
Cryptanalysis of the Cellular Message Encryption
Algorithm

David Wagner
University of California, Berkeley

daw@cs, b e r k e l e y , edu

Bruce Schneier John Kelsey
Counterpane Systems

{schneier , kelsey}�9 erpane, com

A b s t r a c t . This paper analyzes the Telecommunications Industry Asso-
ciation's Cellular Message Encryption Algorithm (CMEA), which is used
for confidentiality of the control channel in the most recent American di-
gital cellular telephony systems. We describe an attack on CMEA which
requires 40-80 known plaintexts, has time complexity about 224-232, and
finishes in minutes or hours of computation on a standard workstation.
This demonstrates that CMEA is deeply flawed.

Keywords: cryptanalysis, block ciphers, cellular telephone

1 I n t r o d u c t i o n

As the US cellular telephony industry has boomed, the need for security has
increased: both for privacy and fraud prevention. Because all cellular commu-
nications are sent over a radio link, anyone with the appropriate receiver can
passively eavesdrop on all cellphone transmissions in the area without fear of
detection. The earliest U.S. cellular telephony systems relied on the high cost of
cellular-capable receivers (or scanners) for security. When such scanners become
affordable and widely available, the cellphone industry lobbied for protective legis-
lation. But these legal prohibitions have failed to solve the problem, and systems
architects have been forced to turn increasingly to cryptography for more robust
security.

The cellular telephony industry players are especially concerned with fraud
prevention. The FCC estimates that the cellular industry loses more than $400
million per year to fraud [FCC97]. Cellphone cloning is probably the foremost
form of this problem. Because most of today's cellphones identify themselves
over public radio links by sending their identity information in the clear, eaves-
droppers can (and do) easily misappropriate others' identity information to make
fraudulent phone calls. While the latest digital cellphones currently offer some
weak protection against casual eavesdroppers because digital technolo~y is so
new that inexpensive digital scanners have not yet become widely available, the
president of the Cellular Telecommunications Industry Association testified in
recent Congressional hearings [Whe97] that "history will likely repeat itself as
digital scanners and decoders, though expensive now, drop in price in the future."

Cryptographic mechanisms are one obvious way to combat cloning fraud, and
indeed, the industry is turning to cryptography for protection. In 1992, the TR-
45 working group within the Telecommunications Industry Association (TIA)

527

developed a standard for integration of cryptographic technology into tomor-
row's digital cellular systems [TIA92], which has been updated at least once
[TIA95]. Some of the most recent cellphones to hit the market already include
these cryptographic protection mechanisms [Nok96].

The TIA standard [TIA95] describes four cryptographic primitives for use in
North American digital cellular systems:

- CAVE, a mixing function, is intended for challenge-response authentication
protocols and for key generation.

- A repeated xoR mask is applied to voice data for voice privacy 1.
- ORYX, a LSFR-based stream cipher intended for wireless data services.
- CMEA (Control Message Encryption Algorithm), a simple block cipher, is

used to encrypt the control channel [Ree91].

The voice privacy algorithms has long been known to be insecure [Bar92, CFP93].
Recent work by the authors has shown that ORYX is insecure as well [WSK97].
This paper focuses on the security of CMEA.

Note that CMEA is not used to protect voice communications. Instead, it
is intended to protect sensitive control data, such as the digits dialed by the
cellphone user. A successful break of CMEA might reveal user calling patterns.
Also sent CMEA-encrypted are digits dialed (all DTMF tones) by the remote
endpoint and alphanumeric personal pages recieved by the cellphone user. Fi-
nally, compromise of the control channel contents could lead to any confidential
data the user types on the keypad: calling card PIN numbers may be an espe-
cially widespread concern, and credit card numbers, bank account numbers, and
voicemall PIN numbers are also at risk.

This paper is organized as follows. We describe CMEA in Section 2 for refer-
ence. Next, Section 3 lists some observations that form a foundation for our later
analysis. Then we give effective chosen- and known-plaintext attacks on CMEA
in Sections 4 and 5. Finally, Section 6 concludes.

2 A description of CMEA

We describe the CMEA specification fully here for reference. CMEA is a byte-
oriented variable-width block cipher with a 64 bit key. Block sizes may be
any number of bytes; in practice, US cellular telephony systems typically ap-
ply CMEA to 2-6 byte blocks, with the block size potentially varying without
any key changes. CMEA is quite simple, and appears to be optimized for 8-bit
microprocessors with severe resource limitations.

CMEA consists of three layers. The first layer performs one non-linear pass
on the block; this effects left-to-right diffusion. The second layer is a purely linear,
unkeyed operation intended to make changes propagate in the opposite direction.

1 The situation is more complicated: time-division multiple access (TDMA) systems use
a straight XOR mask, while code-division multiple access (CDMA) systems instead
use keyed spread spectrum techniques for security.

528

One can think of the second step as (roughly speaking) xoRing the right half of
the block onto the left half. The third layer performs a final non-linear pass on
the block from left to right; in fact, it is the inverse of the first layer.

CMEA obtains the non-linearity in the first and third layer from a 8-bit keyed
lookup table known as the T-box. The T-box calculates its 8-bit output as

T(x) = C(((C(((C(((C((x ~ go) + g l) + x) $ g2) +/(3) + x) $ g4) +/ (5)

+=) ~ Ks) + KT) + =

given input byte x and 8-byte key Ko...7. In this equation C is an unkeyed 8-bit
lookup table known as the CaveTable; all operations are performed using 8-bit
arithmetic. The CaveTable is given in Figure i,

We now provide a specification of CMEA. The algorithm encrypts a n-byte
message Po , - i to a ciphertext Co ,-1 under the key Ko...7 as follows:

yo~-0
for i +- 0 , . . . , n - 1

P~ +- P~ + T(yi �9 i)
Yi+l ~ Yi + P[

for i ~- 0 , . . . , L~J - 1
P~" <- P" �9 (P~_~_~ v 1)

z0 +--0
for i ~ 0 , . . . , n - 1

Zi+l ~._ Zi .~_ p~t
c~ ~ p " - T(z~ �9 i)

Here all operations are byte-wide arithmetic: + and - are addition and subtrac-
tion modulo 256, $ stands for a logical bitwise exclusive or, V represents a logical
bitwise or, and the keyed T function is as described previously.

CMEA is specified in [TIA92, TIA95]; it is also described in U.S. Patent
5,159,634 [Ree91], though a different T-box method is listed.

3 P r e l i m i n a r i e s

First, we list some preliminary observations:

- CMEA is it's own inverse. In other words, every key is a "weak key" (in
the strict sense, from the DES nomenclature, of being self-inverse). This was
apparently originally a design goal, for unknown reasons.

- CMEA is typically used to encrypt short blocks. Because the cellular tele-
phony specification does not use random IVs, does not use block chaining
modes, and encrypts short blocks under CMEA, codebook attacks could be
a threat. On the other hand, the cellphone specifications require the CMEA
key to be re-derived (using CAVE as a pseudo-random generator) for every

hi\ I~

0.

1.
2.
3.
4.
5.
6.
7.
8.
9.
a .

b.
C.

d.
e .

f .

529

Fig. 1. The CaveTable

.0 .1 .2 .3 .4 .5 .6 .7 .8 . 9 . a . b . c . d . e . f

d9 23 5f e6 ca 68 97 bO 7b f 2 0 c 34 11 a5 8d 4e
Oa 46 77 8d 10 9 f 5e 62 f l 34 ec a5 c9 b3 d8 2b
59 47 e3 d2 f f ae 64 ca 15 8b 7d 38 21 bc 96 O0
49 56 23 15 97 e4 cb 6 f f 2 70 3c 88 ba d l Od ae
e2 38 ba 44 9 f 83 5d l c de ab c7 65 f l 76 09 20
86 bd Oa f l 3c a7 29 93 cb 45 5 f e8 10 74 62 de
b8 77 80 d l 12 26 ac 6d e9 c f f 3 54 3a Ob 95 4e
b l 30 a4 96 f 8 57 49 8e 05 I f 62 7c c3 2b da ed
bb 86 Od 7a 97 13 6c 4e 51 30 e5 f2 2f d8 c4 a9
91 76 fO 17 43 38 29 84 a2 db e f 65 5e ca Od bc
e7 f a d8 81 6 f O0 14 42 25 7c 5d c9 9e b6 33 ab
5a 6 f 9b d9 f e 71 44 c5 37 a2 88 2d O0 b6 13 ec
4e 96 a8 5a b5 d7 c3 8d 3f f 2 ec 04 60 71 lb 29
04 79 e3 c7 lb 66 81 4a 25 9d dc 5f 3e bO f 8 a2
91 34 f 6 5c 67 89 73 05 22 aa cb ee bf 18 dO 4d
f5 36 ae 01 2:f 94 c3 49 8b bd 58 12 eO 77 6c da

call, so the amount of text required for a codebook attack may often be un-
available. (In a codebook attack, one obtains the encryption of every possible
plaintext, records those pairs in a lookup table, and uses it to completely
decrypt future messages without needing to know the key.)
J. Hillyard [Hi197] has noted that codebook attacks may still be possible in
practice. In some contexts, each digit dialed will be encrypted in a separate
CMEA block (with fixed padding); because CMEA is used in ECB mode,
the result is a simple substitution cipher on the digits 0-9. Techniques from
classical cryptography may well suffice to recover useful information about
the dialed digits, especially when side information is available.

- One bit of the plaintext leaks. The LSB (least-significant bit) of the ciphertext
is the complement of the LSB of the plaintext.

- The T-box has some key equivalence classes. Simultaneously complementing
the MSB (most significant bit) of Ko and K1 leaves the action of the T-box
unchanged; the same holds for K2i and g2i-t-1 for i = 0, 1, 2, 3. Therefore for
the rest of the paper we take the MSBs of K0, K2, K4, and K6 to all be 0,
without loss of generality, and we see that the effective key length of CMEA
is at most 60 bits.

- Recovering the value of all 256 of the T-box entries suffices to break CMEA,
even if the key K0...7 is never recovered.

- The value of T(0) occupies a position of special importance. T(0) is always
used to obtain Co from P0; one cannot trivially predict where other T-box
entries are likely to be used. Knowing T(0) lets one learn the inputs to the
T-box lookups that modify the second byte in the message.

530

- The CaveTable has a very skewed statistical distribution. I t is not a permuta-
tion; 92 of the 256 possible 8-bit values never appear; some values appear as
many as four times. The distribution appears to be consistent with that of a
random function.
The skew in the CaveTable means that the T-box values are skewed, too: we
know T (i) - i must appear in the CaveTable, so for any input to the T-box,
we can immediately rule out 92 possibilities for the corresponding T-box
output without needing any knowledge of the CMEA key.

3.1 A c h o s e n - p l a i n t e x t a t tack

CMEA is weak against chosen-plaintext attacks: one can recover all of the T-
box entries with about 338 chosen texts (on average) and very little work. This
a t tack works on any fixed block length n > 2; the attacker is not assumed to
have control over n. We have implemented the attack to empirically verify it for
correctness; the at tack is extremely successful in our tests 2.

The attack proceeds in two stages, first recovering T(0), and then recovering
the remainder of the T-box entries; the CMEA key itself is never identified.
First, one learns T(0) with (256 - 92)/2 = 82 chosen plaintexts (on average).
For each guess x at the value of T(0), obtain the encryption of the message
P = (1 - x, 1 - x, 1 - x , . . .) , e.g. the message P where each byte has the value
1 - x; if the result is of the form C = (- x , . . .) then we can conclude with
high probabil i ty that indeed T(0) = x. False alarms occasionally occur, but they
can be ruled out quickly in the second phase because of the skewed CaveTable
distribution. Note that there are only 256 - 92 -- 164 possible values of T(0),
since T(0) must appear in the CaveTable, and therefore we expect to identify the
correct value after about 164/2 -- 82 trials, on average.

In the second phase of the attack, one learns all of the remaining T-box entries
with 256 more chosen plaintexts. For each byte j , to learn the value of T (/) . let
k -- ((n - 1) (9 j) - (n - 2), where the desired blocks are n bytes long. Oi~, " (~he
encryption of the message P -- (1 - T (O) , 1 - T (O) , . . . , 1 - T (O) , k - T (O) , ~); if
the result is of the form C = (t - T (0) , . . .) , then we may conclude that T (j) = t ,

except for a possible error in the LSB. A more sophisticated analysis can resolve
the uncertainty in the LSB of the T-box entries, a

In practice, chosen-plaintext queries may be available in some special situ-
ations. Suppose the targeted cellphone user can be persuaded to a call a phone

2 M. Bannert has independent implemented our attack, and also reports success
[Ban97]; his manuscript also documents some aspects of the chosen-plaintext attack
in greater detail than is possible here.

3 Use the skewed CaveTable to reduce the number of ambiguous CaveTable entries to
164 possibilities. Now for each known text obtained in the second phase, we know
both the input P" and the output C to the third CMEA layer; simulate that layer
without the derived T-box values, using trial-and-error for each ambiguous T-box
value: one needs at most 2 n trials per text (and in practice far fewer), and wrong
trials are quickly eliminated.

531

number under the attacker's control--perhaps a menuized survey, answering ma-
chine, or operator. The phone message the user receives might prompt the user to
enter digits (chosen in advance by the attacker), thus silently enabling a chosen-
plaintext attack on CMEA. Alternatively, the phone message might send chosen
DTMF tones to the targetted cellphone user, thus mounting chosen-plaintext
queries at will.

4 A k n o w n - p l a i n t e x t a t t a c k o n 3 - b y t e b l o c k s

We now describe a known plaintext attack on CMEA needing about 40-80 known
texts. The attack assumes that each known plaintext is enciphered with a 3-byte
block width. Our (unoptimized) implementation has a time complexity of 224 to
232, and can be easily parallelized.

Our cryptanalysis has two phases. The first phase gathers information about
the T-box entries from the known CMEA encryptions, eliminating many possib-
ilities for the values of each T-box output. In this way we reduce the problem
to that of cryptanalysis of the T-box algorithm, given some partial information
about T-box input/output pairs. In the second phase, we take advantage of the
statistical biases in the CaveTable to cryptanalyze the T-box and recover the
CMEA key K0...7, using pruned search and meet-in-the-middle techniques to
enhance performance.

The first phase is implemented as follows. Because T(0) occupies a position
of special importance, we exhaustively search over the 164 possibilities for T(0).
(Remember that T(0) must appear in the CaveTable, and so there are only 256-
92 = 164 possibilities for it.) For each guess at T(0), we set up a 256 x 256
array Pi,j which records for each i , j whether T(i) = j is possible. All values for
T(i) , i > 0 are initially listed as possible. Since T(i) - i is a CaveTable output
and the CaveTable has an uneven distribution, we can immediately rule out 92
values for T(i) .

Next, we gradually eliminate impossible values using the known texts as fol-
lows. The general idea is that each known plaintext/ciphertext pair lets us es-
tablish several implications of the form

T(O) = to ,T(i) = j =~ T(i ') = j ' . (1)

If we have already eliminated T(i') = j ' as impossible, then we can conclude
that T(i) = j is also impossible via the contrapositive of (1). In this way, we
successively rule out more and more possibilities in the Pi,j array, until we either
reach a contradiction (in which case we start over with another guess at T(0))
or until we run out of logical deductions to make (in which case we proceed to
the second phase).

The second phase recovers the CMEA key from the information about T
previously accumulated in the Pi,j array. Our simplest key recovery algorithm
is based on pruned search. First, one guesses K6 and Kr. Then, we peel off the
effect of the last 1/4 of the T-box, and check whether the intermediate value
is a possible CaveTable output. The intermediate value must always be one of

532

the 164 possible CaveTable outputs when we find the correct K6, KT; because
the CaveTable is so heavily skewed, incorrect K6,K7 guesses will usually be
quickly identified by this test, if we have knowledge about a number of T-box
entries. Next, one continues by guessing K4,/(5, pruning the search as before,
and continuing the pruned search until the entire key is recovered. This technique
is very effective if enough information is available in the Pi,j array.

Unfortunately, pruned search very quickly becomes extremely computation-
ally intensive if too few known texts are available: at each stage, too many can-
didates survive the pruning, and the search complexity grows exponentially. We
have a more sophisticated key recovery algorithm which can reduce the compu-
tation workload dramatically in these instances. The basic idea is that the T-box
is subject to a classic meet-in-the-middle optimization: one can work halfway
through the T-box given only K0...3, and one can work backwards up to the
middle given just K4...7. This enables us to precompute a lookup table that con-
tains the intermediate value corresponding to each K0...3 value. Then, we try
each possible K4...7 value, work backwards through some known T-box outputs,
and look for a match in the precomputed lookup table. Of course the search
pruning techniques can be applied to K4...7 to further reduce the complexity of
the meet-in-the-middle algorithm. The combination of pruned search and meet-
in-the-middle cryptanalysis allows us to efficiently recover the entire CMEA key
with as few as 40-80 known plaintexts.

4 .1 T h e f i r s t p h a s e : m o r e d e t a i l s

We describe how to derive implications of the form (1) from some known CMEA
encryptions for the first phase. Knowing T(0) lets us recover (for each plain-
text/ciphertext pair P, C) yl, zl and thus we learn the inputs to the two T-boxes
lookups used to modify C1. We make a guess (e.g. T(i) = j) about the output of
the first aforementioned T-box lookup. We can derive the (implied) output of the
second T-box lookup by using the known text pair. Then we deduce the (implied)
values of Y2, z2 and thus the inputs to the two T-box lookups used to modify C2.
Next we derive the quantity xoRed into Co in the second CMEA layer, which
lets us calculate the (implied) outputs of the two T-box lookups that modify C24.
Therefore our assumption T(i) = j implies three other derived equations of the
form T(i') = jl; if any of those three derived input/output pairs r is listed
as impossible in pi, j , , then we have found a contradiction, and we may conclude
that our original assumption was wrong--namely, that the assumed value of the
T-box entry was in fact impossible, and that value may be marked as impossible
in Pij .

In this way, we can gradually rule out many entries Pi,j as impossible. We
loop over all i , j and all known texts, until no more deductions can be made.
If our guess at T(0) was incorrect, then there will probably be a T-box input

4 The true situation is slightly more complicated. The LSB remains unknown, so we
have to try two possibilities; only if both possibilities lead to a contradiction can we
rule out the equation T (i) = j as impossible.

533

for which no possible output values remain, and in this case we will be able to
discard our incorrect guess at T(0). Otherwise, we tentatively conclude that our
guess at T(0) was correct, and we can usually identify several other known T-
box input /output pairs; with this information in hand, we proceed to the second
phase. Typically the first phase will identify T(0) uniquely when sufficiently many
known plaintexts (about 50 or more) are availableS; if more possibilities for T(0)
are found, the second phase will be invoked for such possibility.

4.2 T h e s e c o n d p h a s e : m o r e de ta i l s

First, we describe how to prune key trials during the key recovery search. Note
that a T-box output is of the form

T(i) = C(((O + i) (9 K6) + KT) + i

for some unknown CaveTable output O. We can calculate j = C(((O + i) @
K6) + KT) + i for all CaveTable outputs and check whether each such j is listed
as possible in Pi j ; if every such j is listed as impossible, then we can recognize
our guess at K~,/(7 as incorrect. Because there are only 164 possible CaveTable
outputs, incorrect guesses at K~, / (7 will usually be ruled out by some i as long
as there is enough information in the Pi j array. These incorrect guesses a t / (6 , / (7
can thus be pruned from the search tree without any further work.

Next, we give some more details on the meet-in-the-middle approach. This
approach is only applicable when we have enough known plaintexts to identify 4
known T-box input /output values (a, T (a)), (b, T (b)) , (c, T (c)) , (d, T (d)) from the
P i j array. For each K0, K1, K2, we compute the intermediate values a', b I, c', d I
formed after computing T through the known key bytes; for example, a I = C((a@
K o) + K 1) + a) (g K 2 . Next we form the 24-bit index n = (a ' - d ' , b ~-d ' , c ' - d t) , and
insert the pair (n, K0...2) into a large hash table keyed on n. After repeating for
all 222 possible Ko...2 values, we have built a precomputed lookup table suitable
for use in the meet-in-the-middle optimization. To check a trial K4...7 value, we
work backwards from T(a) , T(b), T(c), T(d) as far possible given only K4...7 and
identify the intermediate values a", b", c", d". The intermediate values reflect the
values of the T-box computations just after addition of K3: for example,

C(((C(((C(a") + a) (B /(4) + K5) + a) (9 K6) + KT) + a = T(a) .

We see that a" can be identified from a, T(a) by working backwards through the
T-box computation and inverting the CaveTable where necessary 6, and b", c", d"

5 The density ofp.,, after all deductions turns out to be a poor estimator for success. For
any fixed number of known texts, the density seems to be quite constant--hovering
around 0.5 for 40 texts and around 0.35 for 80 texts--and variations don't seem to
be very strongly correlated to success in either phase of the attack.

6 Collisions in the CaveTable may cause multiple possibilities for a",b", c",d" to be
identified; we simply search through them all exhaustively. On the other hand, be-
cause some outputs never appear in the CaveTable, sometimes no possibilities will
be identified, which lets us immediately prune away K4...7. In practice, the number
of possibilities is usually small.

534

can be found similarly. Then we form the 24-bit index m = (a ' -d ' , b ' - d ' , c ' -
d ') , search in the precomputed hash table for a matching entry (n, K0...2) with
n --- m, and use trial encryption to check the resulting K0...7 value. Note that if
our guess at K4...7 was correct, we have a" = a ~ + K3 etc., so that the correct
value of K0...2 will show up in our search of the precomputed hash table and the
correct value of K3 can be derived as a" - a~; this ensures that we will identify
K0...v correctly.

Pruned search lets us dramatically reduce the number of key candidates tried,
if there is enough information in the p.,. array. The meet-in-the-middle optimiz-
ation is a time-space tradeoff that further reduces the computational workload
when 4 known T-box input /output values are available. Combining the two ap-
proaches yields a key recovery algorithm for the second phase that is very ef-
ficient on a standard 100 MHz Pentium with 40 Mb of memory. Furthermore,
the search algorithm can easily be parallelized for even greater performance if
necessary. Note that we make heavy use of the non-uniform output distribution
of the CaveTable, and these analysis techniques would not work if the CaveTable
were unbiased.

4.3 D i s c u s s i o n

This known plaintext attack is much more devastating than the chosen plaintext
attack described in Section 3.1. Chosen plaintext may be difficult to obtain in
practice, but known plaintext is likely to be much easier to acquire.

There are a number of realistic ways that the required known plaintext can
be collected in practice. Dialed digits are typically CMEA-encrypted with 3-
byte blocks; typically each block will contain only one digit, and often the tele-
phone number dialed will be known. DTMF tones sent on the line will usually
be CMEA-encrypted. If the user can be persuaded to dial a number under ad-
versarial control, using their calling card, then the DTMF tones and user-dialed
digits will be known to the attacker, providing a ready source of known plaintext;
after recovering the CMEA key in a known-plaintext attack, the attacker could
decrypt the calling card number and make false calls billed to the victim's name.
Furthermore, alphanumeric pages sent to cellular phones are becoming increas-
ingly common, and alphanumeric pages are sent over the control channel. These
pages may have a large known component, which will provide some known plain-
text. It should be clear that known plaintext may be available from a number of
potential sources.

In this section, we have discussed cryptanalysis of CMEA with 3-byte block
widths. A block width of 3 bytes is a natural choice to examine. Known plain-
text with 3-byte block widths is often readily available in practice; for instance,
dialed digits are typically encrypted and transmitted using 3-byte block widths
in nearly all digital cellular architectures. Moreover, CMEA appears to be easi-
est to analyze for short block widths, and most cellular standards avoid block
widths shorter than 3 bytes 7. Therefore, 3-byte blocks are a good indicator of the

7 IS-95 is a notable exception; see Section 5 for a better attack on the 2-byte block
widths that are used in some IS-95 messages.

535

strength of CMEA as used in phone systems; by giving a known-plaintext attack
on CMEA with 3-byte blocks, we show that the control channel is not protected
adequately in nearly all of the North American digital cellular phone systems.

5 A k n o w n - p l a i n t e x t a t t a c k o n 2 - b y t e b l o c k s

We saw above that CMEA is insecure when used with a 3-byte block width;
now we show that the situation is even worse for 2-byte blocks. In this section,
we present an attack on CMEA needing just 4 known plaintexts when 2-byte
blocks are in use. Most cellular standards avoid using CMEA with 2-byte blocks.
However, this is not just a theoretical attack: a few cellular systems, such as IS-95
(CDMA), do apply CMEA with a 2-byte block width to protect dialed digits,
and they will be vulnerable to the improved attack.

The known-plaintext attack on 2-byte blocks follows immediately from our
earlier discussion. First, we guess T(0); that lets us recover 4 more T-box values
from the first two known texts. (There is no need for a stage corresponding to
the first phase of the attack on 3-byte blocks, as we can trivially derive 4 known
input/output pairs for the T-box from the known texts.) With those known T-
box input/output pairs, we perform a pruned meet-in-the-middle search to derive
a number of possibilities for the full CMEA key, as described in Section 4.2. The
correct CMEA key can be quickly recognized by trial decryption. The pruned
meet-in-the-middle search has work factor 224-232 , and we will need to do about
30 iterations of the search to handle each of the possibilities for T(0). In sum,
this attack requires just 4 known 2-byte plaintexts and has time complexity about
229_237"

In fact, the plaintext requirements can be reduced even further, to just two
known 2-byte plaintexts and some extra ciphertexts. We don't need to know
the decryption of the extra ciphertexts: the extra ciphertexts must merely be
enough to information-theoretically determine the CMEA key, so that all incor-
rect key trials can be recognized and discarded. Note the plaintext often contains
redundancy--for instance, when it contains dialed digits, there are only 10 pos-
sible values for each nibble, and often much of the input is a public fixed value so
in practice obtaining the necessary extra ciphertexts should be very easy.

6 Conclus ions

We have presented several attacks on CMEA, and some of them may be real-
istically exploitable in practice. We described several possible ways to obtain
known plaintext information. One attack that applies to nearly all North Amer-
ican digital cellular standards needs about 40-80 known plaintexts; that many
known texts may be available in some situations, although availability is likely
to depend on subtleties of the cellular phone system implementation. Though it
does not apply to most digital cellphone standards, another attack needs just 4

536

known plaintexts, which is a much more realistic assumption. At a minimum,
these attacks illuminate fundamental certificational weaknesses in CMEA. At
worst, widespread attacks on CMEA might be possible in practice.

Our cryptanalysis of CMEA underscores the need for an open cryptographic
review process. Betting on new algorithms is always dangerous, and closed-door
design and proprietary standards are not conducive to the best odds.

Since being exposed to public scrutiny, three of the four proprietary TIA
cryptographic algorithms have been broken: the voice privacy protection was
shown to be insecure as early as 1992 [Bar92, CFP93], this paper cryptanalyzes
CMEA, and ORYX was recently broken by the authors [WSK97]. This poor
success rate provides a strong argument against closed-door design.

In addition, our analysis also shows the importance of explicitly stating se-
curity assumptions during every step of the design and development process,
and of not reusing security components without throroughly examining the im-
plications of reuse. The CaveTable was designed to have the security properties
CAVE needed. Designers reused it for CMEA because they were low on space;
this turned out to be a bad idea. CMEA requires different properties from the
CaveTable than CAVE does.

In short, CMEA is deeply flawed, and should be carefully reconsidered.

7 Acknowledgements

Greg Rose first pointed out the insecurity of CMEA, and he deserves the credit
for that discovery. We were not aware of serious flaws in CMEA until we heard
over the grapevine that he had found an effective known-plaintext attack on
CMEA; this tip provided the motivation to look more closely at CMEA until we
managed to independently re-derive the attack described in this paper. Unfor-
tunately he is not free to publish his analysis, so we offer ours instead. We are
extremely grateful to Greg Rose for his immeasurable help.

Also, we thank an anonymous party (for scanning the cellphone cryptography
standard and posting it to the Internet [TIA92]), John Young (for acting as a
clearinghouse for resources on cellphone crypto), Ron Rivest (for many helpful
comments on the presentation of our results), Steve Schear (for some assistance
navigating the maze of cellular standards), Niels Ferguson (for useful feedback),
and all those early readers who independently pointed out that the number of
possibilities for T(0) could be reduced from 256 to 164 in the known plaintext
attack.

References

[Ban97]

[Bax92]

M. Bannert, "Cryptanalysis of the Cellular Message Encryption Algorithm,"
unpublished manuscript, 1 May 1997.
J.P. Barlow, "Decrypting the Puzzle Palace," Communications of the ACM,
July 1992.

537

[CFP93]

[FCC97]

[Hi197]
[Nok96]

[Ree91]

[TIA92]

[TIA95]
[Whe97]

[WSK9~

R. Mechaley, Speaker, Digital telephony and cryptography policy session.
The Third Conference on Computers, b'~eedom and Privacy, Burlingame, CA,
1993, Bruce Koball, General Chair.
FCC Wireless Telecommunications Bureau, "FCC-WTB Information of Cel-
lular Fraud," hZtp://maw, fcc. gov/~rtb/cellfrd, html, Feb 1997.
J. Hillyard, personal communication, 21 May 1997.
Nokia Mobile Phones, "Nokia Announces Anti-Fraud Protection Op-
tion for All Models Marketed in 1996," 5 Jan 1996, Tampa Fla.,
http ://www. nokia, eom/news/news_htmls/nmp_960IOfb, html, press release.
J.A. Reeds III, "Cryptosystem for Cellular Telephony," U.S. Patent 5,159,634,
Sep 1991.
TIA IS-54 Appendix A, "Dual-mode Cellular System: Authentication, Message
Encryption, Voice Privacy Mask Generation, Shared Secret Data Generation,
A-Key Verification, and Test Data," Feb 1992, Rev B.
TIA TR45.0.A, "Common Cryptographic Algorithms," June 1995, Rev B.
"Summary of Testimony of Thomas E. Wheeler," Oversight Hearing on Cel-
lular Privacy, 5 Feb 1997, House Commerce Committee, Subcommittee on
Telecommunications, Trade, and Consumer Protection.
http ://www. house, gov/commerce/telecom/hearings/020597/wheeler, pdf
D. Wagner, B. Schneier, J. Kelsey, "Cryptanalysis of ORYX," unpublished

manuscript, 4 May 1997.

