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Abs t rac t .  This paper presents xmx, a new symmetric block cipher op- 
timized for public-key libraries and microcontrollers with arithmetic co- 
processors, xrax has no S-boxes and uses only modular multiplications 
and xors. The complete scheme can be described by a couple of compact 
formulae that offer several interesting time-space trade-offs (number of 
rounds/key-size for constant security). 

In practice, xmx appears to be tiny and fast : 136 code bytes and a 121 
kilo-bits/second throughput on a Siemens SLE44CR80s smart-card (5 
MHz oscillator). 

1 Introduction 

Since efficiency and flexibility are probably the most  appreciated design criteria, 
block ciphers were traditionally optimized for either software (typically SAFER 
[4]) or hardware (DES [2]) implementation. More recently, autonomous agents 
and object-oriented technologies motivated the design of particularly tiny codes 
(such as TEA [9], 189 bytes on a 68HC05) and algorithms adapted to particular 
programming languages such as PERL.  

Surprisingly, although an ever-increasing number of applications gain access 
to arithmetic co-processors [5] and public-key libraries such as BSAFE, MIR- 
ACL, BIGNUM [8] or ZEN [1], no block cipher was specifically designed to take 
advantage of such facilities. 

This paper  presents xmx (xor-multiply-xor), a new symmetr ic  cipher which 
uses public-key-like operations as confusion and diffusion means. The scheme does 
not require S-boxes or permutat ion tables, there is virtually no key-schedule and 
the code itself (when relying on a co-processor or a library) is extremely compact  
and easy to describe. 

xmx is firmware-suitable and, as such, was specifically designed to take a 
(carefully balanced) advantage of hardware and software resources. 
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2 The algorithm 

2.1 B a s i c  o p e r a t i o n s  

xmx is an iterated cipher, where a keyed primitive f is applied r t imes to an t -bi t  
cleartext m and a key k t o  produce a ciphertext c. 

D e f i n i t i o n l .  Let fa,b(m) = (m o a) " b mod n where : 

x @ y  i f x ~ y < n  
x o y = x otherwise 

and n is an odd modulus.  

P r o p e r t y 2 .  a o b is equivalent to a G b in mos t  cases (when n _< 2 t, and {a, b} 
is uniformly dis tr ibuted,  Pr[a o b -- a ~ b] -- u /2 t ) .  

P r o p e r t y 3 .  For all a and b, a o b o b = a. 

f can therefore be used as a s imply  invertible building-block (a <: n implies 
a o b < n) in i terated ciphers : 

D e f i n i t i o n 4 .  Let n be an g-bit odd  modulus,  m E 7/n and k be the key-array 
k = { a l , b l , . . . , a r , b r , a r + l }  where ai,b,  E 7]* and gcd(bi ,n)  = 1. 

The block-cipher xmx is defined by : 

xmx(k, m) = (fa~,br(far-,,br-, ( ' ' '  (fax,b1 ( m ) ) . . . ) ) )  o ( a t+ l )  

and : 
• 1-1 1, -1 = ( ax,bx( a2,b2(''" (farl, br (c 0 at+l)).-.))) 

2.2  S y m m e t r y  

A crucially practical  feature of  xmx is the s y m m e t r y  of  encrypt ion and decryption.  
Using this property,  xmx and xmx -1  can be compu ted  by the same procedure : 

L e m m a  5. 

k -1 = {ar+l,b-~ 1 m o d  n, a r , . . . , b l  1 m o d  n, a l}  =~ x rnx - l (k ,x )  = xmx(k - 1 , x )  . 

Since the storage of  k requires (2r + 1)f bits, xmx schedules the encrypt ion 
and decryption arrays  k and k-1  f rom a single f -bi t  key s : 

k(s) = { s , s , . . . , s , s , s  e s - l , s , s - 1 , . . . , s , s  -1}  

where k - l ( s )  = k(s-1) .  

For a couple of  securi ty reasons (explicited infra) s must  be generated by the 
following procedure (where w(s) denotes the H a m m i n g  weight of  s) : 
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1. P i c k  a random s E Z ~  such  t h a t  ~ - - l o g  2 s  w(s)  < ~ - l o g  2s 
2. I f  gcd(s,  n) ~ 1 o r  ~ -  log 2 s >_ 2 go t o  t .  
3. output  the  k e y - a r r a y  k(s) = {s, s , . . . ,  s, s, s �9 s - i ,  s, s - l , . . . ,  s, s -1 } 

Although equally impor t an t ,  the choice of n is much less restr ic t ive and can 
be conducted along three engineering cr i ter ia  : p r ime  modul i  will great ly  s impl i fy  
key generat ion (gcd(bi, n) = 1 for all i), RSA modul i  used by exist ing appl icat ions 
m a y  appear  a t t rac t ive  for m e m o r y  m a n a g e m e n t  reasons and dense modul i  will 
increase the probabi l i ty  Pr[a o b --- a @ hi. 

As a general guideline, we r e c o m m e n d  to keep n secret in all real-life applic- 
at ions but  assume its knowledge for the sake of academic  research.  

3 Security 

xmx ' s  securi ty was evaluated by target ing a weaker scheme (wxmx) where o - G 
and k = ( s , s , s , . . . , s , s , . . . , s , s , s ) .  

Using the trick u @ v = u + v - 2 (u A v) for e l iminat ing xors and defining : 

h~(x) = ( ( . . . ( x  $ e l ) .  bl m o d  n . . . )  @ a i - 1 ) "  bi-1 m o d  n 

we get by induction : 

wxmx(k,  x) --- b~. x + a l .  b~ . . .  + a r+ l  - 2 (gl (x ) -  b~ -t- �9 �9 �9 -t- gr+l  (x)) rood n 

where b~ = b i . . . b~  m o d n  and gi(x) = hi(x)  A a i  . 

Consequently,  

w x m x ( k , x ) = b ~ . x + b - 2 g ( x ) m o d n  where b = a l . b ~ + a 2 . b ~ . . . - l - a ~ + l  

and g(x) -= gl (x) . b~ + g2(x) . b~ - t- . . .  -t- g~+l (x) rood n . 

3 .1 T h e  n u m b e r  o f  r o u n d s  

When  r = 1, the previous  formulae  become g2(x) = h2(x) A s and 

wxmx(k, x) = ((x @ s ) .  s m o d  n) @ s -- x s + s 2 + s - 2 (gi(x)  s -t- g2(x))  m o d  n 

Assuming that  w(5) is low, we have (with a significantly high probabi l i ty)  : 

gl (x  + 5) = (x + 5) A S = gl (x)  mod n . 

Therefore,  selecting 5 such that  s A 5 = 0 ::~ gl (x  @ 5) = g l (x ) ,  we get 

wxmx(k, x ~ 5 ) - w •  . )  = ( . ~ 5 - . ) . s - 2  ( s A h ~ ( x e S ) -  s A h ~ ( . ) )  mod ~ .  
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Plugging 5 = 2 and an x such that z A 5 = 0 into this equation, we get : 

wxmx(k ,  z @ 5) - wxmx(k ,  z)  = 2 (s - s A h2(z  + 2) + s A h2(z)) mod n . 

Since h2(x) = s . x  + 8 2 - 2 g l ( z )  m o d  n (where g l (=)  = x A s), it follows that  
h2(x) and h2(x + 2) differ only by a few bits. Consequently,  information about  
s leaks out and, in part icular,  long sequences of  zeros or ones (with possibly the 
first and last bits altered) can be inferred f rom the difference wxmx(k, z @ 5) - 
wxmx(k, ~). 
In the more  general setting (r > 1), we have 

wxmx(k ,  z ~ 5) - wxmx(k ,  z) = (z G ~ - z)8 ~ + 2 e(z, 5, 8) mod n 

where e(x, 5, s) is a linear form with coefficients of  the fo rm a A s - j3 A 8. 
Defining A = {wxmx(k, z @ 5 ) -  wxmx(k, x)}, we get IIAH < 2 rw(s) since AI 

is completely characterized by s. 
The difference will therefore leak again whenever : 

[ 
2 ~ ( ' ) < 2  t =~ r < - -  (1) 

w ( 8 )  

3.2 K e y - g e n e r a t i o n  

T h e  w e i g h t  o f  s : Since g(x) is a polynomial  which coefficients (b~) are 
all bitwise smaller than s, the variety of  g(z)  is small  when w(s) is small. In 

so 280 particular,  when w(s) < ~--~, less than such polynomials  exist. 

A 24~ known plaintext  attack would therefore ext rac t  s r f rom : 

w•215 y) - w•215 x) = (y - z ) .  s ~ m o d  n 

using the bir thday paradox  (the same g(x) should have been used twice). One 
can even obtain  collisions on g with higher probabil i ty by s imply  choosing pairs 
of  similar plaintexts. Using [7] (refined in [6]), these attacks require a lmost  no 
memory.  

Since a similar attack holds for ~ when w(8) is big (x ~ y = z + 2 (~ A y) - y), 
w(s) must  be rather close to [ / 2  and (1) implies that  r mus t  at least equal three 
to avoid the attack described in section 3.1. 

T h e  s i ze  o f  s : Chosen plaintext  attacks on wxmx are also possible when s is 
too  short : if s m < n after r iterations, s can be recovered by encrypt ing m -- 0l 
since wxmx(k, 0l) = b - 2 g(x) and g 's  coefficients are all bounded by s. 

Observing that 0 < wxmx(k, 0l) - s r+l  < s .  2 r, we have : 

0 < 8 -  0 , )  < - -  8 = 
- r + l  

More generally, encrypt ing short messages with short  keys may  also reveal 8. 
As an example,  let e = 512, r = 4, s = 0432]s I and m - 043~1m I where s I and m t 
are both 80-bit long. Since Pr[x @ s = x + s] = (3/4) s~ ~ 2 -33 when s is 80-bit 
long, a g c d  between ciphertexts will recover s faster than exhaustive search. 
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3.3 Register size 
Since the complexity of section 3.1's attack must be at least 2 s~ we have : 

V/~ ~o(,) > 280 

and considering that w(s) -~ t /2 ,  the product r t  must be at least 320. 
r = 4 typically requires t > 80 (brute force resistance implies t > 80 anyway) 

but an inherent 2l/2-complexity attack is still possible since wxmx is a (keyed) 
permutation over g-bit numbers, which average cycle length is 2 l/2 (given an iter- 
ation to the order 2 l/2 of wxmx(k, x), one can find x with significant probability). 

t = 160 is enough to thwart these attacks. 

4 Implementation 
Standard implementations should use xmx with r = 8, t = 512, n = 2512 - 1 and 

k = { s , s , s , s , s , s , s , s , s  �9 s - l , s , s - l , s , s - l , s , s - l , s , s - 1 }  
while high and very-high security applications should use {r = 12, t = 768, n = 
2786 - 1} and {r = 16, t  = 1024, n = 2 l~  1}. 

A recent prototype on a Siemens SLE44CR80s results in a tiny (136 bytes) 
and performant code (121 kilo-bits/second throughput with a 5 MHz oscillator) 
and uses only a couple of 64-byte buffers. 

The algorithm is patent-pending and readers interested in test-patterns or a 
copy of the patent application should contact the authors. 

5 F u r t h e r  r e s e a r c h  

As most block-ciphers xmx can be adapted, modified or improved in a variety 
of ways : the round output can be subjected to a constant permutation such 
as a circular rotation or the chunk permutation rr(ABCD) --+ BADC where each 
chunk is 128-bit long (since ~r(rr(x)) = x, xmx's symmetry will still be preserved). 
Other variants replace modular multiplications by point additions on an elliptic 
curve (ecxmx) or implement protections against [3] (taxmx). 

It is also possible to define f on two t-bit registers L and R such that : 

f(L1,R1) = {L2,R2} 
where 

L 2 = R 1  and R 2 - - L l ~ ( ( R l ( ~ k s ) ' k l m o d n ) .  
and the inverse function is : 

R1 = L2, L1 = R2 @ ((R1 ~ k2) "kl mod n) = R2 G ((L2 ~ ks) �9 kl mod n) 

Since such designs modify only one register per round we recommend to 
increase r to at least twelve and keep generating s with xmx's original key- 
generation procedure. 
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6 Challenge 

It is a tradition in the cryptographic community to offer cash rewards for suc- 
cessful cryptanalysis. More than a simple motivation means, such rewards also 
express the designers' confidence in their own schemes. As an incentive to the 
analysis of the new scheme, we therefore offer (as a souvenir from FSE'97...) 256 
Israeli Shkalim and 80 Agorot (n is the smallest 256-bit prime starting with 80 
ones) to the first person who will degrade s's entropy by at least 56 bits in the 
instance : 

r = 8,~ = 256 and n = ( 2 8 ~  1).2176 + 157 

but the authors are ready to carefully evaluate and learn from any feedback they 
get. 

References 

1. F. Chabaud and R. Lercier, The ZEN library, h t t p : / / l i x . p o l y t e c t m i q u e . f r /  
,~zen/ 

2. FIPS PUB 46, 1977, Data Encryption Standard. 
3. P. Kocher, Timing attacks in implementations of Diffie-Hellman, RSA, DSS and 

other systems, Advances in Cryptology - CRYPTO '96, LNCS 1109, 1996, pp. 104- 
113. 

4. J. Massey, SAFER K-64 : a byte oriented block cipher algorithm, Fast Software 
Encryption, Cambridge Security Workshop, 1993, LNCS 809, pp. 1-17. 

5. D. Naccache and D. M'Raihi, Cryptographic smart cards, IEEE Micro, June 1996, 
vol. 16, no. 3, pp. 14-23. 

6. P. van Oorschot and M. J. Wiener, Parallel collision search with application to 
hash functions and discrete logarithms, 2 '~d ACM Conference on Computer and 
Communication Security, Fairfax, Virginia, ACM Press, 1994, pp. 210-218. 

7. J-J. Quisquater and J-P. Delescaille, How easy is collision search? Application to 
DES, Advances in Cryptology - EUROCRYPT'89, LNCS 434, 1990, pp. 429-434. 

8. B. Serpette, J. Vuillemenin and J. C. Herv4, BIGNUM : a portable and effi- 
cient package for arbitrary-precision arithmetic, PRL Research Report ~2, 1989, 
ftp : llftp, digital, comlpub/DEC/PRL/research-report s/PRL-RR-2, ps. Z. 

9. D. J. Wheeler and R. M. Needham, TEA, a tiny encryption algorithm, Fast Software 
Encryption, Leuven, LNCS 1008, 1994, pp. 363-366. 


