Skip to main content

Chemistry relevant to the biological effects of nitric oxide and metallonitrosyls

  • Chapter
  • First Online:
Structures and Biological Effects

Part of the book series: Structure and Bonding ((STRUCTURE,volume 81))

Abstract

Nitric oxide has recently been found to be important messenger molecule mediating critical physiological functions such as neurotransmission and muscle relaxation. The nitroprusside ion, which is clinically used as a vasodilator, functions by releasing NO in vivo. The reactivities of these molecules are surveyed with a view toward the development of metallonitrosyls as pharmaceutical agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ignarro LJ (1992) J NIH Resch 4: 59

    Google Scholar 

  2. Sundquist WI, Lippard SJ (1990) Coord Chem Rev 100: 293

    Google Scholar 

  3. Swinehart JH (1967) Coord Chem Rev 2: 385–402

    Google Scholar 

  4. Playfair L (1849) Proc Roy Soc (London) 5: 846

    Google Scholar 

  5. Johnson CC (1929) Arch Int Pharmacodyn Ther 35: 489

    Google Scholar 

  6. Moraca PP, Bilte EM, Hale DE, Wasmuth CE, Pontasse EF (1962) Anesthesiology 23: 193

    Google Scholar 

  7. Butler AR, Glidewell C (1987) Chem Soc Rev 16: 361–380

    Google Scholar 

  8. Greenwood NN, Earnshaw A (1984) In: Chemistry of the elements. Pergamon, New York

    Google Scholar 

  9. Ye RW, Toro-Suarez I, Tiedji JM (1991) J Biol Chem 266: 12848

    Google Scholar 

  10. Bredt DS, Hwang PM, Glatt CE, Lowenstein C, Reed RR, Synder SH (1991) Nature 351: 714–718

    Google Scholar 

  11. Moncada S, Palmer RMJ, Higgs EA (1991) Pharmacological Reviews 43: 109–142

    Google Scholar 

  12. Snyder S (1992) Science 257: 494–496

    Google Scholar 

  13. Snyder SH, Bredt DS (1992) Scientific American 68–77

    Google Scholar 

  14. Payne MJ, Glidewell C (1990) J Gen Microbiol 136: 2077–87

    Google Scholar 

  15. Jones K (1973) In: Comprehensive inorganic chemistry. Pergamon, Oxford

    Google Scholar 

  16. Pedley JB, Marshal EM (1983) J Phys Chem Ref Data 12: 988

    Google Scholar 

  17. Beattie IR (1967) In: Mellor JW Comprehensive treatise on inorganic and theoretical chemistry. Wiley, New York

    Google Scholar 

  18. Neta P, Huie RE, Ross AB (1988) J Phys Chem Ref Data 17: 1112

    Google Scholar 

  19. Simon A (1992) Angew Chem 31: 301

    Google Scholar 

  20. Shibuki K (1990) Neuroscience Research 9: 69–76

    Google Scholar 

  21. Malinski T, Taha Z (1992) Nature 358: 676

    Google Scholar 

  22. Chen S-M, Su YO (1990) J Electroanalyt Chem Interfac Phenom 280: 189

    Google Scholar 

  23. Beckman JS, Beckman TW, Chen J, Marshall P, Freeman BA (1990) Proc Natl Acad Sci USA 87: 1620–1624

    Google Scholar 

  24. Korth H-G, Ingold KU, Sustman R (1992) Angew Chem 31: 891

    Google Scholar 

  25. Pryor WA, Chruch DF, Govindan CK, Crank G (1982) J Org Chem 47: 156

    Google Scholar 

  26. Williams DLH (1988) In: Nitrosation. Cambridge University Press, New York

    Google Scholar 

  27. Roche L (1974) Nipride Product Report, Nutley, NJ

    Google Scholar 

  28. Tuzel IH (1974) J Clinic Pharmacol 14: 494–503

    Google Scholar 

  29. Abbot Laboratories, North Chicago, IL (1990) Nitropressâ„¢ package insert

    Google Scholar 

  30. Hale M (1990) Am J Nurs 90: 61–2

    Google Scholar 

  31. Hayes C (1992) Dept Pediatric Cardiology, Columbia Presbyterian Hospital (Personal communication)

    Google Scholar 

  32. Grosmaire EK (1992) Heart & lung 21: 214

    Google Scholar 

  33. Ikram H, Low CJS, Crozier IG, Shirlaw T (1992) Am J Cardiol 69: 361–366

    Google Scholar 

  34. Stroud S, Dyer J (1991) Am J Nurs 91: 78

    Google Scholar 

  35. Watt GD, Christensen J, Izatt RM (1965) Inorg Chem 9: 239

    Google Scholar 

  36. Butler AR, Glidewell C, Waddon AE (1989) Polyhedron 8: 2627

    Google Scholar 

  37. Rindone JA, Sloane EP (1992) Annals of Pharmacotherapy 26: 515

    Google Scholar 

  38. Kruszyna H, Kruszyna R, Hu J, Smith RP (1980) J Toxicol Environ Health 6: 757–773

    Google Scholar 

  39. Furchgott RF, Zawadzki JV (1980) Nature 288: 373–376

    Google Scholar 

  40. Ignarro LJ, Ross G, Tillisch J (1991) West J Med 154: 51

    Google Scholar 

  41. Garthwaite J (1991) TINS 14: 60–67

    Google Scholar 

  42. Clapp LH, Gurney AM (1991) Pflung Arch 418: 462–470

    Google Scholar 

  43. Rao RDN, Elguindi S, O'Brien PJ (1990) Arch Biochem Biophys 286: 30–37

    Google Scholar 

  44. Kruszyna HK Robert; Smith, Roger P; Wilcox, Dean E. (1987) Toxi App Pharma 91: 429–438

    Google Scholar 

  45. Kruszyna H, Kruszyna R, Smith RP, Wilcox DE (1988) Toxicol Appl Pharmacol 94: 458–465

    Google Scholar 

  46. Smith RP, Louis CA, Kruszyna RT, Kruszyna H (1991) Fund Appl Toxic 17: 120–127

    Google Scholar 

  47. Myers PR, Minor RL, Guerra R, Banes JN, Harrison DG (1990) Nature 345: 161–163

    Google Scholar 

  48. Ignarro LJ (1981) Biochem Phys Acta 673: 394

    Google Scholar 

  49. Ignarro LJ, Lippton H, Edwards JC, Baricos WH, Hyman AL, Kadowitz PJ, Gruetter CA (1981) Jour Pharm Exp Ther 218: 739–749

    Google Scholar 

  50. Ignarro LJ, Degnan JN, Baricos WH, Kadowitz PJ, Wolin MS (1982) Biochem Biophys Acta 718: 49–59

    Google Scholar 

  51. Ignarro LJ, Adams JB, Horwitz PM, Wood KS (1986) J Biol Chem 261: 4997–5002

    Google Scholar 

  52. Rubanyi GM, Johns A, Wilcox D, Bates FN, Harrison D (1991) J Cardiovasc Pharmacol 17 (Suppl. 3): S41–S45

    Google Scholar 

  53. Johnson MD, Wilkins RG (1984) Inorg Chem 23: 231–235

    Google Scholar 

  54. Oae S, Kim YH, Fukushima D, Shinhama K (1978) J Chem Soc, Perkin Trans 1: 913

    Google Scholar 

  55. Burnett AL, Lowenstein CJ, Bredt DS, Chang TSK, Snyder SH (1992) Science 257: 401–403

    Google Scholar 

  56. Kots AY, Skurat AV, Sergienko EA (1992) FEBS Lett 300:9

    Google Scholar 

  57. Southam E, Garthwaite J (1991) Neuroscience Letters 130: 107–111

    Google Scholar 

  58. Ross A, Bredt D, Snyder SH (1990) Trends in Neurosciences 13: 216–222

    Google Scholar 

  59. Bredt DS, Snyder SH (1992) Neuron 8:3

    Google Scholar 

  60. Nowak R (1992) J of NIH Research 4: 49–55

    Google Scholar 

  61. Silva AJ, Stevens CF, Tonegaws S, Wang Y (1992) Science 257: 201–206

    Google Scholar 

  62. Hirsch JC, Crepel F (1992) Synapse 10: 173

    Google Scholar 

  63. Bredt DS, Hwang PM, Snyder SH (1990) Nature 347: 768

    Google Scholar 

  64. Traylor TG; S Vijay S. (1992) Biochem 31: 2847–2849

    Google Scholar 

  65. Ignarro LJ (1989) Seminars in hematology 26: 63

    Google Scholar 

  66. Marletta MA, Yoon PS, Iyengar R, Leaf CD, Wishnok JS (1988) Biochemistry 27: 8706–8711

    Google Scholar 

  67. Lancaster JR, Langrehr JM, Bergonia HA (1992) J Biol Chem 267: 10994

    Google Scholar 

  68. Kosaka H, Watanabe M, Yoshihara H, Narada N (1992) Biochem Biophys Res Comm 184: 1119

    Google Scholar 

  69. Mordvintcev P, Mulsch A, Busse R (1991) Analyt Biochem 199: 142

    Google Scholar 

  70. Hibbs JB, Taintor RR, Varvin Z (1988) Biochem Biophys Res Commun 157: 87–94

    Google Scholar 

  71. Moncada S, Hibbs EA (1990) Nitric oxide from l-arginine: A bioregulatory system. Elsevier, Amsterdam

    Google Scholar 

  72. Leone AM, Palmer RMJ, Knowles RG, Francis PL, Ashton DS, Monacada S (1991) J Biol Chem 266: 23790–23795

    Google Scholar 

  73. McCall TB, Feelisch M, Palmer RMJ, Moncada S (1991) Br J Pharmacol 102: 234–238

    Google Scholar 

  74. Selkoe DJ (1992) Neuron 6: 487–498

    Google Scholar 

  75. Glidewell C, Johnson IL (1987) Inorg Chim Acta 132: 145–147

    Google Scholar 

  76. Schmidt J, Kühr H, Dorn WI, Köpf J (1974) Inorg Nucl Chem Lett 10: 55–61

    Google Scholar 

  77. Symons MCR, West DX, Wilkinson JG (1976) Inorg Chem 15: 1022

    Google Scholar 

  78. McCleverty JA (1979) Chem Rev 79: 53–76

    Google Scholar 

  79. Armor JN, Hoffman MZ (1975) Inorg Chem 14: 444

    Google Scholar 

  80. Callahan RW, Brown GM, Meyer TJ (1975) J Am Chem Soc 97: 894–895

    Google Scholar 

  81. Castellano EE; R B.E.; Piro, E.O.; Amalvy, J.I. (1989) Acta Cryst C45: 1207–1210

    Google Scholar 

  82. Bottomley F, White PS (1979) Acta Cryst B35: 2193–95

    Google Scholar 

  83. Navaza A, Chevrier G, Alzari PM, Aymonino L (1989) Acta Cryst C45: 839–841

    Google Scholar 

  84. Olabe JA, Gentil LA, Rigotti G, Navaza A (1984) Inorg Chem 23: 4297–4302

    Google Scholar 

  85. Kolthoff IM, Toren PE (1953) J Amer Chem Soc 75: 1197–1201

    Google Scholar 

  86. Masek J, Maslova E (1974) Coll Czech Chem Commun 39: 2141–2161

    Google Scholar 

  87. Bowden WL, Bonnar P, Brown DB, Geiger WE (1977) Inorg Chem 16: 41

    Google Scholar 

  88. Gaul JB, Clarke MJ (1992)

    Google Scholar 

  89. Cheney RP, Simic MG, Hoffman MZ, Taub IA, Asmus KD (1977) Inorg Chem 16: 2187–2192

    Google Scholar 

  90. Cheney RP, Pell SD, Hoffman MZ (1979) J Inorg Nucl Chem 41: 489

    Google Scholar 

  91. Morando PJ, Borghi EB, de Schteingart LM, Blesa MA (1981) J Chem Soc, Dalton Trans 435

    Google Scholar 

  92. Butler AR, Glidewell C, Johnson IL, McIntosh AS (1987) Inorg Chim Acta 138: 159

    Google Scholar 

  93. McCleverty JA (1977) Chem Rev 77: 53–76

    Google Scholar 

  94. Eisenberg R, Meyer CD (1975) Acc Chem Res 8: 26–34

    Google Scholar 

  95. Lever ABP (1990) Inorg Chem 29: 1271–1285

    Google Scholar 

  96. Lu J, Clarke MJ (1992) J Chem Soc Dalton Trans 1243–1248

    Google Scholar 

  97. Lever ABP (1992) In: Molecular electrochemistry of inorganic, bioinorganic and organometallic compounds, Proceedings NATO Advanced Research Workshop, Sintra, Portugal

    Google Scholar 

  98. Pipes DW, Meyer TJ (1984) Inorg Chem 23: 2466–72

    Google Scholar 

  99. Armor JN (1970) PhD Thesis, Stanford University

    Google Scholar 

  100. Cheney R (1976) PhD Thesis, Boston University

    Google Scholar 

  101. Seddon EA, Seddon KR (1984) The chemistry of ruthenium, Elsevier, New York

    Google Scholar 

  102. Arnold WP, Longnecker DE, Epstein RM (1984) Anesthesiology 61: 254–260

    Google Scholar 

  103. Shafer PR, Wilcox DE, Kruszyna H, Kruszyna R, Smith RP (1989) Toxic Appl Pharmac 99:1–10

    Google Scholar 

  104. Wilcox DE, Kruszyna H, Kruszyna R, Smith RP (1990) Chem Res Toxicol 3: 71–76

    Google Scholar 

  105. Ungermann CB, Caulton KG (1976) J Am Chem Soc 98: 3862–3868

    Google Scholar 

  106. Richter-Addo GB, Legzdins P (1988) Chem Rev 88: 991

    Google Scholar 

  107. Doyle MP, Pickering RA, Dykstra RL, Cook BR (1982) J Am Chem Soc 104: 3392–3397

    Google Scholar 

  108. Mu XH, Kadish KM (1990) Inorg Chem 29: 1031

    Google Scholar 

  109. Stochel G, van Eldik R, Stasicka Z (1986) Inorg Chem 25: 3663–66

    Google Scholar 

  110. Stochel G (1992) Coord Chem Rev 114: 269–295

    Google Scholar 

  111. Bisset WIK, Burdon MG, Butler AR, Glidewell C, Reglinski J (1981) Br J Anaseth 53: 1015–1018

    Google Scholar 

  112. Wolfe SK, Swinehart JH (1975) Inorg Chem 14: 1049

    Google Scholar 

  113. Güdel HU (1990) Chem Phys Lett 175: 262–265

    Google Scholar 

  114. Fieldler J, Masek J (1981) Inorg Chim Acta 81: 117

    Google Scholar 

  115. Butler AR, Glidewell C, Glidewell SM (1990) Polyhedron 9: 2399

    Google Scholar 

  116. Swinehart JH, Rock PA (1966) Inorg Chem 5: 573

    Google Scholar 

  117. Turney TA, Wright GA (1959) Chem Revs 59: 497–513

    Google Scholar 

  118. Chevalier AA (1991) J Chem Soc Dalt Trans 1959

    Google Scholar 

  119. Butler AR, Glidewell C, Reglinski J, Waddon A (1984) J Chem Res 279 (S), 2768–2783 (M)

    Google Scholar 

  120. Maltz H, Grant MA, Navoroli MC (1971) J Org Chem 36: 363

    Google Scholar 

  121. McGarvey GJ, Kimura M (1986) J Org Chem 51: 3913

    Google Scholar 

  122. Dozsa L, Kormow V, Beck MT (1984) Inorg Chim Acta 82: 69

    Google Scholar 

  123. Rock PA, Swinehart JH (1966) Inorg Chem 5: 1078

    Google Scholar 

  124. Jaksevac-Miksa M, Hankony V, Karas-Gasparec V (1980) Z Phys Chem (Leipzig) 261: 1041

    Google Scholar 

  125. Glidewell C, Musgrave VAJ (1989) Inorg Chim Acta 167: 253–256

    Google Scholar 

  126. Swinehart JH, Schmidt WG (1967) Inorg Chem 6: 232

    Google Scholar 

  127. Wolfe SK, Swinehart JH (1968) Inorg Chem 7: 1855

    Google Scholar 

  128. Iha NYM, Toma HE (1984) Inorg Chim Acta 81: 181

    Google Scholar 

  129. Butler AR, Glidewell C, Chaipanich V, McGinnis J (1986) J Chem Soc, Perkin Trans 2:7

    Google Scholar 

  130. Wiegrebe W, Violbig M (1982) Z Naturforsch 37b: 490

    Google Scholar 

  131. Butler AR, Glidewell C, McIntosh AS (1986) Inorg Chem 25: 970–3

    Google Scholar 

  132. Butler AR, Calsy AM, Johnson IL (1989) Polyhedron 9: 913–919

    Google Scholar 

  133. Waldman SA, Murad F (1987) Pharm Rev 39: 163–196

    Google Scholar 

  134. Nakane M, Arai K, Saheki S, Kuno T, Buechler W, Murad F, (1990) J Biol Chem 265: 16841–16845

    Google Scholar 

  135. Craven PA, DeRubertis FR (1978) J Biol Chem 253: 8433–8443

    Google Scholar 

  136. Scheidt WR, Piciulo PL (1976) J Am Chem Soc 98: 1913–1919

    Google Scholar 

  137. Scheidt WR, Frisse ME (1975) J Am Chem Soc 97: 17–21

    Google Scholar 

  138. Hori H, Ikeda-Saito M, Yonetani T (1981) J Biol Chem 256: 7849–7855

    Google Scholar 

  139. Waleh A, Ho N, Chantranupong L, Loew GH (1989) J Am Chem Soc 111: 2767

    Google Scholar 

  140. Lyons CR, Orloff GJ, Cunningham JM (1992) J Biol Chem 267: 6370

    Google Scholar 

  141. Janssens SP, Shimouchi A, Quertermous T (1992) J Biol Chem 267: 14519

    Google Scholar 

  142. White KA, Marletta MA (1992) Biochem 3: 6627–6631

    Google Scholar 

  143. Bredt DS, Ferris CD, Snyder SH (1992) J Biol Chem 267: 10976

    Google Scholar 

  144. Mayer B, John M, Bohme E (1990) FEBS Lett 277: 215

    Google Scholar 

  145. Hayaishi O, Takikawa O, Yoshida R (1990) Prog Inorg Chem 38: 75–95

    Google Scholar 

  146. Cady SG, Sono M (1991) Arch Biochem Biophys 291: 326

    Google Scholar 

  147. Narayanasami R, Otvos JD, Kasper CB (1992) Biochem 31: 4210

    Google Scholar 

  148. Ortiz de Montellano P In: (eds) (1986) Plenum Press, New York

    Google Scholar 

  149. Wieraszko A, Seyfried TN (1991) Trans Am Soc Neurochem 22: 72

    Google Scholar 

  150. Seyfried TN, Glaser GH, Yu RK, Palayoor ST (1986) Adv Neurol 44: 115–133

    Google Scholar 

  151. Ozawa S, Jujji H, Morishima I (1992) J Am Chem Soc 114: 1548

    Google Scholar 

  152. Bonnet R, Chandra S, Charalambides AA, Sales K, Scourides PA (1980) J Chem Soc, Perkins Trans 1: 1706

    Google Scholar 

  153. van Roon PS (1980) Antonie van Leeuwenhoek 46: 515–16

    Google Scholar 

  154. Perigo JA, Roberts TA (1968) J Food Technol 3: 91–94

    Google Scholar 

  155. Butler AR, Glidewell C, Glidewell SM (1990) Polyhedron 11: 591–6

    Google Scholar 

  156. Crayston JA, Glidewell C, Lambert RJ (1990) Polyhedron 9: 1741

    Google Scholar 

  157. Bratsch SG (1989) J Phys Chem Ref Data 18: 13

    Google Scholar 

  158. Benderskii VA, Krivenko AG, Ponomarev EA (1990) Sov Electrochem 26: 285–291

    Google Scholar 

  159. Masek J, Wendt H (1969) Inorg Chim Acta 3: 455

    Google Scholar 

  160. Andrade C, Swinehart JH (1972) Inorg Chem 11: 648–650

    Google Scholar 

  161. Wolfe SK, Andrade C, Swinehart JH (1974) Inorg Chem 13: 2567–72

    Google Scholar 

  162. Stamler JS, Jaraki O, Osborne JA, Simon DI, Keaney J, Vita J, Singel DJ, Valeri CR, Loscalzo J (1992) Proc Natl Acad Sci (USA) 89: 7674–7677

    Google Scholar 

  163. Stamler JS, Simon DI, Osborne JA, Mullins ME, Jaraki O, Michel T, Singel DJ, Loscalzo J (1992) Proc Natl Acad Sci (USA) 89: 444–448

    Google Scholar 

  164. Zembowicz A, Vane JR (1992) Proc Natl Acad Sci (USA) 89: 2051

    Google Scholar 

  165. Kirchner JJ, Sigurdson ST, Hopkins PB (1992) J Am Chem Soc 114: 4021–4027

    Google Scholar 

  166. Wink DA, Kasprzak KS, Maragos CM (1991) Science Science: 1001

    Google Scholar 

  167. Moschel RC, Keefer LK (1989) Tetr Lett 30: 1467

    Google Scholar 

  168. Taha Z, Kiechle F, Malinski T (1992) Biochem Biophys Res Comm 188: 734–739

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag

About this chapter

Cite this chapter

Clarke, M.J., Gaul, J.B. (1993). Chemistry relevant to the biological effects of nitric oxide and metallonitrosyls. In: Structures and Biological Effects. Structure and Bonding, vol 81. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0036819

Download citation

  • DOI: https://doi.org/10.1007/BFb0036819

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56481-2

  • Online ISBN: 978-3-540-47567-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics