
XMX: A Firmware-Oriented Block Cipher
Based on Modular Multiplications

David M'Ra'ihi, David Naccache
Gemplus - Cryptography Department

1, place de la M@diterran6e
F-95206, Sarcelles CEDEX, France

100145. 226 l@corapuserve, corn
100142. 3240@compuserve. corn

J a c q u e s Stern, Serge Vaudenay
Ecole Normale Sup6rieure

45, rue d'Ulm
F-75230, Paris CEDEX 5, France

jacques, s t ern@ens, f r
serge, vaudenay@ens, f r

Abs t rac t . This paper presents xmx, a new symmetric block cipher op-
timized for public-key libraries and microcontrollers with arithmetic co-
processors, xrax has no S-boxes and uses only modular multiplications
and xors. The complete scheme can be described by a couple of compact
formulae that offer several interesting time-space trade-offs (number of
rounds/key-size for constant security).

In practice, xmx appears to be tiny and fast : 136 code bytes and a 121
kilo-bits/second throughput on a Siemens SLE44CR80s smart-card (5
MHz oscillator).

1 Introduction

Since efficiency and flexibility are probably the most appreciated design criteria,
block ciphers were traditionally optimized for either software (typically SAFER
[4]) or hardware (DES [2]) implementation. More recently, autonomous agents
and object-oriented technologies motivated the design of particularly tiny codes
(such as TEA [9], 189 bytes on a 68HC05) and algorithms adapted to particular
programming languages such as PERL.

Surprisingly, although an ever-increasing number of applications gain access
to arithmetic co-processors [5] and public-key libraries such as BSAFE, MIR-
ACL, BIGNUM [8] or ZEN [1], no block cipher was specifically designed to take
advantage of such facilities.

This paper presents xmx (xor-multiply-xor), a new symmetr ic cipher which
uses public-key-like operations as confusion and diffusion means. The scheme does
not require S-boxes or permutat ion tables, there is virtually no key-schedule and
the code itself (when relying on a co-processor or a library) is extremely compact
and easy to describe.

xmx is firmware-suitable and, as such, was specifically designed to take a
(carefully balanced) advantage of hardware and software resources.

xmx - a Firmware-Oriented Block Cipher Based on Modular Multiplications 167

2 The algorithm

2.1 B a s i c o p e r a t i o n s

xmx is an iterated cipher, where a keyed primitive f is applied r t imes to an t -bi t
cleartext m and a key k t o produce a ciphertext c.

D e f i n i t i o n l . Let fa,b(m) = (m o a) " b mod n where :

x @ y i f x ~ y < n
x o y = x otherwise

and n is an odd modulus.

P r o p e r t y 2 . a o b is equivalent to a G b in mos t cases (when n _< 2 t, and {a, b}
is uniformly dis tr ibuted, Pr[a o b -- a ~ b] -- u /2 t) .

P r o p e r t y 3 . For all a and b, a o b o b = a.

f can therefore be used as a s imply invertible building-block (a <: n implies
a o b < n) in i terated ciphers :

D e f i n i t i o n 4 . Let n be an g-bit odd modulus, m E 7/n and k be the key-array
k = { a l , b l , . . . , a r , b r , a r + l } where ai,b, E 7]* and gcd(bi ,n) = 1.

The block-cipher xmx is defined by :

xmx(k, m) = (fa~,br(far-,,br-, (' ' ' (fax,b1 (m)) . . .))) o (a t+ l)

and :
• 1-1 1, -1 = (ax,bx(a2,b2(''" (farl, br (c 0 at+l)).-.)))

2.2 S y m m e t r y

A crucially practical feature of xmx is the s y m m e t r y of encrypt ion and decryption.
Using this property, xmx and xmx -1 can be compu ted by the same procedure :

L e m m a 5.

k -1 = {ar+l,b-~ 1 m o d n, a r , . . . , b l 1 m o d n, a l} =~ x rnx - l (k ,x) = xmx(k - 1 , x) .

Since the storage of k requires (2r + 1)f bits, xmx schedules the encrypt ion
and decryption arrays k and k-1 f rom a single f -bi t key s :

k(s) = { s , s , . . . , s , s , s e s - l , s , s - 1 , . . . , s , s -1}

where k - l (s) = k(s-1) .

For a couple of securi ty reasons (explicited infra) s must be generated by the
following procedure (where w(s) denotes the H a m m i n g weight of s) :

168 David M'Raihi, David Naccache, Jacques Stern, Serge Vaudenay

1. P i c k a random s E Z ~ such t h a t ~ - - l o g 2 s w(s) < ~ - l o g 2s
2. I f gcd(s, n) ~ 1 o r ~ - log 2 s >_ 2 go t o t .
3. output the k e y - a r r a y k(s) = {s, s , . . . , s, s, s �9 s - i , s, s - l , . . . , s, s -1 }

Although equally impor t an t , the choice of n is much less restr ic t ive and can
be conducted along three engineering cr i ter ia : p r ime modul i will great ly s impl i fy
key generat ion (gcd(bi, n) = 1 for all i), RSA modul i used by exist ing appl icat ions
m a y appear a t t rac t ive for m e m o r y m a n a g e m e n t reasons and dense modul i will
increase the probabi l i ty Pr[a o b --- a @ hi.

As a general guideline, we r e c o m m e n d to keep n secret in all real-life applic-
at ions but assume its knowledge for the sake of academic research.

3 Security

xmx ' s securi ty was evaluated by target ing a weaker scheme (wxmx) where o - G
and k = (s , s , s , . . . , s , s , . . . , s , s , s) .

Using the trick u @ v = u + v - 2 (u A v) for e l iminat ing xors and defining :

h~(x) = ((. . . (x $ e l) . bl m o d n . . .) @ a i - 1) " bi-1 m o d n

we get by induction :

wxmx(k, x) --- b~. x + a l . b~ . . . + a r+ l - 2 (gl (x) - b~ -t- �9 �9 �9 -t- gr+l (x)) rood n

where b~ = b i . . . b~ m o d n and gi(x) = hi(x) A a i .

Consequently,

w x m x (k , x) = b ~ . x + b - 2 g (x) m o d n where b = a l . b ~ + a 2 . b ~ . . . - l - a ~ + l

and g(x) -= gl (x) . b~ + g2(x) . b~ - t- . . . -t- g~+l (x) rood n .

3 .1 T h e n u m b e r o f r o u n d s

When r = 1, the previous formulae become g2(x) = h2(x) A s and

wxmx(k, x) = ((x @ s) . s m o d n) @ s -- x s + s 2 + s - 2 (gi(x) s -t- g2(x)) m o d n

Assuming that w(5) is low, we have (with a significantly high probabi l i ty) :

gl (x + 5) = (x + 5) A S = gl (x) mod n .

Therefore, selecting 5 such that s A 5 = 0 ::~ gl (x @ 5) = g l (x) , we get

wxmx(k, x ~ 5) - w • .) = (. ~ 5 - .) . s - 2 (s A h ~ (x e S) - s A h ~ (.)) mod ~ .

xmx - a Firmware-Oriented Block Cipher Based on Modular Multiplications 169

Plugging 5 = 2 and an x such that z A 5 = 0 into this equation, we get :

wxmx(k , z @ 5) - wxmx(k , z) = 2 (s - s A h2(z + 2) + s A h2(z)) mod n .

Since h2(x) = s . x + 8 2 - 2 g l (z) m o d n (where g l (=) = x A s), it follows that
h2(x) and h2(x + 2) differ only by a few bits. Consequently, information about
s leaks out and, in part icular, long sequences of zeros or ones (with possibly the
first and last bits altered) can be inferred f rom the difference wxmx(k, z @ 5) -
wxmx(k, ~).
In the more general setting (r > 1), we have

wxmx(k , z ~ 5) - wxmx(k , z) = (z G ~ - z)8 ~ + 2 e(z, 5, 8) mod n

where e(x, 5, s) is a linear form with coefficients of the fo rm a A s - j3 A 8.
Defining A = {wxmx(k, z @ 5) - wxmx(k, x)}, we get IIAH < 2 rw(s) since AI

is completely characterized by s.
The difference will therefore leak again whenever :

[
2 ~ (') < 2 t =~ r < - - (1)

w (8)

3.2 K e y - g e n e r a t i o n

T h e w e i g h t o f s : Since g(x) is a polynomial which coefficients (b~) are
all bitwise smaller than s, the variety of g(z) is small when w(s) is small. In

so 280 particular, when w(s) < ~--~, less than such polynomials exist.

A 24~ known plaintext attack would therefore ext rac t s r f rom :

w•215 y) - w•215 x) = (y - z) . s ~ m o d n

using the bir thday paradox (the same g(x) should have been used twice). One
can even obtain collisions on g with higher probabil i ty by s imply choosing pairs
of similar plaintexts. Using [7] (refined in [6]), these attacks require a lmost no
memory.

Since a similar attack holds for ~ when w(8) is big (x ~ y = z + 2 (~ A y) - y),
w(s) must be rather close to [/ 2 and (1) implies that r mus t at least equal three
to avoid the attack described in section 3.1.

T h e s i ze o f s : Chosen plaintext attacks on wxmx are also possible when s is
too short : if s m < n after r iterations, s can be recovered by encrypt ing m -- 0l
since wxmx(k, 0l) = b - 2 g(x) and g 's coefficients are all bounded by s.

Observing that 0 < wxmx(k, 0l) - s r+l < s . 2 r, we have :

0 < 8 - 0 ,) < - - 8 =
- r + l

More generally, encrypt ing short messages with short keys may also reveal 8.
As an example, let e = 512, r = 4, s = 0432]s I and m - 043~1m I where s I and m t
are both 80-bit long. Since Pr[x @ s = x + s] = (3/4) s~ ~ 2 -33 when s is 80-bit
long, a g c d between ciphertexts will recover s faster than exhaustive search.

170 David M'Raihi, David Naccache, Jacques Stern, Serge Vaudenay

3.3 Register size
Since the complexity of section 3.1's attack must be at least 2 s~ we have :

V/~ ~o(,) > 280

and considering that w(s) -~ t /2 , the product r t must be at least 320.
r = 4 typically requires t > 80 (brute force resistance implies t > 80 anyway)

but an inherent 2l/2-complexity attack is still possible since wxmx is a (keyed)
permutation over g-bit numbers, which average cycle length is 2 l/2 (given an iter-
ation to the order 2 l/2 of wxmx(k, x), one can find x with significant probability).

t = 160 is enough to thwart these attacks.

4 Implementation
Standard implementations should use xmx with r = 8, t = 512, n = 2512 - 1 and

k = { s , s , s , s , s , s , s , s , s �9 s - l , s , s - l , s , s - l , s , s - l , s , s - 1 }
while high and very-high security applications should use {r = 12, t = 768, n =
2786 - 1} and {r = 16, t = 1024, n = 2 l~ 1}.

A recent prototype on a Siemens SLE44CR80s results in a tiny (136 bytes)
and performant code (121 kilo-bits/second throughput with a 5 MHz oscillator)
and uses only a couple of 64-byte buffers.

The algorithm is patent-pending and readers interested in test-patterns or a
copy of the patent application should contact the authors.

5 F u r t h e r r e s e a r c h

As most block-ciphers xmx can be adapted, modified or improved in a variety
of ways : the round output can be subjected to a constant permutation such
as a circular rotation or the chunk permutation rr(ABCD) --+ BADC where each
chunk is 128-bit long (since ~r(rr(x)) = x, xmx's symmetry will still be preserved).
Other variants replace modular multiplications by point additions on an elliptic
curve (ecxmx) or implement protections against [3] (taxmx).

It is also possible to define f on two t-bit registers L and R such that :

f(L1,R1) = {L2,R2}
where

L 2 = R 1 and R 2 - - L l ~ ((R l (~ k s) ' k l m o d n) .
and the inverse function is :

R1 = L2, L1 = R2 @ ((R1 ~ k2) "kl mod n) = R2 G ((L2 ~ ks) �9 kl mod n)

Since such designs modify only one register per round we recommend to
increase r to at least twelve and keep generating s with xmx's original key-
generation procedure.

xmx - a Firmware-Oriented Block Cipher Based on Modular Multiplications 171

6 Challenge

It is a tradition in the cryptographic community to offer cash rewards for suc-
cessful cryptanalysis. More than a simple motivation means, such rewards also
express the designers' confidence in their own schemes. As an incentive to the
analysis of the new scheme, we therefore offer (as a souvenir from FSE'97...) 256
Israeli Shkalim and 80 Agorot (n is the smallest 256-bit prime starting with 80
ones) to the first person who will degrade s's entropy by at least 56 bits in the
instance :

r = 8,~ = 256 and n = (2 8 ~ 1).2176 + 157

but the authors are ready to carefully evaluate and learn from any feedback they
get.

References

1. F. Chabaud and R. Lercier, The ZEN library, h t t p : / / l i x . p o l y t e c t m i q u e . f r /
,~zen/

2. FIPS PUB 46, 1977, Data Encryption Standard.
3. P. Kocher, Timing attacks in implementations of Diffie-Hellman, RSA, DSS and

other systems, Advances in Cryptology - CRYPTO '96, LNCS 1109, 1996, pp. 104-
113.

4. J. Massey, SAFER K-64 : a byte oriented block cipher algorithm, Fast Software
Encryption, Cambridge Security Workshop, 1993, LNCS 809, pp. 1-17.

5. D. Naccache and D. M'Raihi, Cryptographic smart cards, IEEE Micro, June 1996,
vol. 16, no. 3, pp. 14-23.

6. P. van Oorschot and M. J. Wiener, Parallel collision search with application to
hash functions and discrete logarithms, 2 '~d ACM Conference on Computer and
Communication Security, Fairfax, Virginia, ACM Press, 1994, pp. 210-218.

7. J-J. Quisquater and J-P. Delescaille, How easy is collision search? Application to
DES, Advances in Cryptology - EUROCRYPT'89, LNCS 434, 1990, pp. 429-434.

8. B. Serpette, J. Vuillemenin and J. C. Herv4, BIGNUM : a portable and effi-
cient package for arbitrary-precision arithmetic, PRL Research Report ~2, 1989,
ftp : llftp, digital, comlpub/DEC/PRL/research-report s/PRL-RR-2, ps. Z.

9. D. J. Wheeler and R. M. Needham, TEA, a tiny encryption algorithm, Fast Software
Encryption, Leuven, LNCS 1008, 1994, pp. 363-366.

