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A b s t r a c t .  Following Ajtai's lead, Ajtai and Dwork have recently in- 
troduced a public-key encryption scheme which is secure under the as- 
sumption that a certain computational problem on lattices is hard on 
the worst-case. Their encryption method may cause decryption errors, 
though with small probability (i.e., inversely proportional to the security 
parameter). In this paper we modify the encryption method of Ajtai and 
Dwork so that the legitimate receiver always recovers the message sent. 
That is, we make the Ajtai-Dwork Cryptosystem error-free. 
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1 I n t r o d u c t i o n  

A major  project of our field is to find concrete hard problems which can be 
used for "doing Cryptography"  (e.g., constructing encryption schemes, message- 
authenticat ion codes and digital signatures). As current s tate of the art  in Com- 
plexity Theory does not allow to prove that  such (cryptographically-useful) prob- 
lems are hard, one has to rely on unproven and yet plausible assumptions.  It  
is thus impor tan t  to have as many  al ternat ive/unrela ted assumption as possi- 
ble, so that  Cryptography can be based on any one of them. So far there are 
very few alternatives; and so Ajtai ' s  work [1], which suggests a new domain out 
of which adequately-hard problems can be found, marks  an impor tan t  day for 
Cryptography.  

In particular,  Ajtai constructed a one-way function based on the assumption 
that  Lattice Reduction is hard in the worst-case. Following his lead, Ajtai and 
Dwork have recently introduced a public-key encryption scheme which is secure, 
provided that  the following (worst-case complexity) assumption holds [2]: 

Assumption ISVP (Infeasibility of Shortest Vector Problem):  There exists no 
polynomial- t ime algorithm, which given an arbi t rary  basis for an n-dimensional 
lattice, having a "unique poly(n)-shortest  vector",  finds the shortest (non-zero) 
vector in the lattice. By having a unique poly(n)-shortest vector we mean that  
any vector of length at most  poly(n)  t imes bigger than  the shortest vector is an 
integer multiple of the shortest vector. 
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The encryption method of Ajtai  and Dwork [2], has a non-zero decryption- 
error probability. Specifically, when working with security paramete r  n, the ci- 
phertext  of the message bit '1 '  is decrypted to be a '0 '  with probabil i ty 1 (The 
ciphertext corresponding to the message bit '0 '  is always decrypted as '0 ' . )  

In this paper  we modify the encryption method of Ajtai and Dwork so tha t  
every message is always decrypted correctly. Thus, we obtain a error-free en- 
cryption scheme which is secure under the same assumption used by Ajtai  and 
Dwork. 

2 The Encryption Scheme 

In this section we recall the construction of Ajtai and Dwork [2] and describe 
our modification of it. We s tar t  by introducing a few notat ions which are used 
throughout  the paper. 

2.1 N o t a t i o n s  

We denote the set of integers by Z,  and the set of real numbers by 7~. For any 
number  e between 0 and �89 we denote by Z + e the set of real numbers  for which 
the distance to the nearest integer is at most  e. 

The n-dimensional Euclidean space is denoted by 7~ '~. For two vectors x, y �9 
7~' ,  we denote the inner-product of x and y by (x ,y) .  Given a set of n linearly 
independent vectors W l , . . . ,  wn �9 ~ n ,  the parallelep~ped which is spanned by the 
wi's  is the set 

P ( w l , . . . , w n )  = c~r : oq �9  1), i = l , . . . , n  

The width of P ( w l , . . . , w n )  is the min imum over i of the Euclidean distance 
between wi and the subspace spanned by the other wj's. 

Given a parallelepiped P = P(Wl, �9 �9 wn) and a vector v, we reduce v modulo 
P by obtaining a vector v p E P so tha t  v ~ = v + ~ i  ciwi, where the ci are all 
integers. We denote this process by v ~ -- v mod  P.  

2.2 T h e  A j t a i - D w o r k  C o n s t r u c t i o n  

Let us recall the Ajtai-Dwork construction. 3 To simplify the exposition we present 
the scheme in terms of real numbers,  but we always mean numbers  with some 
fixed finite precision. (Following [2], one should use n-bit  binary expansion of 
real numbers  when working with security paramete r  n). 

3 The scheme which we describe below is slightly different than the original scheme in 
[2]. The difference between these schemes is insignificant, however (this is mostly a 
matter of presentation style). 
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d e f  d e f  
Common Paramelers. Given security parameter  n, we let m = n 3, and Pn = 
2 nl~ We denote by Bn (for Big or cuBe) the n-dimensional cube of side- 
length Pn. Also, we denote by Sn (for Small or Sphere) the n-dimensional sphere 
of radius n -s .  Namely, we have 

d e f  , ] ~ n  _ . . . ---- _ B ,  = {x E : 0 < xi < pn, i = 1, , n} and Sn def {X E ~'~n : [[Xl ] < n - 8 }  

Pmvale-key: Given security parameter  n, the private-key is a uniformly chosen 
vector in the n-dimensional unit sphere. We denote this vector by u. 

Public-key. For a private key u, denote by 7-/~ the distribution on points in Bn 
which is induced by the following process. 

1. Pick a point a uniformly at random from the set {x E B~ : (x, u) E Z}. 
2. For i = 1 , . . . ,  n, select 61 , . . . ,  6n uniformly at random from S~. 
3. Output  the point v = a + ~ i  6,. 

Using this notation, the public key which correspond to the private key u is 
obtained by picking the points w l , . . . ,  wn, vl, . . . ,  Vm independently at random 
from the distribution 7/~, subject to the constraint that  the width of the par- 
allelepiped P ( w l , . . . , w , ~ )  is at least n-~pn. In the sequel, we often use the 

c l e f  d e f  d e f  ( W ,  Y ) .  notations w = ( w l , . . . , w n ) ,  v = (v l , . . . ,Vm) ,  and e = 
(Remark: It is shown in [2] that  of we pick w~ , . . . ,  w,  uniformly in 7/~, then the 
width of P ( w x , . . . ,  w~) will be large enough, with probability at least 1 - n - 1 / 2 . )  

Encryption. The encryption works in a bit-by-bit fashion. Namely, to encrypt a 
string s = ~rlcr2... ~/, each bit ~r, is encrypted separately. 

To encrypt a '0', we uniformly select b l , . . . ,  bm in {0, 1}, and reduce the vector 
~-~i~=1 bi . vi modulo the parallelepiped P(w) .  The vector x = (~']i'~=1 bi . vi) mod 
P (w )  is the ciphertext which correspond to the bit '0'. 

To encrypt a '1' we uniformly select a vector x in the parallelepiped P(w) .  This 
vector is the ciphertext which correspond to the bit '1'. 

Decryption. Given a ciphertext, x, and the private-key u, we compute v -- (x, u). 
We decrypt the ciphertext as a '0' if v is within 1In of some integer and decrypt 
it as a '1' otherwise. 

Decryption errors. It is easy to see that  if x is an encryption of '1', then the 
fractional part  of (x, u) is distributed almost uniformly in [0, 1). On the other 
hand, a simple argument show that  if x is an encryption of '0' then the fractional 
part of (x, u) is always less than 1/n in absolute value. Thus, an encryption of 
'0' will always be decrypted as '0', and an encryption of '1' has a probability of 
2/n to be decrypted as '0'. 
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2.3 A n  E r r o r - f r e e  C o n s t r u c t i o n  

We proceed now to describe our modification which eliminates the decryption 
errors from the construction above. In this modified scheme, just  like in the 
original Ajtai-Dwork scheme, encrypting a '0' results in a ciphertext x such that  
(x, u) is close to an integer. However, in our scheme we also make sure that  
encrypting a '1' results in a ciphertext x such that  (x, u) is far from any integer. 
The modified scheme is as follows: 

Common Parameters and private-key. The commonparameters  n, m, Pn, Bn and 
Sn, and the private key u, are set in exactly the same manner  as in the original 
scheme. 

Pubhc-key (modified). The vectors w l , . . . ,  wn, v l , . . . ,  vm are chosen in exactly 
the same manner  as in the original scheme. 

In addition, we pick il uniformly at random from all the indices i for which 
(at,u) E 2Z + 1, where ai is the large vector used to generate vi (i.e., vi = 
ai -[- ~-~j ~j). That  is, il is selected so that  (ail, u) is an odd integer. We note 

that with probabili ty 1 - 2 -n(m) such an index exists. 4 The public-key consists 
of the sequence of points (Wl , . . . ,  Wn, v l , . . . ,  Vm) and the integer il. 

Encryption (modified). We encrypt a '0' just  like in the original scheme, by 
uniformly selecting b l , . . . , b m  E {0, 1}, and reducing the vector ~i~=1 bi �9 vi 
modulo the parallelepiped P (w) .  The vector z = (~im=l bi" vi) mod P (w )  is the 
ciphertext which correspond to the bit '0'. 

The difference is in the encryption of a '1'. We do that  by uniformly selecting 
hi, . . . ,  bm E {0, 1}, and reducing the vector �89 I + ~ = 1  bi 'vi  modulo the paral- 
lelepiped P(w) .  The vector x = (�89 1 + ~-'~=l bi. vi) rood P ( w )  is the ciphertext 
which correspond to the bit '1'. 

Decryption (modified): Given a ciphertext, x, and the private-key u, we compute 
r = (v, u>. We decrypt the ciphertext as a '0' if r is within 1/4 of some integer 
and decrypt it as a '1' otherwise. 

In contrast to the encryption scheme in [2], we can show that  in our scheme 
there is no decryption error. Specifically, we have: 

P r o p o s i t i o n  1 (error-free decryption): For every ~ E {0, 1}, every choice of 
the private and public keys, and every choice ofbi 's  by the encryption algorithm, 
the ciphertext, x, satisfies (x, u) E Z + ~ 4- 1 n" 

P r o o f  ( s k e t c h ) :  The case of ~r = 0 is the same as for the original Ajtai-Dwork 
scheme. The case of ~r = 1 follows from the same arguments, using the fact that  

1 n--7.  (�89 ~ z + ~ + o 

4 Otherwise, we may simply use the identity function for encryption/decryption. 
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3 S e c u r i t y  o f  t h e  M o d i f i e d  S c h e m e  

To prove the security of the modified scheme, we start by invoking the main 
result of Ajtai and Dwork [2]: 

T h e o r e m  2 [2, Thm 7.1]: Under Assumption ISVP, zt is infeasible to distin- 
guzsh the encryption of or = 0 from a uniformly &stmbuted point in P(w),  when 
given w , v .  (We stress that w , v  and the encryption of '0' are distmbuted as 
described above.) 

Note that  this theorem establishes the security (as defined in [3]) of the encryp- 
tion scheme of Ajtai and Dwork [2], since in that scheme c~ = 1 is encrypted as 
a uniformly chosen point in P(w).  To establish the security of our (modified) 
encryption scheme (under the same assumption), we need to prove 

T h e o r e m  3 (security): Under Assumption ISVP,  it is znfeasible to distinguzsh 
the encryption of cr = 0 from the encryption of (7 = 1, when given w ,  v and il.  
(We stress that w,  v, il and the encryptions are distributed as described in the 
modified scheme.) 

def  de f  def  Proof :  Recall our notations w = ( W l , . . . , w , ) ,  v = ( v l , . . . , v m )  and e = 
(w,v) .  For a bit a E {0, 1}, and an encryption key (e,i) ,  let us denote by 
Ee,i(~) the probabilistic encryption of cr using (e, i). Also, let us denote b y / / w  
the uniform distribution over P(w).  Assuming ISVP, we will show that  for both 
cr = 0 and cr = 1, it is infeasible to distinguish (e, i, E~,i(c,)) from (e, i , / /w) .  

First we show that  this holds for a = 0. Note that  this claim is not identical 
to Theorem 2, as here the distinguisher is given i (for which (vi, u) E 2 Z +  1-+-n -7 
holds) as extra information. Still, Theorem 2 does imply the following 

L e m m a  4 Under Assumption ISVP,  it ,s infeas,ble to distinguish (e, i, Ee,i(O)) 
from (e, i, T/w), where (e, i) are selected as above and [Iw is uniformly distributed 
in P(w).  

Proof. Suppose towards the contradiction that  there exists a distinguisher, D, 
of running-time t (n)  and distinguishing gap e(n) (between (e,i ,  Ee,i(0)) and 
(e, i , / /w)  as in the claim). We construct a new distinguisher, D t, which violates 
Theorem 2. D' works as follows: 

i n p u t :  e = (wl,  . . ., Wn, Vl, . . ., vm) and x. 
p r ep roc e s s i ng :  Using D, we find an index j which approximately maximizes 

the distinguishing gap of D on inputs of the form (e, j ,-) .  This is done by 
estimating, for every j = 1 , . . . ,  m, the value 

Prob[D(e, j ,  Eej(0))  = 1] - Prob[D(e, j , / / w )  = 1] 

where the probability is taken over the internal coin tosses of both the encryp- 
tion algorithm (i.e., choice of bi 's) and D. Invoking D for poly(n) /e(n)  2 times 
we may obtain, with overwhelmingly high probability, an approximation of 
the above upto e(n)/4.  Let r e {d=l} denote the sign of the approximated 
difference for the best j .  
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decis ion:  Using j and T, found in the preprocessing, we invoke D on input 
(e , j ,x ) .  Let a E {4-1} denote the output  of D. Then D' outputs r - a .  

Clearly, D '  has running time poly(n, t(n), e(n)- l ) ,  which is polynomial in n as 
long as t (n ) /e (n)  is polynomial in n. It is easy to see that  

e(n) 2_ n IProb[D'(e, Ee(0)) = 1] - Prob[D' (e , / /w)  = 1]1 > T - 

(The second term is due to the case where we made some wrong approximation in 
the preprocessing stage.) Thus, we have a distinguisher violating the conclusion 
of Theorem 2, and so contradiction follows. [] 

Using Lemma 4, we easily derive 

L e m m a  5 Under Assumption ISVP,  it is infeasible to distinguish (e, i, Ee,,(1)) 
from (e, i, Hw), where (e, i) and IIw are as in Lemma 4. 

Proof. Suppose towards the contradiction that  there exists a distinguisher, D, 
of running-time t (n)  and distinguishing gap e(n) (between (e,i ,  Ee,,(1)) and 
(e, i,/Tw) as in the claim). We construct a new distinguisher, D', as follows 

inpu t :  e = (Wl , . . . ,Wn,Vl , . . . ,Vm) ,  i and x. 
decis ion:  Algorithm D'  computes x' = (x - �89 mod P(w) ,  and outputs D(x ' ) .  

Observe that  E~ ,(0) and E ,  ,(1) - ~vl (reduced mod P(w))  are identically dis- 
tributed. Similarly,/-/w and 1-I~, - ~v, (reduced mod P(w))  are identically dis- 
tributed. Thus, D' distinguishes (e, i, E~,,(0)) from (e,i,/-/w), in contradiction 
to the claim of Lemma 4. The current lemma follows. [] 

Combining Lemmas 4 and 5, we have established Theorem 3. �9 

Comment  - An  alternative proof of Theorem 3. The security of the encryption 
scheme in [2] is established via a sequence of reductions. The first reduction 
assumes an algorithm D which distinguishes between encryptions of O's and l 's. 
It then constructs another algorithm D' which distinguishes between sequences of 
vectors (w, v) which constitute a public-key, and sequences uniformly distributed 
points in the big cube Bn (See [2, Lemma 8.1]). On a high level, this is done as 
follows: Algorithm D'  uses the input vectors, (w, v), to encrypt O's and l ' s  as if 
they constitute a public-key. If D is able to distinguish between encryptions of 
O's and l 's,  then D t concludes that  these vectors indeed constitute a public-key. 
Otherwise, D concludes that  they are just uniformly distributed points. 

One can easily verify the argument in [2] holds also for distinguishers of 
encryptions under our modified scheme. Specifically, one needs to verify that  
when applying our encryption scheme using m uniformly distributed vectors, 
the result is distributed almost uniformly in the parallelepiped P(w) ,  regardless 
of whether a '0' or a '1' was encrypted. [] 
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