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A b s t r a c t .  Privacy amplification allows two parties Alice and Bob know- 
ing a partially secret string S to extract, by communication over a public 
channel, a shorter, highly secret string S t. Bennett, Brassard, Crdpean, 
and Maurer showed that the length of S t can be almost equal to the con- 
ditional Rdnyi entropy of S given an opponent Eve's knowledge. All pre- 
vious results on privacy amplification assumed that Eve has access to the 
public channel but is passive or, equivalently, that messages inserted by 
Eve can be detected by Alice and Bob. In this paper we consider privacy 
amplification secure even against active opponents. First it is analyzed 
under what conditions information-theoretically secure authentication is 
possible even though the common key is only partially secret. This re- 
sult is used to prove that privacy amplification can be secure against an 
active opponent and that the size of S t can be almost equal to Eve's 
min-entropy about S minus 2n/3 if S is an n-bit string. Moreover, it is 
shown that for sufficiently large n privacy amplification is possible when 
Eve's min-entropy about S exceeds only n/2 rather than 2n/3. 

Keywords :  Privacy amplification, Secret-key agreement, Unconditional 
secrecy, Authentication codes, Information theory, Extractors. 

1 I n t r o d u c t i o n  a n d  P r e l i m i n a r i e s  

Privacy amplification introduced by Bennet t  et. al. [2] is a technique for t rans-  
forming a string tha t  is only part ial ly secret into a highly secret (but generally 
shorter) string. More precisely, two parties Alice and Bob who share a string S 
about  which an opponent  Eve has partial  information agree, by communicat ion 
over an insecure channel, on a string S '  such tha t  Eve's information about  S '  is 
negligible, i.e., such tha t  H(S'IU = u) > log I$'1 - ~  holds with very high prob- 
ability for some small ~ > 0, where the random variable U summarizes Eve's  
complete knowledge about  S ~, and where u is the particular value known to Eve. 
(All the logari thms in this paper  are to the base 2, unless otherwise stated.)  Pri- 
vacy amplification is an impor tan t  sub-protocol in many  information-theoretic 
protocols such as protocols in quantum cryptography and secret-key agreement  
by public discussion [8]. 

Before we formalize the main problem considered in this paper,  we give some 
definitions and s tate  previous results on privacy amplification. 
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1.1 Entropy Measures 

We recall the definitions of some entropy measures we need in this paper. We 
assume that  the reader is familiar with the basic information-theoretic concepts. 
For a good introduction, we refer to [4]. Let R be a discrete random variable 
with range T~. Then the (Shannon) entropy H(R) is defined as 

H(R) := - ~ PR(r). log(PR(r)) . 
rET~ 

The Rdnyi entropy H2(R) is defined as 

Finally, the rain-entropy Hoo(R) is 

Hoo ( R ) : =  - log ~a~(PR (r)) . 

It is not difficult to see that  for any random variable R the entropy measures H ,  
H2, and Hoo satisfy 

H(R) > H2(R) _> Ho~(R) >_ H2(R)/2. 

Equality of the first three expressions holds if and only if R is uniformly dis- 
t r ibuted over some set, in which case this value is the logarithm of the cardinality 
of this set. 

1.2 Universal and Strongly Universal Hashing 

In the technique presented in this paper, hashing is used for two different pur- 
poses: universal hashing for privacy amplification and strongly universal hashing 
for authentication. 

Definition 1. A class ~" of functions .4 ~ /3 is called universal2 (or simply 
universal) if, for any Xl, x2 in A with Xl # x2, the probability that  f(xl) = f(x2) 
is at most 1/[B[ when f is chosen from ~" according to the uniform distribution. 

The following is a well-known example of such a class of hash functions 
{0, 1} n -~ {0, 1} r containing 2 n distinct functions. Let b E GF(2n), and interpret 
x E .4 = {0, 1} n also as an element of GF(2~).  Consider the function fb assigning 
to the argument x the first r bits of the element b- x of GF(2~).  The set of these 
functions fb for b E GF(2  ") is a universal class of functions for 1 < r < n. 

Definition 2. Let 6 > 0. A class 7-/ of (hash) functions .4 ~ /3 is called 6- 
almost-strongly-universal2 (or 6-ASU2 for short) if the following two conditions 
are satisfied: 
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1. For every a E .A and b E B, the number of functions h E 7 / w i t h  h(a) = b is 

InI / IBI.  
2. For every distinct az, a2 E .4 and for every bl, b2 E B, the number of hash 

functions h E 7 / f o r  which both h(al) = bl and h(a2) = b2 hold is at most 

17/1/I, 1. 

An (1/IBI)-ASU2 class is also called strongly-universal2 (or SU2). 

Some constructions of 6-ASU2 classes are described in [12], and lower bounds 
on the size of such classes are proved. An SU2 class of functions mapping n- 
bit strings to n-bit strings can be constructed similarly to the universal class 
described above: the class 7/ = (hab : (a,b) E (GF(2n))2) ,  where hab(x) := 
a . x + b ,  is an SU2 class of hash functions (0, 1) n -+ (0, 1} n with 2 2~ elements. It 
is shown in [12] tha t  e-ASU2 classes can be obtained which are close to strongly- 
universal, but  substantially smaller. 

1.3 Privacy Amplification by Authenticated Public Discussion 

Bennet t  et. al. [1] analyzed the privacy amplification technique of [2] under the 
assumption that  the two parties Alice and Bob are connected by an authentic 
(but otherwise insecure) channel, or equivalently, that  the opponent is not able 
to insert or modify messages without being detected. The idea of this technique 
is to take a hash value of the string S as the highly secret key. More precisely, 
Alice chooses a hash function h at random from a universal class and sends this 
function to Bob. Then they both compute S I := h(S). 

It was shown that  the amount of almost secret key that  can be extracted is 
at least equal to the conditional Rdnyi en t ropy / /2  of S, given Eve's knowledge 
U = u. This fact is an immediate consequence of the following result of [1] which 
states tha t  if a random variable X is used as the argument of universal hashing, 
where the output  Y is an r-bit  string, and r is equal to H2(X) minus a security 
parameter,  then the resulting string Y has almost maximal Shannon entropy r, 
given the hash function (which is chosen uniformly from the universal class). 

Theorem 3. [1] Let X be a random variable with probability distribution Px  
and Rdnyi entropy H2(X),  and let G be the random variable corresponding to 
the random choice (with uniform distribution) of a member of a universal class 
of hash functions mapping X to r-bit strings, and let Y = G(X) .  Then 

r >_ H(YIG)  > g2(Y[G) >_ r 
2,-H2(X) 

In 2 

Of course the theorem also holds when all the probabilities are conditioned 
on a particular event (e.g., U = u). 
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1.4 Privacy Amplification by NOT Authenticated Public  Discussion 

In this paper we consider the generalized problem of privacy amplification when 
dropping the condition that the channel connecting the two parties Alice and Bob 
be authentic, i.e., privacy amplification secure even against active adversaries 
who are able to insert or modify messages. 

Privacy amplification is often used as the final phase of unconditional secret- 
key agreement. In [6], it was investigated under what conditions secret-key agree- 
ment by not authenticated public discussion is possible when the parties Alice, 
Bob, and Eve have access to random variables X, Y, and Z, respectively (the 
"initialization phase"). Several impossibility results were shown, whereas a pos- 
itive result was derived in [6] only for the special case where the information 
that the parties obtain consists of many independent repetitions of a random 
experiment. Privacy amplification, which was not treated in [6], corresponds to 
the situation where X = Y, and where the random experiment is not repeated. 

We make precise what we mean by a protocol for privacy amplification by 
communication over a non-anthentic insecure channel. Assume that two parties 
Alice and Bob both know a random variable S, for example an n-bit string, and 
that the adversary Eve has some information about S. Let again the random 
variable U summarize Eve's entire information about the random variable S. In 
the following, all the results are stated for some particular value u E/4 (where 
/4 is the range of the random variable U), i.e., for a fixed event U = u, and 
hence all the probabilities are conditioned on U -- u. The type of the opponent's 
information about S is not necessarily precisely specified, i.e., Pslu=u is not 
assumed to be known. However, the amount of information is limited in some 
way, for example in terms of the conditional min-entropy. 

Formally, a protocol for privacy amplification consists of two phases. During 
the first phase (the communication phase), Alice and Bob exchange messages 
C1, C2,. . .  over some channel (where Alice sends the messages C1, C3,. . . ,  and 
Bob sends C2, C4,.. .).  Each of these messages can depend on the sender's knowl- 
edge when sending the message and some random bits. In the second phase, both 
parties decide whether they accept or reject the outcome of the protocol. In case 
of acceptance, Alice and Bob compute strings S~4 and S~, respectively. (Note 
that it is not required that Alice and Bob are synchronized in the sense that they 
both either reject or accept. This would be impossible to achieve in the presence 
of an active adversary, who could for instance delete all messages from Alice to 
Bob after Alice has accepted.) Definition 4 defines security of such a protocol. 

Definit ion 4. A protocol is called an (n, l, n', e, 5)-protocol for privacy amplifi- 
cation over an insecure and non-authentic channel if it is a protocol for privacy 
amplification with the following properties. If there exists a random variable S 
with ISI _< 2 n (i.e., we can assume that S C {0, 1} n) that is known to Alice and 
Bob, and such that given Eve's entire knowledge U -- u about S, the conditional 
min-entropy of S is at least l, i.e., 

Hoo(SlU= u) > l ,  



311 

then the protocol satisfies the following conditions. In the case of a passive (only 
wire-tapping) adversary, Alice and Bob always accept at the end of the protocol 
and obtain a common n'-bit string S' (= S~4 = S~) such that Eve's knowledge 
about S' is virtually 0 or, more precisely, 

H ( S ' [ S C )  = O,  

and 
H ( S ' [ C , U  -- u) >> n '  - r , (1) 

where C summarizes the entire communication (C1, C2,.. .) between Alice and 
Bob. In the case of an active adversary, with probability at least 1 - 6 one of the 
following conditions must be satisfied: either the adversary's presence is detected 
by at least one of the two parties (who hence rejects), or Alice and Bob both 
accept and successfully agree on a common string S' (= S~4 = S~) satisfying (1). 

This definition can be generalized to different ways of limiting Eve's knowl- 
edge about S, for example in terms of the R4nyi entropy instead of the min- 
entropy. 

1.5 Out l ine  

The rest of this paper is organized as follows. In Section 2 we investigate the 
general problem of information-theoretically secure message authentication un- 
der the (weakened) condition that two parties share a partially (rather than 
completely) secret key. In Section 3 we show a first result concerning privacy 
amplification. It states that privacy amplification (by communication over a non- 
authentic channel) is possible if Eve's min-entropy about S exceeds two thirds of 
the length n of the string, and the maximal length of the generated highly secret 
string is roughly Hoo(S[U = u) - 2n /3 .  In Section 4 it is demonstrated that this 
result is not optimal: it is sufficient that Eve's min-entropy about S is greater 
than half  of the length of the string (where the length of the extracted highly 
secret string is a constant fraction of Hoo(S[U = u) - n / 2 )  if the string is suffi- 
ciently long. Section 5 provides evidence that some of the results of Sections 2, 
3, and 4 are optimal, and Section 6 states some open problems. 

2 U n c o n d i t i o n a l l y - S e c u r e  A u t h e n t i c a t i o n  w i t h  a P a r t i a l l y  

S e c r e t  K e y  

All previous results on unconditionally-secure authentication require a key that 
is completely secret, i.e., the opponent's a priori probability distribution of the 
key is uniform. In this section we consider authentication where the opponent is 
allowed to have some partial information about the key. 

There exists a variety of constructive results as well as impossibility results 
on information-theoretically secure authentication (see for example [11], [7], or 
[12]). The following two types of attacks are possible. In an impersonat ion attack, 
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the opponent tries to generate a (correctly authenticated) message, and in a 
subst i tut ion attack, the adversary observes a correctly authenticated message 
and tries to replace it by a different correctly authenticated message. The success 
probabilities are denoted by p~,~p and Ps~b, respectively. (General lower bounds 
on these probabilities are given in [7].) 

One possibility for realizing information-theoretically secure authentication 
is by using strongly-universal (or almost-strongly-universal) classes of hash func- 
tions (see for example [12]). The secret key then determines a hash function of 
the class, and the message is authenticated by appending its hash value. The 
authentication code corresponding to an e-ASU2 class of hash function satisfies 

pimp = 1/IBI and Psub < g �9 

There are also different ways to realize authentication codes than with strongly 
universal hashing. One example is given in [5], where a construction is described 
with a smaller amount of secret key, but which requires more communication. 

Let us now investigate the general scenario in which the key is not entirely 
secret, i.e., where the opponent Eve has a certain amount of information about 
the key. We first prove a bound on the information that  is gained by Eve when 
observing a correctly authenticated message. The following lemma states that  
the min-entropy of the key, given Eve's information U = u, decreases by more 
than the length of the authenticator only with exponentially small probability. 
(A related result for different entropy measures is proved in [3].) For simplicity, 
the condition U = u is omitted in the lemma and the proof. Of course the 
analogous result holds also when all the probabilities are conditioned on U = u. 

L e m m a 5 .  Let  S ,  X ,  and Y be arbitrary discrete random variables (with ranges 
S ,  X ,  and y ,  respectively) such that S and X are independent  (i.e., P s x  = 
P s  " P x  ). Then ]or all real numbers  e > 0 

Hoo(S)  - H ~ ( S I X  = x , Y  = y) < loglY I + g  

holds with probability greater than 1 - 2 - t  or, more precisely, 

P x Y  [{(x,y) e X • J; : Hr162 - Hoo(S]X  = x , Y  = y) > loglY I +~}] < 2 -~ . 

Proof. Let P0 := 2-t/ lY].  Then we have for all x e X 

PYIx=~[{Y : PYIX== < Po}] < 2 - t  , 

and hence 

e• [{(=,y) e x • y : PY1x-- (y) < po}] < 2 . 

This inequality implies that 

P s x y ( s , x , y )  PS(S) " P x ( x )  " P Y l s x ( y , s , x )  
P S l x y ( S , x , Y )  = P x Y ( x , y )  - P x ( x )  " P Y I x ( y , x )  

< P s ( s )  < P s ( s )  = P s ( s ) "  lYI" 2t , 
- P Y i x ( y , x )  - Po 
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holds with probability greater than 1 - 2 - t  (over values x and y). The statement 
of the lemma follows by maximizing over all s E S, and by taking negative log- 
arithms. [] 

We will show in Section 5 that  the bounds of this lemma (and hence also 
those of the following theorem) are almost tight. 

We can now prove a result concerning authentication with a partially secret 
key which states tha t  information-theoretically secure authentication is possible 
under the sole condition that  no conditional probability of a certain key, given 
Eve's information, exceeds a bound which is roughly 1 /~V ~ .  

T h e o r e m  6. Assume that two parties Alice and Bob have access to a random 
variable S, which is a binary string of length n (n even), and that S is used as the 
key in the authentication scheme based on strongly-universal hashing described 
in Section 2. Assume further that an adversary Eve knows a random variable 
U, jointly distributed with S according to some probability distribution, and that 
Eve has no further information about S. Let 

for a particular realization u of U, and let 7) be the event that Eve can either 
insert a message (successful impersonation attack) or modify a message sent 
by Alice or Bob (successful substitution attack) without being detected. Then 
for every strategy, the conditional probability of 7), given U = u, can be upper 
bounded as follows: 

P(DIU = u) <_ 2 -(tn/2-1) (2) 

holds under the condition that the correctly authenticated message observed by 
Eve is independent of S, given U = u. 

Remark. Note that  in Theorem 6 it need not be assumed that  the message ob- 
served by Eve be independent of S (but independent of S given U = u). For 
example (2) holds also when the message is selected by Eve herself. 

Proof. First we prove an upper bound on the success probability Pimp of the 
impersonation attack. For every possible message x E GF(2 n/2) and for every 
authenticator  y E GF(2 n/2) there exist exactly 2 ~/2 possible keys such that  the 
authentication is correct. The probability of such a set of keys, given U -- u, is 
upper bounded by 

2n/2 . 2-Hcc(SIU=u) < 2n/2 . 2-(1/2+t)n = 2 -tn , 

and hence 
p~,~p _< 2 - t "  . 

In a substitution attack the adversary sees a message-authentication pair 
(X, Y )  E GF(2n/2) 2, where X is independent of S given U = u. According to 
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Lemma 5 (applied to distributions conditioned on U -- u), we have for every 
r > 0 that  

n 
H~ ( SIX = x, Y = y, U = u) >_ ~ + tn  - log lYl - rn  = ( t - r )n  

holds with probability greater than 1 - 2 -rn.  A successful substitution attack 
immediately yields the key S = (A, B) because the equations Y = A X  + B (from 
the observed message) and Y '  = A X '  + B (from the modified message) uniquely 
determine the key (and can efficiently be solved). Hence the success probability 
of such an attack can be upper bounded as follows: 

Psub < 2 - rn"  1 + (1 -- 2-~n) �9 2 -(t-r)~ < 2 -~'~ + 2 -(t-~)n . (3) 

The reason for this is that  with probability greater than 1 - 2 -~n, the maximal 
probability of a particular key is at most 2 -(t-r)~. Inequality (3) is true for every 
r > 0; the choice r = t /2  gives 

Psub <_ 2 . 2  - t n / 2  = 2 - ( t n / 2 - 1 )  . 

The probability P(T~[U = u) is equal to the maximum of Pi-~v and ps~b, given 
U -- u. This concludes the proof. [] 

3 P r i v a c y  A m p l i f i c a t i o n  w i t h  U n i v e r s a l  H a s h i n g  

The results in this and the next section are of the following type: If the min- 
entropy of a partially secret string S of length n, given the opponent's knowledge, 
is greater than a certain fraction of n, then Alice and Bob can, by communica- 
tion over a non-authentic and insecure channel, agree on a common string about 
which Eve has virtually no information. The maximal length of the resulting 
highly secret string depends on Eve's knowledge about S and the security condi- 
tions. The idea is to use the partially secret string in a first step to authenticate 
a message containing the description of a function from a suitable class of hash 
functions. In the second step, this hash function is used for privacy amplifica- 
tion, and the string is used again as the input to this hash function. There are 
two possibilities to proceed: one can divide the string into two parts and use the 
first part for authentication and the remaining part as the argument for the final 
privacy amplification. The second possibility is to use the whole string for both 
authentication and as argument for privacy amplification. The disadvantage of 
the second possibility is that  the authenticator gives Eve information about the 
argument of the hashing. A drawback of the first method is that  Eve's infor- 
mation about S could be about either string (in fact about both, see below). 
However, the following lemma implies a tight bound on Eve's information about 
substrings. 

L e m m a T .  Let  S = ($1, $ 2 , . . . ,  Sn)  be a random variable consisting of  n binary 
random variables. For any k-tuple i = ( i t , J 2 . . .  , i~), where 1 <_ i t  < i2 < . . .  < 
ik < n,  let Si be the string (Si l ,  S i 2 , . . . ,  Si~). Then 

goo(S i )  >_ H ~ ( S )  - (n - k) . 
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Proo]. A string (s~l, s i 2 , . . . ,  sih) corresponds to exactly 2 n-k strings (sl,.  �9 sn). 
Hence the maximal probability of such a k-bit string is at most 2 n-k times the 
maximal probability of a string in S, i.e., Hoo(S)  - Hoo(St)  <_ n - k. [] 

Remark .  Note that when the string S is split into two parts Sl and S~, then the 
bounds of Lemma 7 applied to St and S~ are tight simultaneously. For example 
let s = (sl ,s~) be a particular n-bit string, and let sz and s~ be the first and 
second half of s. Define (for some v <_ n / 2  - 1) Ps( ( s l ,~ ) )  = Ps((~ ,  sr))  := 2 ~-n 
for all n/2-bit strings ~ (and a uniform distribution for the remaining n-bit 
strings), i.e., Hoo(S)  = n - v. Then 

Ho~(Sz) = Hoo(S~) = n / 2  - v = Hoo(S)  - n / 2  . 

Intuitively speaking but counter to intuition, Eve's information about S in terms 
of min-entropy appears entirely in both substrings St and St. 

The following theorem states that if Eve's knowledge (in terms of Hoo) is less 
than one third of the length of the entire string (this is an intuitive, but somewhat 
imprecise description of Hoo(SIU = u) > 2n/3), then privacy amplification by 
not authenticated public discussion is possible using two thirds of the string to 
authenticate a hash function from a universal class, and the remaining third as 
the input to the hash function. We can assume that the length of the string is 
divisible by 3 (otherwise Alice and Bob discard one or two bits). 

T h e o r e m  8. For every n (multiple of 3) and for  all positive numbers  t <_ 1/3 
and r such that (t - r ) n  is a positive integer, there exists a 

(n ,  (2/3 q- t ) n ,  ( t -  r ) n ,  2 - m / I n 2 ,  2 -(tn/2-D) - protocol 

for  privacy amplification over an insecure and non-authentic  channel. 

Proof. Let n = 3k, and let S be the random variable known to Alice and Bob 
where S C {0, 1} n. Let further U be the opponent Eve's information about S, 
and let finally 

for a particular u E/~/. We denote by $1 the string consisting of the first 2k = 
2 n / 3  bits of S (more precisely, $1 is interpreted as a pair (A, B) of elements of 
GF(2k)), and by $2 the remaining k bits (i.e., $2 E GF(2k)). The idea of the 
protocol is to use $1 for authenticating an element of the universal class of hash 
functions described in Section 1, and $2 as the input to this function. According 
to Lemma 7 applied to conditional distributions (with respect to U = u), 
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and 
H (S2tU = u)  > t n  . 

Alice randomly chooses an element X of GF(2k), which she sends to Bob to- 
gether with the authenticator Y = A X  + B (see Section 2). According to Theo- 
rem 6, the probability P(I)IU = u) of undetected modification is bounded by 

P(7)IU = u) <_ 2 -(in~2-1) �9 

Let the hash function be specified by X (see Section 1). The argument $2 of the 
hash function satisfies 

H2(S2IU = u) >_ H~(S~IU -- u) > tn . 

Let S' be the first ( t - r ) n  bits of $2 .X (where the product is taken in GF(2k)). 
Then 

2 - - ~ n  

H ( S ' I X Y ,  U - -  u) > ( t - r ) n  ln2 

follows from Theorem 3. [] 

It is not difficult to verify that the use of authentication codes based on the 
c-ASU2 classes of hash functions explicitly given in [12] do not lead to a better 
result than stated in Theorem 8. For a more detailed discussion of the optimality 
of our results, see Section 5. 

4 P r i v a c y  A m p l i f i c a t i o n  w i t h  E x t r a c t o r s  

It appears that the condition in Theorem 8 on Eve's min-entropy about S can 
be weakened if the description of the hash function is shorter. Extractors are a 
method for extracting all or part of the rain-entropy of a random source into an 
almost uniformly distributed string by requiring only a small amount of truly 
random bits. By using extractors instead of universal hashing for privacy am- 
plification, we show that privacy amplification can be secure against an active 
opponent, provided his min-entropy about S exceeds half of the length of the 
string. The length of the resulting secret string can be a constant fraction of 
Eve's rain-entropy about S minus n/2.  

In [10], extractors are defined as follows (for an introduction to the theory of 
extractors, see for example [9] or [10 D. 

Definit ion 9. [10] A function E : (0, 1} ~ x {0, 1} w -+ (0, 1} n' is called a (5, #)- 
extractor if for any distribution P on {0, 1} n with rain-entropy H ~ ( P )  >_ 5n, 
the distance of the distribution of IV, E ( X ,  V)] to the uniform distribution of 
{0, 1} w+~' is at most e' when choosing X according to P and V according to 
the uniform distribution in {0, 1} w. The distance between two distributions P 
and P '  on a set A' is defined as 

1 
d(P ,P ' )  := ~ Z IP(x) - P ' ( x ) l .  

x E X  



317 

Various possible constructions of extractors have been described. The follow- 
ing theorem of [10] states that  it is possible to extract a constant fraction of 
the min-entropy of a given source where the number of required random bits is 
polynomial in the logarithm of the length of the string and in log(1/6~). 

T h e o r e m  10. [10] For any parameters 5 = 5(n) and 6' = 6'(n) with 1/n  < 5 < 
1/2 and 2 -~n < 6' < 1/n, there exists an efficiently computable (5, 6')-extractor 
E :  {0, 1} n • {0, 1} ~ --+ {0, 1} n', where w = O(log(1/6').  (logn) 2. (log(1/5))/5) 
and n' = 12(62n/log(1/6)). 

We also need the following lemma, which states that  a random variable whose 
distribution is close to uniform (in terms of the distance d) has a Shannon entropy 
close to maximal. 

L e m m a  11. Let Z be a random variable with range Z C {0, 1} k. Then 

H(Z)  >_ k . (1 - d(Uk, Pz)  - 2 -k) , 

where Uk stands for the uniform distribution over {0, 1} k. 

Proof. Let d := d(Uk, Z). We can assume that  d < 1 - 2 -k because otherwise 
the inequality is trivially satisfied. The distribution Pz of Z can be thought of as 
obtained from the uniform distribution Uk by increasing some of the probabilities 
(by total  amount d) and decreasing some others (by the same total amount). 
The function 

d l n p +  1 
dp ( - p  logp) - In 2 

is monotonically decreasing, hence increasing [decreasing] a smaller probability 
increases [decreases] the entropy more than modifying a greater probability by 
the same amount. Hence a distribution with distance d from Uk with minimal 
entropy can be obtained by adding d to one of the probabilities, and by reducing 
as many probabilities as possible to 0, leaving the other probabilities unchanged. 
One of the probabilities of the new distribution equals 2 -k +d, [2~dJ probabilities 
are equal to 0, one probability equals 2-k(2kd - [2kdJ) (if this is not 0), and 
[2k(1 -- d)J - 1 probabilities axe unchanged and hence equal to 2 -k. Thus the 
entropy of the new random variable Z can be bounded from below by 

H ( Z )  > 2-k(2kd-- [2kdJ) �9 k +  ( [2k (1 -  d)J - 1). 2 -k-  k - -  k- ( 1 -  d -  2 -k) . 

[] 

For certain values of d equality can hold in the above inequality. In particu- 
lax H ( Z )  > k .  (1 - d(Uk,Pz))  is false in general: H(Z)  = 0 is possible when 
d(Uk, Pz)  = 1 -  2 -k  < 1. 

Theorem 12 below states that  if Eve's min-entropy about S is greater than 
half of the length of S, then a constant (where this constant is not explicitly 
specified) fraction of the difference of this entropy and half of the length of 
S (plus a security parameter) can be extracted by privacy amplification using 
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public discussion over a non-anthentic channel, provided that  S is sufficiently 
long. In contrast to the proof of Theorem 8, the entire string S is used twice 
here: once for authentication, and once as the input of the extractor.  

T h e o r e m  12. Let t and r be positive numbers such that r < t < 1/2. There 
exists a constant c with the following property. Let ~ (n )  be a function such that 

lim n-  v ~  = 0 (4) 
n - - - + ~  

and 
e'(n) = 2 -~176 n)2 (5) 

(i.e., log(1/e '(n))  �9 ( logn)2/n --+ 0 for n --+ c~). Then there exists a bound no 
such that for all n > no there exists an n' >_ c(t - r )n  and an 

( n ,  (1/2 + t ) n , n ' , n ' .  ( 2 X ~ - ~ +  2-r~ + 2 -~ ' )  , 2-( t~/2-1))  - protocol 

for privacy amplification over an insecure and non-authentic channel. 

Remark. The function ~(n)  is directly related to the tolerable amount  of informa- 
tion that  Eve obtains about the key S * as a function of the length n of the string 
S. Possible functions e '(n) satisfying both (4) and (5) are e '(n) = 2 -n/(l~ 
~'(n) = 2 -n~ for any 0 < c~ < 1, or ~'(n) = 1/(n2(logn)2).  The choice of a more 
restrictive e~(n) with respect to Eve's knowledge increases the bound no. 

Proof. The number w of random bits required as the second part  of the input 
for a (5, r according to Theorem 10, where 5 = t - r is constant, is 

w = O(log(1/e ' ) .  (log n) 2) , (6) 

and the length n'  of the output  is 12((t - r)n),  i.e., n' >_ c(t - r )n  for some 
constant c. 

Because of (5) and (6) there exists an no (depending on e '(n)) such that  
n _> no implies w <_ n/2.  Let n >_ no (and we can assume that  n is even). 
The message sent from Alice to Bob is a random element X E GF(2  ~/2) (of 
which the first w bits are used as the second input V to the extractor) and is 
authenticated by Y = $1 �9 X + $2 E GF(2~/2),  i.e., the authentication scheme 
based on strongly universal hashing (see Section 2) is used with S as partially 
secret key, and where $1 and $2 are the first and second half of S, interpreted as 
elements of GF(2n/2).  According to Theorem 6, Eve's probability of undetected 
modification satisfies 

P(DIU = u) <_ 2 - ( t n / 2 - 1 )  . 

Lemma 5 implies tha t  

H ~ ( S I X  = x, Y = y, U = u) > (t - r )n  (7) 

holds with probability greater than 1 - 2 - rn .  We can assume that  (t - r )n  is an 
integer. If (7) holds, the extractor 's  output  satisfies 

d([Y, E(S ,  V)], U~+n,) < E'(n) . (8) 
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Here and below the random variable S is meant to be distributed according to 
Pslu=u, i.e., Eve's point of view is taken. It is easy to see that  the distance in 
(8) is the expected value of the distances d(E(S, V), Un,), where V is chosen at 
random from {0, 1} w. We conclude that  for every K,  

1 
Pv [d(E(S, Y),  U,,) < g .  e'(n)] > 1 - ~ , (9) 

where V is uniformly distributed in {0, 1} w. From (7) and (9), with the special 
choice K -- ~ ,  we obtain that  

d(E(S, V),  U,e) <_ 

holds with probability at least 1 - ~ - 2 - ~ .  With Lemma 11, this leads to 

H(S ' IXY,  U = u) > (1 - v ~ n )  - 2-r'~) �9 (1 - ~ - 2-n ' )  �9 n'  

> + 2 - r -  + 2 - - ' ) .  

[] 

5 Optimality Considerations 

This section provides evidence that  the result of Section 2 (and the condition 
on Eve's knowledge in Theorem 12) is optimal: if Eve's min-entropy about  S is 
less than half of the length of the string, then no non-trivial upper bound on 
the probability of undetected modification P(I)}U = u) can be shown. This fact 
also implies that  no bet ter  result than that  of Section 3 can hold if one splits 
the string into two parts, one of which is used for authentication and the other 
for privacy amplification. 

We will show that  the bound given in Lemma 5 is tight (Lemma 13) and 
that  this implies tha t  when using the authentication code based on an c-ASU2 
class of hash functions, a substantially bet ter  result than Theorem 6 cannot be 
derived. The omission of the additional random variable X in Lemma 13 is for 
simplicity. It is obvious that  the same tightness result also holds in the situation 
of Lemma 5. 

L e m m a  13. For every integer k > 0 and for every number ~ >_ 0 there exist 
random variables S and Y (with ranges S and Y )  such that lYl = k, and such 
that 

Hoo(SIY = y) = Hoo(S) - log }Yl - ~ (10) 

holds with probability 

and even with probability 1 in the case ~ = O. 
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Proof. Let R := 2ek a n d s  : =  {81,82,...,8R} with Ps(si)  = 1 /R for 1 < i < R. 
Let further 

f o r l < i < k - l ,  and 

PYIs (y i , s i )  = 1 

Pyls (Yk ,  si) = 1 

for i >_ k. Then we have Ho~(S) = log k + s = log [Yl + s and Hoo(SIY  = Yi) = 0 
for 1 < i < ]y] - 1. Hence (10) holds with the probability given in (11). In the 
case g = 0, let Y = S, and the result follows immediately. Q 

Let us now assume that  an e-ASU2 class 71 of hash functions mapping X to y 
(where ]y] < ]X] and 1/e < ]y]) is used for authentication. We show that  when 
Eve observes a correctly authenticated message, then the min-entropy of the key 
must be reduced by at least half of the key size to obtain a lower bound for the 
min-entropy of the correct authenticator of a different message. This implies the 
optimality of our results in the earlier sections when using this authentication 
method. 

According to Lemma 13 we must assume that  the min-entropy of the key, 
given Eve's information, is decreased by at least log ]y] when Eve observes a 
correctly authenticated message x. On the other hand, given an arbitrary ad- 
ditional message-authenticator pair (x~,y ~) (with x ~ # x), it is possible that  
e .  ]7/]/]Y] keys are compatible with both pairs. Hence the conditional min- 
entropy of the correct authenticator for a given message x' (this min-entropy is 
directly linked with the substitution attack success probability) can, in the worst 
case, be smaller than the min-entropy of the key by log [741 - log lYl - log(i /e) .  
Both reductions of the initial min-entropy together are, in the worst case, of size 
R := log 17-/I - log(l/e).  Because of 

____Z__- 1 17/l > lYle I ~ ~--:(1- e) 

(see Theorem 4.2 in [12]), we have 

( 1 )  1 1 .1og( l__e  ) < 1.1og[7/[ + e 
log <_ 5 - i o g l T / I -  - 21n--5 

and 

1 e (12) 
R_> ~ .  log[7/[ 21n2 

The lower bound in (12) is almost (log ]7/])/2. Hence these worst-case estimates 
suggest that  the result of Theorem 6 and the condition in Theorem 12 are opti- 
mal. 
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6 Open Problems 

I t  is conceivable tha t  stronger results than those of Theorems 6, 8, and 12 can 
be shown under certain additional conditions on Eve's  information. We state  as 
an open problem to find such conditions, as well as the question whether the 
results of the previous sections can be improved by using different authenticat ion 
protocols (e.g., [5]), or even a completely different type of protocol for privacy 
amplification by not authenticated public discussion. Finally, are there different 
kinds of scenarios, besides the situations of independent repetitions of a random 
experiment  [6] and of privacy amplification, for which a positive result can be 
proved for secret-key agreement by not authenticated public discussion? 
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