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Abstract. We show that some RSA signature schemes using fixed or 
modular redundancy and dispersion of redundancy bits are insecure. 
Our attack is based on the multiplicative property of RSA signature 
function and extends old results of De Jonge and Chaum [DJC] as well 
as recent results of Girault and Misarsky [GM]. Our method uses the 
lattice basis reduction [LLL] and algorithms of IAszl6 Babai [B]. Our 
attack is valid when the length of redundancy is roughly less than half 
the length of the public modulus. We successfully apply our attack to a 
scheme proposed for discussion inside ISO. Afterwards, we also 
describe possible adaptations of our method to attack schemes using 
mask or different modular redundancies. We explain limits of our attack 
and how to defeat it. 
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1 I n t r o d u c t i o n  

Let n be a RSA modulus [RSA], e the public exponent, and d the secret exponent. We 
can define P(x) = x e (rood n) the public function and S(x) = x d (rood n) the secret one. 
The multiplicative property of  RSA, i.e. the fact that S(xy) = S(x)S(y) (rood n), leads to 
potential weaknesses, especially when used for signatures. We will make an extensive 
use of  this property in our attack. 
When a forger wants the signature of  a message m, he generates two messages x and y 
that satisfy m = xy (rood n). I f  he obtains the signatures of  x and y, as exponentiation 
preserves the multiplicative structure of  the input, he simply computes the signature of  
m as the product of  S(x) and S(y), S(m) = S(x) S(y) (rood n). This is a chosen-message 
attack. 
Two standard ways exist to eliminate this potential weakness, One is to sign a hashed 
value o f  the message rather than the message itself. The other is to add some 
redundancy to the message to be signed. These different signature schemes are 
sometimes called, respectively, schemes with appendix and schemes with message 
recovery ([MOV], pp.428-432). 
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Only the redundancy solution is concerned by this paper. It is of particular interest 
when the message is short, because it prevents from specifying and implementing a 
hash-function (a rather delicate cryptographic challenge), and it allows to construct 
very compact signed messages, since messages can be recovered from the signatures 
themselves (and hence need not any longer be transmitted or stored). Let R be the 
invertible redundancy function. The signature of a message m is Y.(m) = S[R(m)] and 
the signer only sends E(m) of the receiver. The latter applies P to ]~(m), and verifies 
that the result complies with the redundancy rule, i.e. is an element of the image set of 
R. Then he recovers m by discarding the redundancy, i.e. by applying R-' to this result. 
At Crypto'85 conference, De Jonge and Chaum [DJC] showed that simple redundancy 
does not avoid all the chosen-message attacks. In their paper, they show that it is not 
sufficient to append trailing '0' bits to the right or the left of the message. They study 
the case when redundancy is an affine function of m, i.e. the signature Y.(m) to m is 
computed as g(m) = S(tom+a). Their attack is based on Euclid's algorithm and is 
valid for any message m for: 

�9 a = 0, and any value of to such that the amount of redundancy is less than half 
the length of the public modulus n. 

�9 to = 1, a small value of a, and when the amount of redundancy is less than one 
third of the length of the public modulus n. 

Girault and Misarsky [GM] recently extended these results. Their attack uses an affine 
variant of Euclid's algorithm due to Okamoto and Shiraishi [OS]. It is valid for any 
constant to, any constant a, any message m provided that the amount of redundancy is 
less than half the length of the public modulus n. Moreover, they study the case when 
modular redundancy is used, i.e. when the amount of redundancy is obtained by 
appending to m the remainder of m modulo some fixed value. In this case, the 
signature is still subject to a chosen-message attack when redundancy is less than half 
the length of the public modulus, minus the length of remainder. They give three 
solutions that prevent their attack; one of them consists in dispersing the message in 
different parts and another one in using two different modular redundancies. 
We show in this paper that a multiplicative attack is feasible on signature scheme that 
uses dispersion of redundancy bits and fixed or modular redundancy. We precisely 
explain our attack in this case. But our attack is also valid on more simple schemes or 
schemes with mask or different modular redundancies. 
Our method makes use of the lattice basis reduction, which has not been used in 
multiplicative attacks yet. But, lattice reduction has already been applied successfully 
in cryptoanalysis: against Merkle-Hellman public key cryptosystem IS], against 
Okamoto's cryptosystems [VGT1], against RSA cryptosystem with small exponent 
[H], or against RSA encryption with small exponents and random padding [C], for 
instance. 
We successfully apply our method on ISO 9796 Part 3, Working Draft, December 
1996 [ISO2], a scheme using dispersion of redundancy bits and modular redundancy. 
Afterwards, we explain limits of our attack and how to defeat it. 
Throughout this paper, we call bitlength (or length in short) of an integer the number 
of bits of its binary representation. We denote by I m I the bitlength of m. 
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2 Our Results 
We describe a method using lattice basis reduction that finds solutions x and y of  the 
equation R(m)R(x) = R(y) (mod n) where: 

�9 R is a redundancy function 
�9 m is a message of  which we want to forge a signature 

I f  signatures of  x and y can be obtained, i.e. respectively T~(x) = S(R(x)) (mod n) and 
Z~y) = S(R(y)) (mod n), then the signature of  m can be easily forged: 

~(m) = ~(y) (mod n) 
X(x) 

In the sequel, we denote by: 
to,, o9 2 ... .  : miscellaneous multiplicative redundancies constants 

a : fixed redundancy constant 
m : a message 
k~ : the number of  parts of  m 
mj : the i th part of  m. The message m is split up into kt parts which have not 

necessary the same length: 

m =  I m, I m2 I .............. I m, I ......... 

~m) 

k~ 

~m) j  

: modular redundancy of  the message m i.e. the remainder of  m modulo a 
fixed value 

: the number of  parts of  ~ m )  
: the fin part of  r The modular redundancy is split up into k2 parts 

which have not necessary the same length: 

q~m)= I ~m), I ~m~, I .............. I ~m), I . . . . . . . . . . .  

n : RSA modulus 
m r : redundancy modulus (qKm) = m (mod m,) ) 

The redundancy function R can take several forms, with increasing complexity: 
i) R(m) = o.rm + a 

ii) R(m) = to~m + to2tp(m) + a 

iii) R(m) = ~ m , ~  +a  
I=l 

iv) R(m) = ~m,~  + q~(m):J.§ + a  
I=1 1=1 

The case iv) generalizes the others and we only study it in the sequel. 
Example :  when all to, are powers of  two in the case iv), one could have: 

R(m)=] 10111... ] m, [ ~(m), ]..1001.. [ ~(m), I ,n, ] ~(m),+, [... ]..1011.. [ 

,'vm,J'~ ~ u'~utmrmum ~ u ~ n m m ~ l  u'Juu'~ n mur~un 
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Remark: we call the number of bits of redundancy the length of n minus the length of 
m. Note that the number of bits of modular redundancy is included in the number of 
bits of redundancy. 

Main result: 
l f  a signature scheme uses this kind of redundancy function: 

R(m)= ~r_o, +~q~(m)~+~, +a 
~=I I=I 

then our attack is valid when the number of bits of redundancy is roughly less 
than half the length of the public modulus n, minus the number of bits of modular 
redundancy (when the latter is present): 

1 Iredundancy I < ~ln I-I m,I 
Another version of our attack, requiring more computation and memory, is valid 
when the number of bits of redundancy & roughly less than half the length of the 
public modulus n. 

3 System: Def'mition and Solution 
Solving R(m)R(x) = R(y) (rood n) is equivalent to finding the different parts of R(x) 
and R(y), i.e. respectively (x~)l ~k, ,  (q~x)j)~ ~:k~, and (y~)~ ~k, ,  (q~(y),)~ ~j~k~. 
Let (X;)~,~, be the different parts of R(x) to find, i.e. all or only part of (x~)~,:,~, and 
(~0(x)~)~/~. Let (Y~)~,~ be the different parts of R(y) to find, i.e. all or only part of 
(y~)~xi~t, and (q~(y)~)~t~. The modular redundancy, the fact that x = ~x)  (rood mr) 
and y = q~(y) (mod mr), implies two equations: 

(0 
(ii) 

alX1 + a2X2 +...+ ak4Xk4 = X, + hi (mod m,) 
blY1 + b2Y2 +...+ bk.xY~4 = Yk + h2 (mod m,) 

with (a~)l ~l~k-~, (b~)l ~k-~, h~ and h2 fixed integers. 

Note that: 
�9 h~ and h2 are present only when some parts of R(x) and R(y) are fixed, i.e. one or 

several xi, ~x)j, yi or q(Y)I are fixed. 
�9 our method requires the coefficients of Xk and Yk to be equal to one. It is easily 

obtained by a division modulo m,. We have deliberately omitted to describe this 
step. 

R(m)R(x) = R(y) (mod n) also implies an other equation: 

(iii) c~X~ + c~2 +...+ cJXk + d~Y~ + d2Y~ +...+ dk.~Y~-~ = Y~ + h3 (mod n) 

with (Ci)l~,~k, (d,)l~t~k-i and h~ fixed integers. 
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Let (S/) be the system: 

(so 
a~X,+...+at_iX~_, = X~+h~ (modm,) (i) 

b~Y~+...+b~_~Y~_~ = Y~+h~ (modm,) (ii) 

qXt+.. ,+c~X~ +diY~+...+dt_~Y~_~ = Y~ +h~ (modn) (iii) 

(S/) is a system with constraints on value of (Xj)~ ~ ~ ~ k and (Y,h ~ ~ ~ k. 
We have for 1 < i < k: 

0 <X~ < 2 L ' ~ ~  

0 _< Y~ < 2 t ' ~ r ' - ~  

When modular redundancy is not used in the signature scheme, (i) and (ii) are useless. 
Only (iii) is necessary. 
In the first part of our study, we define a lattice where all points give a solution to this 
system without second member, hi  --- h2 = h3 = 0, and without constraints on values of 
( X ~ ) ~  and ( Y ~ ) ~ .  Next, we define a method to find a solution to (S/) without 
constraints on values of ( X ~ ) ~  and (Y~)1~,~ by using this lattice. After, we explain 
how to obtain solutions to the system (S/) with additional constraints on values of 
(X~)~ ~ and (Y~)~ ~ .  Finally we study the efficiency of our method. 

3.1 First  Step: Determination of  the Lattice 

We define an integer lattice L such that any element of this lattice is solution to (S). 
(S) is the system (S/) without second member and without constraints on values of 
(X,), ~,xk and (]7/)1 <iSk. 

(s) 
I a~X~+...+ak_lX~_ ~ = X k (modm,) 

b~Y~+...+b~ ~Y~ = Y~ (modm,) 

qX~+. . .+ckX,  +dY~+...+dk-tYk_~ = Yk (modn) 

Hence, we define a lattice L of dimension 2k such that any vector v = (vl, v2 ..... vz~-l, 
vz0 verifies: 

(a) 
(b) 
(c) 

alvt + a2v2 +...+ a~.lv~.l = vk (rood mr) 
b~vk§ + b~vk§ +...+ bk.wz~-~ = Vzt (mod mr) 

c~v~ + c2v2 +...+ c~v~ + dlvk+~ + d2vk§ +...+ d,~.~vz~-~ = vz~ (mod n) 

Let M be the matrix of lattice L. Columns vectors of M are a basis of L, and for any 
element v of L, there is a column vector ot with integer components such that: 

M a = v  
Now, we construct this matrix M. 
We denote by M1 an identity matrix of dimension 2k where the row k is replaced by: 

(at, a2,...,ak-i, mr, O, 0 ..... O) 
Then, for any vector a with integer components, v = M1 a is a vector with components 
satisfying (a). Remark that v~ = ~ with 1 < i < 2k, i ~ k and: 
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(a) vk = a l v l  + a2v2 + . . . +  at.lVt-I + O~ m r 

We gather equations (b) and (c) together with the Chinese Remainder Theorem. It is 
possible because n is the public modulus of  RSA and is prime with m, (otherwise we 
have a factor of  n !). 
We denote by Chinese the Chinese remainder function: 
Chinese(a (rood m), b (rood n)), with m and n relatively primes, returns x such that: 

{Xx = a (m~ 
= b (modn) 

Let ~)t  ~l~zt such that: 
J~ =Chinese(O (mod mr), c~ (rood n)) when 1 < i < k 
f = Chinese(b~.~ (rood mr), d~-~ (rood n)) when k + 1 < i < 2k - 1 

We obtain: 

(/) 3~vl +3~v2 + ... +A-lv~.l +Avt +A+lvb, +A.2vk§ + ... +f2~.lV2k-1 = V2~ (mod mr n) 

But c~ is different from vk. We use (d) to replace vk in (3'). We finally obtain an 
equation (e), equivalent to (b) and (c), that has this form: 

(e) e l v l  + e2v2 + ... + et.0,'k-i + etO~ + ek§247 + et§247 + ... + e2t-lV2t.l = V2t (mod m, n) 

with: e~ =.15 +aiA when 1 < i _< k-1 
e~ = A m ,  
el =3~ when k + 1 _< i < 2k-1 

Finally, the matrix M is the matrix MI where the latest row is replaced by the vector: 

We have: 

M _ -  

(e l ,  e2, . . . ,  ekq, el, ek+l, ... , e2t.i, m r  n )  

1 0 . . . . . . . . . . . . . . . . . .  0 

0 "'. "'. 

." "..  " . .  " .  

0 ... 0 1 "'. 

a I . . . . . .  ak_ 1 m, 0 

0 . . . . . . . . .  0 1 "-. 

" "-. ".. O i 

0 . . . . . . . . . . . . . . .  0 1 0 

e 1 e 2 . . . . . . . . . . . .  e2k_ 2 e2k_ ~ m, n 

A solution to the system (S) is obtained by multiplying matrix M by an integer vector 
or. The result v gives a solution to (S): vl ...... v~ will be XI ...... Xk and v,§ ...... va will be 
Y1 ...... Yk. The reciprocal can be easily demonstrated and consequently we have: 
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Proposition 3.1.1: 
A vector  is in L i f  and only i f  it is a solution to (S). 

3.2 Second step: System with a Second Member 

Let (S') be the system (S) with a second member. (S') is the initial system (S/) but 
without constraints on values of  solutions. The same lattice L is used to solve (S'). 

Proposition 3.2.1: 
Le t  v = (v~, vz, .... v~.~, v~) be  a vector  o f  h 
Let  P = (0, O, . . . .  O, p,, O, .... O, p~)  with 

p~ = h~ 
pzk = Chinese(hz (mod m~), h~ (mod n)) + Chinese(O (mod m,), c~ (mod n)).h~ 

Then ~ = v - P gives a solution to (S'). 

[J~, :.., [J~ will  be X~ ...... X~ and  [~+~ ...... [J~ will be Y~ ...... Y~ 

Proof: 
= v~ when i e { 1, 2, 3 ..... k- 1, k+ 1, k+2 ..... 2k- 1 } 

v~ - pk 

atv~ + a2v2 + ...+ ak.w~-~ + o~ ra~ - h~ 

at[Jl + a 2 ~  + ...+ ak.,~., + O~ m, - hi 

Vz~ - pz~ 

e j v l  + ... + ek-IVk-I + eko~  + ek+zVk§ + e~+~Vl+~ + ... + e~.~vz~.~ + Otz~ m r n - pz~ 

And we have: 
~z~ (mod mr) = blvk+l + b2vk+2 + ...+ bk.lvz~.l - h~ 

= b,~+, + b2~§ + ...+ b , . , ~ . , -  h2 

/ ~  (mod n) = clvl + c2v2 + ... + c~vk + dlvk§ + ... + d~-tvz~.~ - h3 - ckht 

= c , # ,  + + . . .  + h , )  + + . . .  + - h3 

As vk - h~ = vk - p~ = ilk, we have: 
] ~  (mod n) = c,fi, + c2~ + ... + ck]~ + dl/~+, + ... + dk.,]~-, - h3 
Thus, ~ gives a solution to (S'). 

3.3 Third step: Additional Constraints 

We always consider the system (S'), but we take into account the initial constraints on 
values of  (X,)1 ~t~k and (Yt)l ~i,~. Hence, we solve (S/). 
First case: same bounds 
Let B be a positive integer. Find Xi and Y~ such that 0 < Xi < B and 0 < Y~ < B for any i 
such that 1 < i < k. 

Proposition 3.3.1: 
Let  H C  be a ball o f  radius B/2, relative to the norm sup, centred on Q = P + (B/2, 

B/2 . . . . .  B/2), where the po in t  P is defined in the proposi t ion 3.2,1. Let  v be a 

vector  o f  L inside HC, and  fl  = v - P. 

Then fl gives a solution to (S ' )  and  satisfies addit ional constraints. 
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Proof: 
Proposition 3.2.1 shows that fl gives a solution to (S'). 
v inside HC implies 0 < v~ - p, < B, i.e. 0 < fl~ < B, for any 1 < i < 2k. 

Second case: distinct bounds 
Let (B,)~stsz~ be a family of  positive integers. Find X~ and Y~ such that: 0 <X~ < B~ and 
0 < Y~ < Bt+~ for any i such that 1 < i < k. 
We apply a method of  expansion-contraction to the lattice L to obtain another lattice 
L',  see [VGT1] and [VGT2] for more details. We denote by M'  the matrix o f  lattice 
L ' .  

2k B 2k 
Define B as B2k = H B,. Let (~)l ~ z~ such that ~,, = - - .  Then the product H ~,, is 

1=1 e I I=I 

equal to 1. M '  is the matrix M where each row i, 1 < i < 2k, is multiplied by ~-: 

0 

0 

M ' =  2~al 

0 

0 

)~k el 

~176 

~176 "~176 

"~176 ~176 ~176176 

. . .  0 ~ _ ,  0 

. . . . . .  ~a,_, )~m, 0 

. . . . . . . . .  0 ~+, 0 

~176 ~ ".. 

. . . . . . . . . . . . . . .  0 ~ _ ~  

~ke2 . . . . . . . . . . . .  ~kez,_2 2~ke2~_~ 

0 

0 

~ k m r ~  

Remark that det(M) = det(M') = m7 n. 

Proposition 3.3.2: 
Let P ' =  (0, O, .... O, p k ~  O, .... O, p2k~,2k), where P is defined in the proposition 
3.2.1. Let H C  be a ball, relative to the norm sup, o f  radius B/2 centred on 
Q = P '  + (B/2, B/2 ..... B/2). Let v'  be an element o f L '  inside HC and ~'  = v' - P'. 
Then fl = (~,i~[31 ', .... ~.ffzfl~k') gives a solution to (S') and satisfies additional 
constraints. 

Proof: 
/~= (~,:1/3,, ' .... ~ - 1 / ~ , )  = (~ , , - l (v:  - p : )  . . . . .  ~ ' ~ ( v ~ ' - p ~ ' ) )  

= (~,l"lvl ' - pl ..... ~ ' l v z t '  - pz0 
Let v = (kl-lvl ' ,  .... ~o.~'Ivz~ ')  and ~ = v - P. 
Then v ~ L and proposition 3.2.1 shows that ~ gives a solution to (S'). 
v '  inside HC implies 0 < vt' - p :  < B, i.e. 0 < ]~ < B,  for any 1 < i < 2k. 
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Remark: the first case is a particular case of the second. In the sequel, we will 
consider always the lattice L '  and its matrix M'. 

3.4 How to Generate a Solution? 

Proposition 3.3.2 shows that a point of lattice L' inside HC gives a solution to the 
system (S/). To find one, take a point x inside HC and find a close lattice point inside 
HC. 
First, apply the LLL algorithm [LLL] to the matrix M'. A reduced basis of L '  is 
obtained. Next, apply one of two algorithms of L~szl6 Babai, Rounding Offor Nearest 
Plane, described in [B] to find a solution. 
Let u be the nearest lattice point of x and d the dimension of lattice L'.  
�9 ROUNDING OFF: this algorithm finds a lattice point v' such that: 

ix - v'l < Ca ix - ul with Cd = 1 + 2d(9/2) 'Vz 
�9 NEAREST PLANE: this algorithm finds a lattice point v' such that: 

Ix - v'l < Ca Ix - ul with Ca = 2 '~ 
Remark that, if the dimension d of lattice increases, then the probability that one of 
these algorithms finds a lattice point inside HC decreases. 

3.5 Efficiency: Heuristic Approach 

Heuristically, if the ratio of the HC volume to the lattice determinant is greater than 1, 
then there is at least one lattice point in HC 
The Nearest Plane algorithm certainly finds this point when the dimension d of the 
lattice is not too large. When d increases, the term Ca = 2 ~ increases too, and the 
probability to obtain a point inside HC decreases. 
We study the general case where the redundant version of m is: 

k 

R(m) = ~ m ,  og, + ,~o(m)jogs+,. +a 
~=1 J=l 

This is the most complicated case, and the solutions to the others can be derived f~om 
the following analysis. 
We denote by: 

t : the bitlength of n 
b~: the length of the part m~ o f m  

k 

b : such that ~b~ = b 
1=1 

cs: the length of the part ~m)s of ~ m )  
k ~  

c : such that ~ cj = c 

First method: modular redundancies are fixed 
Modular redundancies ~ x )  and q~(y) are fixed. Finding two messages x and y such that 
R(m)R(x) = R(y) (mod n) is equivalent to solve (SO with k = k~. 

Lattice dimension : d = 2kl 

Lattice determinant : det(L) = det(L') = m, 2n < (2 c)~2' 
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HC volume 

Heuristically, there is one point in HC if: 

2 2b 
> 1 22c,, 

2b > 2c + t 
t 

b > - - + c  
2 
t 

t - b  < - - - c  
2 

Second method:  modu l a r  redundancies  are not  fixed 
Finding two messages x and y such that R(m)R(x)= R(y) (mod n) is equivalent to 
solve (S/) with k = k~ + k2. But, there is a disadvantage when modular redundancies are 
not fixed. The dimension of  lattice increases and therefore the probability to find a 
lattice point in HC with Babal 's  algorithms decreases. 

Lattice dimension 

Lattice determinant 

HC volume 

: d = 2(kl + k2) 

()  : det(L)= m, n < 2 ~ 2 2' 

: 2 d = 22(~) 

Heuristically, there is one point in HC if: 

22(~+0 
> I 

2r 

2(b + c) > 2c+t 
t 

b > ~ 
t 

t - b  < - 
2 

IIre u n J llnJ I 
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4 Appl i ca t ion  

We applied our attack on a project of digital signature schemes giving message 
recovery ISO/1EC 9796-3, Working Draft, December 1996 [ISO2]. It is supposed to 
avoid the known attacks against RSA [GQLS]. This part of ISO/IEC 9796 specifies a 
digital signature scheme for messages of limited length, so that the message is 
completely recovered from the signature. It uses a check-function to save bits and 
computations. This check-function is a modular redundancy, it is the remainder of the 
message to be signed modulo 279+1. The modular redundancy takes the form: 

tl k2 

R(m) = ~m, cq +~(p(m)jo~j+~, +a 
i=l j=l 

with all (r powers of two. We experiment our attacks on this scheme with a 

public modulus n of 640 bits of length. In this case the project defines an intermediate 
string IS: 

Structure of the intermediate string IS (640-80 = 560 bits) 

Header Paddin 8 Field Data field Trailer 
[~ Three bits 640- k , -  87 bits k,, bits Four bits 

Set at 010 640 - k, - 88 bits set to 0 followed Message m Set to 0110 
by one bit set to 1 

The structure of the valid message (640 bits) is: 

Binary pattern (check-code in bold) 

12 + 4 + 28 + 4 + 28 + 4 + ...+ 28 + 4 + 28 + 4 +16 = 640 bits 

We applied the first method, i.e. we fixed the check-code. We found several solutions 
by using the Rounding Off algorithm. We give an example of solution: 

Public modulus: 
n = ffffffff 78f6c555 06c59785 e871211e 

el2ObOb5 dd644aa7 96d82413 a47b2457 
3flbe574 5b5cd995 Of 6b389b 52350d4e 
01e90009 669a8720 bf265a28 65994190 
a661dea3 c7828e2e 7calb196 51adc2d5 

Message m: 
m = fedcba98 76543210 fedcba98 76543210 

fedcba98 76543210 fedcba98 76543210 
fedcba98 76543210 fedcba98 76543210 
fedcba98 76543210 fedcba98 76543210 

Check-code: 
c = Of6e 4af3 aObl 3571 358b 
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Valid messageofm: 
S r (m)  = 4bb0bbbb bbbfafed cba69876 543e210f 

edc4ba98 765a4321 0fefdcba 98736543 
210afedc ba908765 432b10fe dcbla987 
65433210 fedScba9 87675432 10fledcb 
a9837654 32150fed cba89876 54362106 

Message x: 
X = fedcba0e 2fff215a 00200blf 17a18638 

3212ac94 21061f58 0619a4f0 f912910d 
bd3220e3 f4b8064c 89f15211 880c5445 
6127d8c9 Ia336791 5b962f17 a8386210 

Message y: 
y = fedcbal4 7597b137 39d20f85 33b07f20 

cd1335dl 308be96c 14b053dl 4230e40f 
02b2f14a 39f709a6 e6a0ede5 aelf6313 
50f4eafl la2f2381 064c2f0f f3ffa210 

Valid messageofx: 
Sr(x) = 4bb0bbbb bbbfafed cba60e2f ff2el5a0 

02040blf 17aa1863 832f12ac 94231061 
f58a0619 a4f00f91 291b0dbd 32210e3f 
4b83064c 89f51521 18870c54 4561127d 
8c931a33 679515b9 62fO17a8 38662106 

Valid message of Y: 
S r  (y) = 4bb0bbbb bbbfafed cba61475 97be1373 

9d240f85 33ba07f2 0cdf1335 d13308be 
96ca14b0 53d01423 0e4b0f02 b2fl14a3 
9f7309a6 e6aS0ede 5aeTlf63 13510f4e 
afl31a2f 23851064 c2fO0ff3 ffab2106 

We obtained this result within 30 minutes on a Pentium 166MHz by using GP/PARI 
CALCULATOR Version 1.39 (ftp : megrez.math.u-bordeaux, fr/pub/pari). It is 

the time necessary to apply LLL algorithm to the initial matrix. After, we can easily 
obtain different messages x and y in a few seconds by using Rounding Off or Nearest 
Plane algorithm on different points inside HC. 

5 Extensions 
We have described an attack on a signature scheme using one modular redundancy. 
But it is possible to increase the number of modular redundancies. If the different 
moduli are relatively prime, they can be gathered into one equation with the Chinese 
Remainder theorem and solved with the first method. If these moduli are not relatively 
prime, we use the second method, then the probability to find a solution is lower 
because the dimension is high. 
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We denote by mask a k2-bit fixed string. Our attack also succeeds on a scheme that 
uses a modular redundancy and a mask, i.e. you apply the function exclusive OR 
between modular redundancy and the mask. In this case we use the first method. 

6 How to defeat this forgery 
If you want to use fixed or modular redundancy, it is recommended to have the same 
amount of redundancy as the number of bits of message m, and to have a big 
dispersion of redundancy bits. It is not sure that you cannot apply our attack but the 
probability of success will be small. 
Another way to avoid this attack is to split the message and define bits of redundancy 
as parity bits (such as those determined by Hamming codes) of its different parts. 
ISO 9796 [ISO1] is another possible solution, but it doubles the length of the bit 
pattern you sign. Our attack cannot apply to the latter schemes because the 
redundancy depends on different bits of message m and we cannot adjust our attack to 
this case. 

7 Conclusion 
This paper describes two attacks to forge a signature of a message m when the bits of 
redundancy are dispersed and/or when a modular redundancy is used. The first one is 
valid when the length of redundancy is less than half the length of public modulus, 
minus the length of modular redundancy. The second attack is valid when the length 
of redundancy is less than half the length of public modulus, but the probability to find 
a forgery is smaller (because the lattice dimension grows); however, we have noticed 
that the Nearest Plane and Rounding Off algorithms [B] generally give better results 
than expected. 
Afterwards, we have briefly described possible adaptations of our method to attack 
schemes using mask or different modular redundancies. Hence, we have shown the 
weakness of many attractive redundancy functions for the purpose of RSA digital 
signatures. 
Finally, we advise to use, for RSA signature scheme with fixed or modular 
redundancy, the same length of redundancy that the length of the message and to 
disperse message bits in the valid message. But the best solution remains to use ISO 
9796 [ISO1] or the parity bits scheme briefly described above, because they 
apparently cannot be attacked by our techniques. 
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