
X 2 Cryptanalysis of the SEAL Encryption
Algorithm

Helena Handschuh *
Gemplus PSI

1, Place de la M~diterran~e
95200 Sarcelles

France

Henri Gilbert
France T~l~com

CNET PAA-TSA-SRC
38-40 Rue du G~n~ral Leclerc

92131 Issy-les-Moulineaux
France

Abstract . SEAL was first introduced in [1] by Rogaway and Copper-
smith as a fast software-oriented encryption algorithm. It is a pseudor-
andom function which stretches a short index into a much longer pseu-
dorandom string under control of a secret key pre-processed into internal
tables. In this paper we first describe an attack of a simplified version
of SEAL, which provides large parts of the secret tables from approx-
imately 224 algorithm computations. As far as the original algorithm is
concerned, we construct a test capable of distinguishing SEAL from a
random function using approximately 23~ computations. Moreover, we
describe how to derive some bits of information about the secret tables.
These results were confirmed by computer experiments.

1 Description of the SEAL Algorithm

SEAL is a length-increasing "pseudorandom" function which maps a 32-bit string
n to an L-bit string SEAL(n) under a secret 160-bit key a. The output length
L is meant to be variable, but is generally limited to 64 Kbytes. In this paper,
we assume it is worth exactly 64 Kbytes (2 TM 32-bit words), but all our results
could be obtained with a smaller output length.

The key a is only used to define three secret tables R, S, and T. These tables
respectively contain 256, 256 and 512 32-bit values which are derived from the
Secure Hash Algorithm (SHA) [2] using a as the secret key and re-indexing the
160-bit output into 32-bit output words.

SEAL is the result of the two cascaded generators shown below.

* The study reported in this paper was performed while Helena Handschuh was working
at France T~I~com-CNET.

Helena Handschuh, Henri Gilbert

n n n

R[4I] R[4I + 1]) R[4I -t- 2]

n

~> 24
+ 3]

n 3 r

A o B o C ~ D ~

A I - 1 + n l

P~

Fig. 1. The first generator of SEAL
]3 i - 1 C i - 1 + n2

A B ~ C ~ D i

Fig. 2. The second generator of SEAL (i th iteration)

Di-1

TAJ

a.

~ : q4

x 2 Cryptanalysis of the SEAL Encryption Algorithm 3

The first generator uses a routine depending on the a-derived tables R and T
depicted in figure 1. It maps the 32-bit string n and the 6-bit counter l to four
32-bit words A ~ B ~ C ~ D O and another four 32-bit words nl , n2, ha, n4. These
eight words are to be used by the second generator.

The second generator uses a routine depending on the a-derived tables depicted in
figure 2. There are 64 iterations of this routine, indexed by i = 1 to 64. A ~ 1 7 6 1 7 6 1 7 6
serves as an input to the first iteration, producing an A1B1C1D 1 block. For the
next iterations, the input block is alternately (A i - 1 + n l, B i - 1, C i - 1 + n2 ' D i - 1)
for even i values and (A i-1 + ns, B i - l , C i - 1 + n4, D i-1) for odd i values. At
iteration i, the output block (Y1/, Yg, Yg, Y~) is deduced from the intermediate
block (Ai ,B i ,Ci ,D i) using the a-derived table S as shown below in figure 3.

A

S [4 i - 1] - ~

Y~

B i C i D i

�9 . .

Fig. 3. Deriving the generator output

In the above figures :

- @ stands for the XOR function;
- + stands for the sum (mod 2a2);
- >> stands for a right rotation of 9 bits (>> has precedence over + and 0) ;
- >> N stands for a right rotation of N bits;
- Pl through P4 and ql through q4 stand for the inputs of table T obtained

from the 9 bits 2 to 11 of the 32-bit intermediate values A, B, C and D; for
instance in figure 1, pl = A&OxT f c.

Concerning the definition of SEAL, more details can be found in [1] and in [2].

The algorithm is divided into three steps.

- First we compute the internal tables under the secret key a. The security of
this step relies on SHA which is assumed to be highly secure. Therefore, R,
S and T are pseudorandom tables.

- Second we compute A ~ B ~ C ~ D ~ nl , n2, n3 and n4 from n, l and table R.
This is what we already called the first generator. Let us assume the output
is pseudorandom as well.

- Finally, the second generator computes iteratively the A i B i C i D i blocks, from
which the Y~, Y~, Y~, Y~ values are derived. We change the original notation
as follows :

4 Helena Handschuh, Henri Gilbert

. Y? = B' + S~
�9 = c'es
�9 Y , ~ = D i + S ~ .

In this part we found certain weaknesses which are investigated in Sections
3 and 4.

2 P r e l i m i n a r i e s

2.1 Role o f m o d 232 addit ions

Although the combined use of the + and @ operations probably strengthens
SEAL as compared with a situation where only one of these operations would be
used, we do not believe that this represents the main ingredient of the security
of SEAL, which is essentially a table-driven algorithm.

As a matter of fact, any x + y sum can be written :

x + y = x @ y • c (x , y)

where the carry word c(x, y) is far from being uniformly distributed thus +
just introduces an additional, unbalanced term, as compared with G.

This remark led us to assume that replacing in SEAL (more precisely in the
second generator of figure 2) all + operators by xors would not fundamentally
modify the nature of the algorithm, and that cryptanalytic results obtained with
such a simplified version could at least partially be transposed to the real cipher.
The results of our analysis of this simplified version of SEAL are summarised in
Section 3 hereafter.

2.2 T h e t h r e e words D i - l , C i a n d D i a r e correlated

Let us consider the function depicted in figure 2. Given a fixed value of the
iteration index i (say i = 3), the input and output to this function are known
from the generator outputs (Y1/-1, Y2/-1, y ~ - l , y~- l) and (Yx/, Y~/, Y~, Y~) up
to the following unknown words :

- the 8 words (S~-;, ~ - 1 , S~-1, S~-I) and (S~, S~, S~, ~) , the value of which
does not depend on the considered initial value (n, l).

- the 2 words nl and n2, the value of which depends on (n, l).

The involvement of the IV-dependent words nl and n2 in the function consid-
erably complicates the analysis of the i th iteration because of the randomisation
effect on the input to output dependency.

In order to find statistics applicable to any IV value, we investigate how to "get

x 2 Cryptanalysis of the SEAL Encryption Algorithm 5

rid" of any dependency on nl and n2 in some relations induced by the equation
of iteration i.

Let us consider the D i - z input word and the C i and D i input words. Denote the
output tables involved in the right part of figure 2 by : T~ = TIp2], T2 = T[q3]
and T3 = TIP4]. It is easy to establish the relation :

(1)
(D i - l + T 1) @ (C i < < 9 + T 2) = (D i <<18) @ (T3 << 9)

This relation does not involve nl and n2. The T1, T2, T3 terms in this relation can
be seen as three random values selected from the T table. Since there are only
29 values in the T table, given any two words out of the (D i-1, C i, D i) triplets,
there are at most 227 possible values for the third word of the triplet instead of
232 if D i-1 , C i and D i were statistically independent. This gives some evidence
that the D i-1 input and the C i and D i output are statistically correlated, in a
way which does not depend upon nl and n2 . In other words, the SEAL generator
derives from an (n, l) initial value three slightly correlated output words Y4/-1,

and

Relation (1) above represents the starting point for the various attacks repor-
ted in Sections 3 to 5 hereafter.

3 A n A t t a c k o f a s i m p l i f i e d v e r s i o n o f S E A L

In this Section we present an attack of the simplified version of SEAL obtained
by replacing in figure 2 all rood 232 additions by xors. The attack is divided into
four steps.

3.1 S t e p 1

We derive the unordered set of values of the T table, up to an unknown 32-bit
constant A i. Relation (1) above represents the starting point for this derivation.
After replacing + by @ in (1) and introducing the notation 2(4 = Y4 i-1, Y3 = Y3 i
and]I4 = Y~, we obtain the relation :

(2)
Y , @ Y 3 >>9@X4 >> 18 = T 3 >> 9 G (T 1 G T 2) >> 18@A ~ >>9

where the A i constant depends on the S table. 7'1 and T2 are 2 among 512 values
of the table T. Statistically speaking, once in 29, T1 = T2, thus T1 @T2 = 0. If we
compute 2 is samples, each of the 512 values of the table T @ A i should appear
once on average.

6 Helena Handschuh, Henri Gilbert

We collect the combination of the generator output words given by the left term
of (2) for about 2 =1 (n, l) samples. Whenever one value appears more than 4
times, we assume this is a value of the table (T r A i) >> 9. All the other values

221 have a probability of about ~ to appear. This way, we find about 490 out of
512 values of the table T up to a constant value.

3.2 Step 2

The purpose of the second step is to compute a constant ~i which is needed in
the third step in order to find out statistics involving B i - 1, D i, A i and B' (see
Fig. 2.). Consider the following equation (3) established in a similar way to (2)
from the relation between B i-1 and the output words :

(3) I/4 >> 9 0 Y 2 r >> 9@X2 >> 1 8 e T a >> 18 = (T~r >2> 1 8 r (T~r >>
9 r 1 6 2 - I > > 1 8 r 1 6 2 >>9)

where
~ i = S~ >> 9 r S~- ' >> 1 8 0 S~ r >> 9 0 Ai>> 18

and
T~ = TIp1], T~ = T[q2], T~ = T[p3]andT~ = T[q4].

For each sample, we can find out T a r Ai by searching exhaustively the right
combination (T1, T2, Ta) in equation (2). In order to save time, we compute once
and for all a table with the 218 values of (T1 r T~) >> 18 and search for the right
third value. We perform this search as well as the computation of the left term
of (3) for 2 zl samples. Once in 218, T~ = T~ and T~ = T~. This way the constant
value a i we are looking for appears at least 4 times.

3.3 Step 3

The purpose of this step is to find out various values of nl. Once we have these
values, we can find the relation between the inputs and outputs of table T up
to a constant value. Let us consider equation (4) established from the relation
between A i-1 and the output words :

(4)

xl :>> 18@Y1GY4@T >> 9 @ O T3 >> 9 = n l >:> 18@S{ -1 >2> 18OS OS{

x 2 Cryptanalysis of the SEAL Encryption Algorithm 7

We can find out T~ @ A i and T~ (9 A i by searching the right combination of
(T~, T~, T~, T~) in equation (2) using the value c~ i we found in step 2. For each
sample we compute, we get about 16 possibilities, as (T~, T~, T~, T~) gives 236
possible values for a 32-bit word.

In order to find the right combination, let us consider two distinct iteration
indexes i and j : we know that for a given I value, i f i is even (or odd), we always
xor the same nl (or n3) to the input A. Let us therefore take two rounds i and
j that are both odd (or even). We need to know table T | A i, table T (9 A J, c~ i
and c@.

We collect samples of the combination of the generator output words given by
the left term of (4) in order to find out possible values of :

- nl >> 18Gf l i
where fli = S~-1 >> 18 @ S~ (9 S~ G Ai;

- nl>>18@flJ@Ad>>9@Ai>> 9
as value T3 is found through table T ~ A i and values T~ and T~ through table
T@ AJ.

We xor all the samples of round i with all the samples of round j . One of these
values is the right combination of ~i @ flj G (Ai (9 AJ) >> 9

Then we find all the samples for rounds i and j of another value nl (i.e. of round
l). We compare these two sets of samples and find the right value of nl >> 18(9/9 i.

This step can be repeated various times to collect values of nl while computing
only once the tables T @ A and the constants c~.

3.4 S t e p 4

In this step we finally derive the inputs and outputs of table T from equation (5):

(5)
pl = ((Xl e nl �9 S t l) a 0 x T / c) / 4

In this equation Pl is the input of table T. We have seen in the first three steps
that we can derive the value of T1 from input and output samples of SEAL.

So we finally derive several values of :

T b (9 6 ~] (9 A i

where 6' : ((S~ -1 @ fli << 18)~Ox7fc)/4.

8 Helena Handschuh, Henri Gilbert

3.5 Summary

Summing up the four steps we have just described, we can break the T table
up to a constant value using about 2 • 2 ~1 samples of (n,l) for step 1, 2 x 221
samples of (n, l) for step 2 and about 29 values of (n, l) for steps 3 and 4. This
means, the T table can be broken using about 224 samples of (n, l).

We could probably go on breaking the simplified version of SEAL by finding
out sets of values (hi, n2, n3, n4), then trying to break the first generator and
find table R, but this is not our purpose here.

4 A T e s t o f t h e r e a l v e r s i o n o f S E A L

In this Section we use some of the ideas of Vaudenay's Statistical Cryptanalysis
of Block Ciphers [3] to distinguish SEAL from a truly random function.

4.1 X 2 C r y p t a n a l y s i s

The purpose of Vaudenay's paper is to prove that statistical analysis on ciphers
such as DES may provide as efficient attacks as linear or differential cryptana-
lysis. Statistical analysis enables to recover very low biases and a simple X 2 test
can get very good results even without knowing exactly what happens inside the
inner loops of the algorithm or the S-boxes.

We intend to use this property to detect low biases of a certain combination
of the output words of SEAL suggested by the analysis made in Section 3 in
order to prove SEAL is far from being undistinguishable from a pseudo-random
function. This provides a first test of the SEAL algorithm.

4.2 N u m b e r o f s a m p l e s n e e d e d fo r t h e X ~ t e s t to dist inguish a
b i a s e d d i s t r i b u t i o n f r o m a n u n b i a s e d o n e

We denote by N the number of samples computed. We assume the samples are
drawn from a set of r values. We call nl the number of occurences of the i th of
the r values among the N samples and Sx2 the associated indicator :

E , : l (n , -
N m
r

The X 2 test compares the value of this indicator to the one an unbiased dis-
tribution would be likely to provide. If the ni were drawn according to an un-
biased multinomial distribution of parameters r ! _l~ the expectation and
the standard deviation of the Sx2 estimator would be given by :

X 2 Cryptanalysis of the SEAL Encryption Algorithm 9

- E (S x ~) - + t t = r - 1

- ~ (S ~) -~ ~ = V ~ - 1)

If the distribution of the ni is still multinomial but biased, say with probabilities
pl, ...,pr, then we can compute the new expected value # ' of the Sx2 :

E r i r
. ' ; ,)2)=7N p,N + p i n -

r i = 1

It can be easily shown that :

#' --4 I~ + r (N - 1) E (p` - 1) 2
i = 1

An order of magnitude of the number N of samples needed by the X 2 test to dis-
tinguish a biased distribution from an unbiased one with substantial probability
is given by the condition :

' - # >>~r

which gives us the following order of magnitude for N :

v / ~ - r - 1)
N >> r E [= l (p i _ ~)~

4.3 M o d e l o f the t e s t

Let us consider equation (2) with the real scheme (including the sums). We can
rewrite it :

(6) Y 4 @ Y 3 >> 9 ~ X 4 >> lS = 7"3 >> 9 @ (T1 @T2) >> 1 8 0 (r l @ r 2 ~ 3 r 3) >>
18GAI i > > 9 ~ r 4

where rl and r~ are the carry bits created by the addition of T1 and T2, and
r3 and r4 the ones of the addition of S~-1 and S~.

We apply the X 2 test to the four leftmost bits of Y4 @ Y3 >> 9 @ X4 >> 18
suspecting a slight bias in this expression. Without having carefully analysed
the exact distribution of the sum of the four carries, we intend to prove that its
convolution with the biased distribution of T3 >> 9 @ (T1 ~ T2) >> 18 ~3 A~ >> 9
does result in a still slightly unbalanced distribution.

As we take 4-bit samples, we apply the X 2 test with r - 1 -- 15 degrees of
freedom. Detailed information about this test can be found in [4].

10 Helena Handschuh, Henri Gilbert

4.4 R e s u l t s

Whenever we analyse at least 233 samples, the test proves with probability 1000
to be wrong, that SEAL has a biased distribution. We have made several tests,
and each time the value of the S• estimator we obtained for this order of mag-
nitude of N was greater than 40 for the 4 least significant bits and greater than
320 for the 8 least significant bits. In other words, the test proves that the dis-
tribution is a biased one.

Figure 4 shows the value of theSx2 estimator fo r t e s t smade with a = 0x67452301.

SX2 223 2241225 226 227 22s 229 230 231 232 233 234 235
4 bits 14.27 25 13.97 9.41 26.96 16.5 16.78 29.65 21.05 30.15 45.74 44.69 55.96
8 bits 261 293 274 238 229 227 246 225 278 313 331 378 453

Fig. 4. Results of the tests with up to 235 samples of (n, 1).

The former test test can be slightly improved as follows : let us denote the four
least significant bits of S~ by s~. For each of the 16 possible values of s~, apply
the S• test to the 4 or the 8 least significant bits of (Y4-s~)@Y3 ~ 9OX4 ~>~ 18.
The test with the correct si4 value detects a bias with 230 (n, l) values only (see
Figure 5). Note that a significant bias is also detected whenever the two least
significant bits of s/4 are correct.

Sx2 i225 226 227 228 229 230 1231 232 233 [234 235
4 bits 9.45 13.56 20.62 25.59 32.77 71.90 83.63 130 250 438 928

bits 253 271 292 321 276 357 379 438 569 838 1520

Fig. 5. Results of the test with the correct value of the four s~ bits.

4.5 D e r i v i n g f irst i n f o r m a t i o n o n S E A L

The interpretation of the above improved test is straightforward : when the two
least significant bits of s/4 are correct, r4 is partly known and the X2 test gives
much better results than with wrong bits of s~. Therefore we can derive at least
two bits of information on table S. If the test is applied to more than the four
leftmost bits of the samples, more than 2 bits can be derived from secret table
T. Whenever these bits are right, the X 2 rises much faster than for wrong values.

As the evolution of the X 2 indicator is quite close to a straight line when the
divergence starts, the results can be checked applying the test to 22~ through
232 samples. Divergence becomes obvious when about 23o samples have been
computed.

~:2 Cryptanalysis of the SEAL Encryption Algorithm 11

5 D e r i v i n g i n f o r m a t i o n o n t h e T t a b l e

In this Section we give some evidence that the initial step of the attack on the
simplified version of SEAL introduced in Section 3 can be adapted to provide
large parts of the T table for the real algorithm.

Let us consider relation (6).

As seen in Section 3.1, the distribution of the T3 >> 9 ~ (T1 | T2) >> 18 @ A i ~ 9
value at the right of (6) is unbalanced. The most frequent values are provided
by the 512 T @ A i words.

On the other hand the distribution of the carry words r l @ r~ @ r3 and r4 is
also unbalanced. More precisely, due to the fact that in any carry word r each
bit r[j] has a 43- probability of being equal to the next bit r[j + 1], the number of
'inversions', i.e. j values s.t. r[j] r r[j + 1] is likely to be small when r is a carry
word or an exclusive or of carry words.

Thus we can expect the 512 T @ A i values to give rise to 'spread' probabil-
ity maxima in the distribution probability of the left term of (6).

Based on 23~ (n, l) values, we did the following experiment :

We analysed the probability distribution of the 23 lowest weight bits of the left
combination of (6) in order to reduce the memory requirements. So in the rest
of this Section, though we do not introduce any new notation, we implicitly refer
to 23-bit words instead of 32-bit words.

For several T ~ A i values (about 25), we computed the sum of the probabil-
ities of the neighbours of T �9 A i, i.e. the values of the form T G Ai + r, where r
is one of the approximately 2 ~ 23-bit words with at most 11 inversions.

We computed the same sum of approximately 222 probabilities around arbit-
rarily chosen values other than the 512 T G A i values.

For more than half of the T @ A i values, the obtained sum was larger than
all the sums associated to the arbitrarily chosen values.

The complexity of the search of the T @ A i values is quite high if an independent
computation of a sum of 222 probabilities is made for each of the 223 candidate
values. This approach leads to a 245 complexity, far over the computing capab-
ilities of the computer we used for the experiments ; however, substantial gains
might be achieved by reusing appropriately selected partial sums of probabilities.

Thus in summary, we believe that with slightly more than 232 (n, l) values, it
should be possible to recover a substantial part of the information on the T
table, up to an unknown constant.

12 Helena Handschuh, Henri Gilbert

6 Conclus ion

We have shown in some detail in Section 3 that the simpler scheme with xors in-
stead of sums can be attacked with the generator output corresponding to about
224 samples of (n, l), e.g. 218 n values and 26 1 values for each n value.

The test of Section 4 can be applied with about 23~ samples of (n, l), e.g. 224 n
values and 26 l values for each n value. Moreover, information about table S can
be derived from this test with 23~ samples of (n, l) as well, and large amounts of
information contained in table T can be derived from approximately 232 samples
of (n, l) or slightly more.

Despite of their relatively low time and space complexity, which enabled us to
perform the computer simulations mentioned in Sections 4 and 5, the attacks
reported in this paper do not seriously endanger the practical security of SEAL,
because a too large amount of keystream samples (corresponding to more than
230 (n, l) initialisation vectors) is required. These attacks suggest however that
simple modifications of some design features of SEAL, e.g. the detail of the in-
volvement of the IV-dependent values nl to n4 in the second generator, would
probably strengthen the algorithm without significant impact upon its perform-
ance.

7 Acknowledgements

We thank Thierry Baritaud and Pascal Chauvaud for the elaboration of the I~TEX
version of the figures and the paper. We would like to address special thanks to
Francois All~gre who gave us access to a quite powerful computer that made the
tests reasonably quick and to Alain Scheiwe who helped us write the C source
code of the tests.

References

1. P. Rogaway and D. Coppersmith, "A Software-Optimized Encryption Algorithm",
Proceedings of the 1993 Cambridge Security Workshop, Springer-Verlag, 1994.

2. B. Schneier, Applied Cryptography, Second Edition, John Wiley & Sons, 1996.
3. S. Vaudenay, "Statistical Cryptanalysis of Block Ciphers - X 2 Cryptanalysis', 1995.
4. J. Bass, Elements de Calcul des Probabilit~s, 3 ~ @dition, Masson Et Cie, 1974.

