. LFSR-based Hashing and Authentication. Proceedings of
CRYPTO '94, Lecture Notes in Computer Science, vol. 839, Springer-Verlag,
1994, pp. 129-139.

[Kr95] H. Krawczyk. New Hash Functions for Message Authentication. Proceedings
of EUROCRYPT '95, Lecture Notes in Computer Science, vol. 921, Springer-
Verlag, 1995, pp. 301-310.

188 Shai Halevi, Hugo Krawczyk

[Ra79]

[Ro95]

[Sh96]

[St94]

[To95]

[St95]

[WC81]

Rabin, M.O., "Fingerprinting by Random Polynomials", Tech. Rep. TR-15-
81, Center for Research in Computing Technology, Harvard Univ., Cambridge,
Mass., 1981.
P. Rogaway. Bucket Hashing and its application to Fast Message Authentica-
tion. Proceedings of CRYPTO '95, Lecture Notes in Computer Science, vol.
963, Springer-Verlag, 1995, pp. 15-25.
V. Shoup. On Fast and Provably Secure Message Authentication Based on
Universal Hashing Advances in Cryptology - C R Y P T O '96 Proceedings, Lec-
ture Notes in Computer Science Vol. 1109, N. Koblitz, ed., Springer-Verlag,
1996. pp. 313-328.
D. Stinson. Universal Hashing and Authentication Codes. Designs, Codes
and Cryptography, vol. 4, 1994, pp. 369-380.
J. Touch. Performance Analysis of MD5. Proc. Sigcomm '95, Boston, pp.
77-86.
D. Stinson. On the Connection Between Universal Hashing, Combinatorial
Designs and Error-Correcting Codes. TR95-052, Electronic Colloquium on
Computational Complexity, 1995.
M. Wegman. and L. Carter. New hash functions and their use in authentic-
ation and set equality. J. of Computer and System Sciences, vol. 22, 1981,
pp. 265-279.

MMH: Software Message Authentication in the Gbit/second Rates 189

A A 'C' Implementation of MMH

Below we describe a sample 'C' implementation of MMH, using the long long
data type of gcc to handle 64-bit integers. Note that the code below does not in-
clude an implementation of the hashing tree, nor does it implement the reduced
collision probability from Section 2.4 (Page 177). P~ather, it is just a straightfor-
ward implementation of the basis MMH32 function, as defined in Definition 5.

In the following code, the 32-word message is stored in the msg[] buffer and
the 32-word key is stored in the key [] buffer. The following is a straight line code
rather than in a loop, to take maximum advantage of the optimizing capabilities
of the compiler.

#define DO(i) sum += key[i] * (unsigned long long) msg[i]

unsigned long basic_mmh(unsigned long *key, unsigned long *msg)
{

signed long long stmp; /* temporary variables */
unsigned long long utmp;

unsigned long long sum = OLL; /* running sum */

unsigned long ret; /* return value */

DO(O); DO(l); DO(2); DO(3);
DO(4); DO(5); DO(6); DO(7);
DO(S); DO(9); DO(IO); DO(ll);
DO(12); DO(13); DO(14); DO(15);
DO(16); DO(17); DO(IS); DO(19);
DO(20); DO(21); D0(22); D0(23);
D0(24); DO(2S); D0(26); D0(27);
D0(28); D0(29); DO(30); DO(31);

/********** r e tu rn (sum ~ OxIOOOOOOOfLL); **********/

s tmp = (sum ~ O x f f f f f f f f L L) - ((s u m >> 3 2) * 1 5) ; / * l o - h i * 15 * /
utmp = (s tmp ~ O x f f f f f f f f L L) - ((s t m p >> 3 2) * 1 5) ; / * l o - h i * 15 * /

ret = utmp E Oxffffffff;
if (utmp > OxIOOOOOOOfLL) /* if larger than p - subtract 15 aEain */

ret -= 15;

return r e t ;

