
Incremental Development of
Deadlock-Free Communicating Systems*

Stephan Kleuker

University of Oldenburg - FB Informatik
P.O. Box 2503, 26111 Oldenburg, Germany
email: kleuker@ informatik.uni-oldenburg.de

Abstract. A basic property which distributed communicating systems have to
fulfill is deadlock-freedom. For systems consisting of the parallel composition
of subsystems it is complex to check deadlock-freedom because the global state
space of the composition has to be investigated.
This paper presents an approach by which the absence of deadlocks is preserved
during the development. Small initial deadlock-free systems are stepwise ex-
tended with new functionalities to large complex systems by transformation rules
which preserve deadlock-freedom. Systems are represented by finite automata
extended with arbitrary local variables. A verification rule is presented which en-
sures that the parallel composition of such extended automata is deadlock-free.
The advantage of this rule is that only information over pairs of connected sub-
systems is needed and not over the complete state space.

1 I n t r o d u c t i o n

Formal methods for the development of distributed systems which are developed in
the academic area have to be applied to real world examples to prove or to disprove
their suitability for certain application areas. Usually different application areas offer
different challenges which are important in that area but are not supported by general
approaches.

The presented work is motivated by the research project Provably Correct Commu-

nication Networks - - abbreviated as CoCoN - - which was carried out in close cooper-
ation between Philips Research Laboratories Aachen and the Department of Computer
Science at the University of Oldenburg from 1993 to 1996. One aim of the project
CoCoN [15, 16] was to support a verified development of telecommunications sys-
tems from the requirement phase over the specification phase to an implementation.
The approach was based on results of the ESPRIT Basic Research Action ProCoS
[3, 4, 5, 24, 25] (Provably Correct Systems), which was a wide-spectrum verification
project where embedded communicating systems are studied at various levels of ab-
straction ranging from requirements' capture over specification language and program-
ming language down to the machine language. It emphasizes a constructive approach to
correctness, using stepwise fully semantics preserving transformations between speci-
fications, designs, programs, compilers, and hardware.

Telecommunications systems have in general the property that their development
never terminates. New functionality (i.e. new services like call forwarding, conference

* This research was supported by the Leibniz Programme of the Deutsche Forschungsgemein-
schaft (DFG) under grant No. O198/1-1

307

calling) is added in several steps to the already running system. The possibility to extend
existing systems is not treated in the ProCoS approach.

~ ~ specification

d <7
Fig. 1. Summary of the development steps

Therefore CoCoN extends ProCoS with a concept of incremental development. The
idea is that first a small initial system is specified and developed. This system can then
be extended stepwise by adding new functionalities that go beyond the specification of
the initial system. As a consequence extension steps need not be any more fully se-
mantics preserving. However, the idea of CoCoN is that specifications and proofs of
properties of the initial system can be reused in the extension steps. The main develop-
ment steps of the design process are sketched in figure 1. An overview of the complete
method is presented in [16]. Other case studies have shown that an incremental devel-
opment is also useful in the development of protocols for complex distributed systems
which are not extended later on, e.g. a single track railway control for trains in both
directions.

This paper focuses on the property of deadlock-freedom in the incremental devel-
opment of systems. Deadlock-freedom is emphasized because once it is guaranteed
developers can concentrate on the desired functionality [27]. We start with a small
deadlock-free parallel composition of finite automata. By transformations presented in
section 3 this initial system can be extended to rather complex systems in such a way
that deadlock-freedom is preserved.

To increase their expressive power we add local variables to the automata. We
present a verification rule that lifts the property of deadlock-freedom from commu-
nicating systems represented by finite automata to those represented by automata with
variables. This rule needs only information about the connected subsystems, not about
the global state space of the system.

Feasibility studies [15, 17, 18] have shown that the approach can be successfully
applied by hand, but for more complex systems tool support is needed. We have made
a prototype implementation in PROLOG for the validation and verification of speci-
fications written in the ProCoS specification language SL. A version of the extension

308

algorithm described in section 3 is implemented. Furthermore it is now intended to
arrive at a tool with a graphical interface for the development of provably correct SL-
specifications including a possibility to transform the specifications to correct code [19].

This paper is related to work on synthesis of systems [28] (see also the introduction
of [8] for an overview). These approaches mainly support the development of asyn-
chronous systems with their related problems like calculations w.r.t, the size of buffers.
By contrast, the approach presented here supports systems with synchronous commu-
nication. Other approaches like [7, 14] focus on special cases like the combination of
telecommunication services. The introduction of local variables in section 4 has a rela-
tion to approaches known from program verification [1]. These approaches use either
the knowledge about all subsystems [22] or allow only a very simple system structure.
Other approaches for the verification of distributed systems are usually done in the area
of shared variables (e.g. for Unity [6, 9]) and have no or only very restricted support
(superposition in Unity) for an incremental development.

The next section presents some basic definitions for communicating automata fol-
lowed by the presentation of the extension approach for automata. This approach is
extended in section 4 for automata with local state variables. A final discussion con-
cludes this paper.

2 Basic notions

Initially we specify distributed systems using a parallel composition of non-terminating
finite automata. Each component is described by one automaton with a designated ini-
tial state. A communication can only happen if it is possible as the next communica-
tion both for the sender component and for the receiver component (fully synchronized
communication). The automaton changes its state to the next state after performing a
communication. The following four definitions formalize this behavior.

Definition (automaton): A (deterministic, non-terminating) automaton A =
(A, Q, 5, q0) consists of a finite set ,4 of communications called the interface, a finite
set Q of states, a partial transition function 5 : Q x A ~ Q which describes for a given
state and a communication the next possible state, and an initial state q0 E Q. For all
q E Q we require nextA(q) ~ 0 where nextA(q) = {c E A[5(q, c) is defined} is the
set of next possible communications in q E Q. We define A(A) = A, States(A) = Q,
5A = 5 . []

Definition (possible traces): A trace is an element of A*. Let s denote the empty
trace. Then the transition function 5 is extended in the usual way from a single com-
munication to traces: 5(q, r = q, 5(q, t.t') = 5(6(q, t), t '), t, t' are traces. A trace t is
possible in A iff 5(qo, t) is defined. []

Definition (parallel composition): Let Ai = (Ai, Qi, 5i, qo,), i E {1, 2} be au-
tomata. The parallel composition A1 [tA2 is defined as the automaton A = (A1 U
A2,Q1 • Vql E Ql,q2 E Q 2 , a E A1UA2*

f (r l , r2) if a e A1 M A2, and 51(ql,a) : rl A ~2(q2,a) = r2
J(qt ,r2) if a E A 2 - - A t , and 52 (q2 , a) r2

5A((qt,q2),a) =] (rl,q2) if a E A1 -- A2: and 51(q1,a) rl
(undefined otherwise []

309

Remarks : Note that II is symmetric and associative, i.e. we can write A =
AIlIA2 I I . . . t lAn without brackets. It is assumed for simplicity (see also the remark at
the end of section 3.4) that each communication belongs to the interface of two different
automata (Vc E LJ n A(AI) ~ I{ilc ~ A(A~)}I = 2). Therefore II is the well-known i=1
synchronization merge operator of [13], here applied to n automata with point-to-point
communication.

A state of A is called a global state of the parallel composition. For each commu-
nication c E A(Ai) M A(Aj) a function snd(c) E { i , j } determines the sender and
rev(c) C { i , j } the receiver (snd(e) # rev(c)). Two automata Ai and Aj (i # j) are
called connected if they have a common communication (A (Ai) N ,5 (A j) # (~). []

The basic requirement which is emphasized in this paper is deadlock-freedom, i.e. it
should always be possible for some communications to happen next. The following def-
inition of deadlock-freedom is more restrictive because it ensures the desired property
that after each possible trace t a new communication of each automaton of a parallel
system can happen in the future.

Definition (deadlock-freedom): Let A = A1 II . . - II An be a parallel composition
of automata with the initial state qoA. Then A is called deadlock-free iff

Vt ~ (SA (qoA, t) defined --+
(V1 < i < n 3t' ~ (Sa(qoa,t.t ') defined A t ' $ A(A~) ~ e)))

The function t $,5 denotes the projection of a trace t onto an alphabet A. []

~,1 N2
REQ?
~2
req!
,3
rsp?

,4
CNF!
,1

N1

l ifo:
CNF?
1

1

req? B l iND 2 ?
IND !
3 IRSP!
RSP? o 1

4
rap/
1

Fig. 2. Specification of a simple protocol

Example: Figure 2 describes the specification of a simple protocol. A process A
asks a process B through two network nodes N1 and N2 in an infinite loop (the states
on top and at the bottom are the same) for informations. Process A sends a request
(REQ, a symbol ! is used for the sender and a symbol ? is used for the receiver [13])
to N1 which is transmitted (req) to N2 and send as an indication (IND) to B. Process
B answers with a response (RSP) to N2 which is transmitted (rsp) to N1 and send as a
confirmation (CNF) to A. []

The reader is referred to [16, 17, 18] for realistic case studies which present the
application of the incremental approach in the telecommunications area.

3 S t e p w i s e e x t e n s i o n o f spec i f i cat ions

Informal overview. As mentioned in the introduction, the basic idea of an incremental
development technique is to come from small systems by the application of extension
rules to larger systems. By extension we mean that new functionalities (e.g. new ser-
vices, new features) are added to the system. We stipulate that each new functionality

3~0

can be described by a trace which denotes the sequence of communicat ions that should
addit ionally be possible in a certain state of the system. The applicat ion of extension
rules guarantees that this trace is indeed possible and that no deadlock occurs in the

extended system.

A I ~ / ~ A 2 A t ~ / ~ A 2 A l l . A 2 Explanation:
--7: automaton which is

A @ A ~ A ~ yet no tco nsidered
A4 A5 A4 A5 A4 A 5

[] : automaton for which
AAT~A6 AAT~A~ AATIA~ the~:nes:eoSSa~e

calculated now
(a) an initial automaton (b) the connected (c) finally, each
for the extension is automata are automaton is �9 : automaton which
clwsen extended extended is extended

Fig. 3. Stepwise extension of a distributed system with new functionality

The extension rules are based on an extension algorithm which informally works
as follows. We start with a deadlock-free system, a sequence of communicat ions which
should be added, an arbitrary start state in a component (e.g. in automaton A~ in figure
3(a)) in which this sequence should start, and a reachable global state 2 as a final state
for the extension. Then, states are calculated which are influenced in each connected
automata (figure 3(a), A3 and A6) separately. I f a state of an automaton can be reached
in the parallel composi t ion together with the start state then such a state is called in-
fluenced. In the following steps it is calculated which states are influenced in the other
automata that are connected with the already observed automata (figure 3(b)). Finally

(figure 3(c)), the influenced states are calculated for each automaton and the parts of the
trace which are relevant for each automaton are added in these states as transitions to

the chosen final state.

The first rules of this extension technique have been described in [15]. This section
presents a much more general approach w.r.t, allowed final states, necessary restrictions
(the uniqueness condition in section 3.2 is added), generalisations (new solutions for the

exception handling) and optimisations.

F o r m a l i z a t i o n . We will now concentrate on the formalization to determine the
necessary steps in detail and discuss the limitations. Let us assume that a system

A = A1 II " " II An , a new trace t = cl.c2 c,n, a set Q c_ States(A1) denot-
hag the desired initial states for t and a final reachable state (f l , �9 �9 �9 f,~) of A are given.

2 Note that this is the 0nly part in which a global information is needed. Nevertheless case stud-
ies have shown [17] that only the information about sortie relevant reachable global states is
needed. Typical states which are reached again and again are the initial states because pro-
tocols reach these states each time when the protocol is completed. Another typical state in
telecommunication protocols is reached when each participant has finished its initial phase
and is connected to a conference. This active state in which information can be exchanged
can be reached again and again until the conference is terminated. Global states can also be
calculated by a stepwise simulation.

311

States that are influenced by extensions. We have to relate states such that when-
ever one automaton of a parallel composition is in a state q~ then a connected automaton
can only be in one of the related states. A state ql is in K-relation 3 to qj iff (qi, qj) is a
reachable state in the parallel composition of A~ and Aj. The definition of the K-relation
can be seen as a global invariant.

Definition (K-related states):[l 5] Let Ai and Aj be two automata with initial states
q0~ and q0j. Let qi be a state of Ai and qj be a state of Aj. Then qi is in K-relation to qj
(abbreviated q~ Ai KAJ qj) iff 3t �9 (~(A, IIAj) ((qo,, qoj), t) = (ql, qj)

For Q c_ States(Ai) we define
K_related(Q, Ai;Aj) = {qj E States(Aj) I 3qi E Q �9 q~ A'KAJ qj}. []

Example: For the automata in figure 2 holds: 1 N~ KN~ 1, 2 ~v~ KN2 1, 3 N~ KN2 2 []

The following lemma shows that the K-relation can be used to approximate the
global state space with pairs of K-related states. The advantage is that we can work
with pairs of local states rather than states of the global state space.

Lemma: In the state space of A1 II .- . II An a global state (ql , . . . ,qn) can be
reached only if for all Ai and Aj it holds qi Ai KAJ qj. []

3.1 The algorithm

States which have to be extended. Suppose automaton A1 should be extended in the
states of Q. In the first step we can calculate for the communication partner for the
first communication cl of t which states are influenced by the desired extension. Then,
we can continue this calculation for each communication of t. The following algorithm
calculates step by step the set Rj of K-related states of Aj that have to be extended.
A set 1 collects the automata for which the set of related states is already calculated
(necessary restrictions for t are discussed afterwards):

Algorithm for the calculation of influenced states (extension algorithm): [15]
Input : A, A~, t, Q as declared on the page before.
Output: R~ C_ States(A1), . . . , R , C_ States(A~) sets of states of each automaton
which are influenced by the desired extension.
Local variable: I is the set of automata which are already observed

R1 := Q; R 2 , . . . , R n := 0; I := {A1};
for j= 1 to m do

if A,na(c~) r I then [

elsif A,~v(c;) ~ I then

od

Rs~d(cj) := K-related(R~cv(cj), A~cv(~j), Asnd(~j));
z := I u {A ,~(~ ,) } /
[R,.c,(~j) := K_related(R~d(cj), A~,~d(cj), A,c,,(~j));

I : = IU {A ,~ (~ ;) } Jf i f i

Possible traces for extensions. The extension algorithm assumes for each observed
communication that at least one of the sender and receiver is in the set I . The reason is
that the new trace describes a new path through the system initiated in certain states of
one automaton which is propagated through the system. Therefore we have to guarantee
that there is no communication c in t = tl .c.t2 which is totally independent from the

3 K for the German word "Kommunikation"

312

automata influenced by the first part ti. Such an independent communication would
mean that two independent traces one starting in A1 the other in the sender or receiver c
are mixed. Such a mixture is not allowed for our extension algorithm. Two independent
traces can be added one after another. The property that t has to fulfil can be formalized
as follows:

Definition (traces that can be used for extensions): Let A and t be as described
above. A trace t fulfils the one-path-condition (abbreviated opcA (t)) for a system A iff

j -1
cl E A(A1) A (V2 < j < m . {rcv(c j) , snd(c j) }N(U {rcv(ck),snd(ck)}) ~ ~)[::]

k = l

We assume opcA(t) from now on. Note that A~nd(cj) ~ I A A,.cv(cj) ~- I is always
false in the extension algorithm because of opcA (t).

Extension of Automata. The next definition describes an extension of an automa-
ton, i.e. a new trace is added between a set of initial states for the extension and a final
state.

Definition (adding a trace to an automaton): Let Ai = (A, Q, (~A~ q0) be an
automaton, t = ci cq a [racewi th cj E A (1 < j < q), R C_ Q (the set of
initial states) and f E Q (the final state of the new trace), let ~ , . . . , zq--i be distinct,
elements not present in Q (new states used to make t possible). Let the automaton
A~ = (A, Q t2 { ~ , . . . , z~L~-i}, 5A'~, q0) be derived from A~ by adding the following
transitions to 5Ai to get 6A~:
Vr E R �9 (SAC(r, el) = Zl, 5A; (Zl, C2) ---= ~ , (SA, (~ , C3) ---- Z3 5A~(Z~-I, Cq) = f
Then A~ is called extension of A~ from R with t to f (short: A~ = ext(Ar R, t, f)) . []

3.2 Problems which can occur during an extension

Now, we analyse under which conditions the calculated states R~ can be extended with
the relevant part of the new trace (i.e. t $ A(Ai)) such that deadlock-freedom is pre-
served. At first three restrictions are introduced which are assumed to hold in the basic
theorem. Then it is shown that some of these restrictions can be dropped.

c•• Aj " ~ o: old state
e : extended state

q .o .r '~: added parts

%

Fig. 4. critical extension which might lead to a deadlock

(i): Figure 4 sketches an extension in which it is calculated that the state p of A~
and the K-related state r of Aj should be extended. The common part of the new trace
which is added in Aj is c. Furthermore, the states q and r are also K-related and a
communication c is possible in q. It can now be possible after the extension that the
automata are in the states q and r after a certain trace. A communication c is now
executable in the extended system which might lead to a deadlock because old parts
and new parts of the automata are used in a mixture in an Undesired way. It must be
ensured that such states like q do not exist.

Therefore the following uniqueness condition must be fulfilled for all connected

313

automata Ai and Aj and the calculated sets Ri and Rj for the extension (first(t)
denotes the first communication of a trace):

{q E States(A~) I ~r E Rj �9 r Aj KAi q
A 5A~(q, f irst(t $ (A(Ai) M A(Aj)))) defined} - Ri = 0

Though technical, in our case studies this restriction was always fulfilled.

(ii): It might happen that a first communication of a new trace is already possible in
a state which should be extended (3q E Ri �9 f irst(t $ A(Ai)) E next(q)). In this case
it is impossible to use this extension rule directly because only deterministic automata
are supported. Therefore we assume that this situation never appears.

(iii): Another problem is that the result of a projection of the trace which is used for
the extension might be the empty trace (t $ A(Ai) = e). Because z-transitions are not
allowed in deterministic automata it is assumed that this situation never occurs.

3.3 Main result

Basic Extension Theorem: Let A, t, A1,Q, (f l , . . . , fn) be as declared above, Rj
(1 < j < n) be the sets of states computed by the extension algorithm such that the re-
strictions (i), (ii) and (iii) are fulfilled, A} = ext(Aj, Rj, t $ A(Aj), fj) (1 < j < n),
A' = A t II A~ II .-. II A~. Then the following holds:

(I) If A is deadlock-free then A' is, too.
(II) If a trace t ~ is possible in A then it is possible in A ~, too.
(III) If a state q E Q is reached then the trace t can be executed next

Proof:(sketch) (I): If the new trace is initiated in A1 then each related automaton
will get the possibility to work off the new trace because all K-related states are ex-
tended and therefore the information about the new trace is propagated to the whole
system. No mixture of old traces and new traces is possible because of the determin-
istic extension and the uniqueness condition. The one-path-condition guarantees that
no other automaton than A1 can start the new trace. Therefore no new deadlocks are
possible in A ~. (II): Traces are only added to the old automata therefore all traces of A
are possible in A ~. (III): If automaton A1 reaches a state of Q then the other automata
are in K-related states. Each of these states are extended such that t can follow. []

Possible generalisations. Restriction (i) can only be slightly weakened, this possi-
bility is omitted here due to lack of space for several necessary technical definitions.

The non-determinism in the restriction (ii) can easily be removed. Assume that a
trace c~ c~ should be added in a state q of Aj and that c~ is already possible in q
before the extension. Then, the trace c~. c~ is added in the state q' which is reached
after executing c~ in q (q' = t~Aj (q, c~)). The only other change that is needed is that
the uniqueness condition must now be checked for q' and the communication c~. If c~ is
possible in qr then the removal of non-determinism is applied again. The only remaining
restriction is that if the trace is reduced to e and the desired final state f j is not reached
then the following approach for the removal of e-transitions must be applied.

Restriction (iii) can also be weakened. We can calculate the set of influenced states
independent from the trace which is used for the extension, starting with a connected
automaton for which the set of influenced states is already known. If q is a state in
which an e-transition to a state f j should be added then a transition ~(q, c) = p is
added for each possible transition from the state f j (~(fj, c) = p). If this extension of

314

would lead to nondeterminism, then this nondeterminism has to be solved in the same
way. The uniqueness condition must be checked for the state q and all possible next
communications of fj . Only if this check fails then the extension is not possible.

A ~Oi NI ~ l N7 ~Q1 B ~ 1
1 REQ! ~ REQ ? ~ req ? ~ D ?
I 2 ~2 .r

ABORT?:T I re,,t abor E I INDr i R S P ! 21 CNF? abort? T v. ']i u "
~1~ 50"-"03 5~ 03

I ABORT! ~ l rsp? ",J, RSP? ~ I
6~. ~ 4 aok,~4 ~176
(a) first extension

A ~01 Nl ~ 1 N2
1 Rea: ~ REQ?

A~r~oT'~]~2 9 2 abort.~
. ~ CNF? ab~ort?'+req! ~

~ 1 5 I~........,~ 3 5~req

A B O R T 6 ~ t IW '

(b) second extension

l BI§
req? ?
2
IND!3 i RSP/
RSP? o I
4

r rsp!
)1

Fig, 5. Two extensions of a protocol

Example: Figure 5 presents two extensions of the protocol described in figure 2.
The first extension (a) is that N2 can answer a request with an abort communication
which is transmitted to A. The new trace is abort.ABORT.aok with the start state 2
of N2, with {abort, aok } C A(N1) fq A(N2) and A B O R T E A(A) N A(N1). The
reachable final state is (1,1,1,1). The influenced states are calculated in the following
way: the state 3 of N1 and the state 2 of A are calculated with the extension algorithm,
the influenced state 1 of B is calculated directly from the influenced state in N2. All
side conditions are fulfilled and figure (a) presents the extensions as dotted parts.

The second extension in figure (b) is that N1 can retry to send the information after
receiving an abort communication. The added trace is req, the start state is 5 of N1, the
global reachable state is (2,3,2,1). The influenced states are state 5 of N2, state 2 of A
and state 1 of B. All side conditions are fulfilled and the figure (b) presents the resulting
extensions as dotted parts. [3

3.4 Optimisations
Usually one is interested in small automata which fulfil certain requirements. Therefore
it is necessary to keep the number of extended states as small as possible. One opti-
misation is mentioned in [15] by which the number of states can be decreased for a
certain process structure. More general, the sets of possibly influenced states can often
be calculated in several ways. One can start with the initial automaton and can choose
an arbitrary connected automaton next. If an automaton has several neighbours then it
is possible to calculate the set of potentially influenced states using different paths. It is
then easy to prove that the disjunction of all calculated sets of states can be used for the
extension such that the extension theorem still holds.

The extension algorithm can also be applied to add automata to an existing system
instead of traces. Traces are used here because case studies have shown that they are
powerful enough to describe the desired new features.

Another restriction that can be dropped is that all communications must belong
to two automata. A communication which belongs only to one automaton is called a
local communication. Local communications need not to synchronize with any other
automata. The only restriction which is needed is that the first communication of a new

315

trace w.r.t, all automata f i r s t (t $ A(Aj)) , (1 _< j _< n) must not be a local com-
munication. Otherwise it is possible to use this new path without informing the other
automata and to introduce deadlocks. Multisynchronization (i.e. a communication with
more than one sender and/or receiver) can be allowed without any further restriction,
calculations have to be done for all involved automata for a communication.

4 Automata with state variables

The previous section described a development method based on finite automata. Al-
though regular languages are often powerful enough to describe the typical (i.e. regular)
behaviour of many communication protocols, in general complex distributed systems
have to store and manipulate data. Therefore local variables are added to the finite au-
tomata to get the expressive power of Turing machines.

This section introduces automata with local variables and presents how deadlock-
freedom can be proven for them using the knowledge of the previous section. A first
simple condition is developed such that deadlock-freedom can be guaranteed. Then,
this condition is weakened using the K-relation with the final result that the absence of
deadlocks can be proven for a large range of distributed systems specified with automata
with local variables.

The specification language SL [20, 21] developed in the project ProCoS can be seen
as a language based on finite automata extended with local variables. In this paper only
the part of SL (called here SL-automata) is introduced which is needed for the following
calculations. Variables are declared with the following syntax:

v a r < variable_name > o f < variable_type > [i n i t < initial_value >]

The optional part [i n i t < initial_value >] denotes the initial value of the variable.
Variables are manipulated by the execution of communications. A communication

can happen only if a certain condition over the variables (the enable predicate) is ful-
filled. After the execution of a communication a new condition (the effect predicate)
is established. Primed variables refer to the values of the variables after the execution
(similar to the Z-Notation [23]), e.g. the effect predicate (y ~ 0 -~ x' = x + 2) A (y =
0 --+ x' = x) specifies that the value of x is incremented by 2 if y is not equal to 0,
otherwise the value of x is not changed.

Altogether a communication can happen if and only if (a) it is a next possible com-
munication of the automata to which it belongs, and (b) the enable predicate of this
communication is fulfilled in each automata to which it belongs.

Thus, the automata describe supersets of possible traces which are further restricted
by the communication assertions.

The enable and effect predicates of a communication are summarized in a commu-
nication assertion of the following form:

tom < communication_name >
when < enable_predicate > t h e n < effect_predicate >

We assume that there exists only one communication assertion for each communi-
cation c and abbreviate the enable and effect predicates by whenc and thenc.

Definition (SL-Automata): A triple A = (Ao, Var, CA) is called SL-automata
if A0 is a finite automaton, Var is a set of variables, and CA is a set of communica-

316

tion assertions. The set CA contains one communication assertion for each element of
A(Ao). The free variables of the enable predicates range over Var and the free vari-
ables of the effect predicates range over Var U Var' with Vat' = {v' I v 6 Vat}. Ao
is called the underlying automaton of A, States(A) = States(Ao), A(A) = A(Ao),
Vat(A) = Vat. []

Additional definitions for a "well formed" SL-automaton involving type checks in
the predicates are omitted here: see [21, 24]. It is assumed that for parallel compositions
A1]l . . . II An the variables are local for each component, i.e.

Vl < i < j < n . Var(Ai) N Var(Aj) = 9.

Example: It is possible in the specification in figure 5(b) that an infinite loop of
abort.req communications happens. Now it should be guaranteed that only three trials
are made to deliver the message. A local retry counter r is introduced as a local variable
in N1, the following parts are added:

v a r r o f {0,1,2 ,3}
com REQ then r'= 3

corn req when r > 0 then r' =r- 1
com ABORT when r = 0

The other enable predicates are assumed to be true and the effect predicates are as-
sumed to be skip. An effect predicate skip means that no value is changed. []

Our task can now be formulated as: (a) describe a method such that in each SL-
automaton A at least one communication can follow after each possible trace of A
(while ignoring the connected automata) and (b) guarantee that the parallel composition
of the SL-automata has no deadlock.

We will see that we can use the background information that the composition of
the underlying automata is deadlock-free and the K-relation to solve this task in such a
way that we have to do proofs only for each connected pair of automata and not for the
whole composed system.

The method explained here uses Hoare-triples of the form {pre} < action > {post}
as known from program verification [1, 22]. As usual the informal meaning of such a
triple is "if the condition pre is fulfilled and < action > is executed and terminates then
it is guaranteed that the condition post is fulfilled". In [1] Hoare-triples are also used to
show deadlock-freedom for distributed systems, but the calculations need information
of each component. In another approach in [1] programs written in Dijkstra's guarded
command language are transformed first into nondeterministic programs. This makes
those results hardly applicable for complex systems.

In our approach, each communication of each automaton has
to be labelled with pre and post conditions ranging over the
variables of the SL-automaton and other auxiliary variables
which do not occur in any other automaton. An example for
such labels is presented on the right-hand side. Labels for the
same communication c may differ for different occurrences
of e and therefore the conditions are indexed with the name
of the outgoing state.

Approaches based on the calculations of strongest post

v~ P~
prev(c ~prev(b)

postv(c)C~postv(b)

conditions or weakest pre

317

conditions [10] can be applied to solve the most complicated part to get the right pre
and post conditions for the automata. The relation which has to be proven between the
pre and post conditions and the enable and effect predicates is, for each communication
and each pre and post condition:

(pre=(c) --+ whene) A ({pre=(c)} thenc {post=(c)})

Definition: Let A be an SL-automaton and p E States(A). The set of conditions
before p (denoted op) is the set of all post conditions of communications on transitions
leading to p and the set of conditions after p (denoted po) is the set of all pre conditions
of communications that can follow in p. Formally:

op = {postq(c)I 3q E States(A) �9 5A(q, c) = p}
po = {prep(c)[3q E S ta tes (A) . ~A(P, c) = q}.

Let S P be a set of predicates. Then V S P denotes the disjunction of all predicates in
SP. []

The first problem with the introduction of local variables is that if the enable pred-
icates of an SL-automaton are too restrictive (e.g. when false) then it might happen
that this automaton runs into a deadlock on its own. This can be avoided if each post
condition before a state ensures that at least one pre condition after the state is fulfilled.
This condition is formalized in the following theorem.

Theorem: A single SL-automaton A with initial state qo has no deadlock if the
following two conditions are fulfilled:
(i) For the predicate Ini t describing the initial values of the variables it holds:

Ini t -4 V qo ~
(ii) For each state p E States(A) it holds: V op -+ Vpo.
Proof:(sketch) Condition (i) guarantees that an initial communication is possible and
condition (ii) guarantees that for each trace which leads to an arbitrary state p there is
at least one communication which can follow. []

Example: The SL-automata A, N2,B of N, ?itrue)
the previous example have no communica- I RgQ?

I (r>O~
I req!
T (rzO~

tion assertions, therefore the pre and post
conditions can be chosen as true. The pre
and post conditions for N1 are shown on
the right-hand side. Effect predicates t h e n
skip do not influence the values of the
variables. The only non-trivial implications
which have to hold are for the state 2: r =
3 ---> r > 0 and for the state 5: r _> 0 --+ r =
0 V r > 0 . []

{r_>O)
abort?
{r>_o)

{r=O} ~ Z ~ S ~ (t r u e)
ABORT!I req .t" I rsp?
{true) & {r>_O) ~(true)

. ~ [{true)
{ true}~ [CNF!
a#k! " - ~ (,rue}
(true.? " ~

If two SL-automata without deadlocks are composed it might happen that the com-
position has deadlocks even if the composition of the underlying automata is deadlock-
free. The reason is that in alternatives different communications might be enabled. Our
solution uses the K-relation to introduce criteria which guarantee that the composition
is deadlock-free. The advantage of these criteria is that only pairs of connected SL-
automata have to be checked instead of the whole parallel composition. Note that there
are deadlock-free parallel compositions that do not fulfil the criteria.

318

The following theorem states that a parallel composition of SL-automata is
deadlock-free if the composition of the underlying automata is deadlock-free and if it
is guaranteed for two K-related states of connected automata that at least one common
communication is enabled.

Theorem: Let A be a parallel composition of SL-automata with the underlying
automata A 1 , . . . , An. Let the parallel composition of the underlying automata be
deadlock-flee. Then A is deadlock-flee if for all connected automata Ai and Aj and
for all states p E States(Ai) and q C States(Aj) with p A~ KAJ q the following holds:

(C) 3e e A(Ai) A A(Aj) * ((V op -+ prep(c)) A (V oq -~ preq(c))) []

The condition (C) is sufficient, but not necessary, as it can be seen for the composi-
tion in figure 5(b). It is impossible to fulfil (C) for the state 2 of A because the condition
is not fulfilled for the K-related state 2 of N1, i.e. no common communication is en-
abled.

Note that the information that the composition of the underlying automata is
deadlock-flee is not used in the condition (C). An improvement is that condition (C)
needs to be proven only for K-related states which fulfil the following condition:

(a) nextA, (I9) f3 nextAj (q) ~ O

If in a certain K-related state no communication with the connected automaton can
follow then the next communication is completely dependent on the other automata.
Therefore (a) ensures that (C) must only hold if a dependency between Ai and Aj
w.r.t, p and q is given. The check that (a) holds can be done fully automatically without
any knowledge of the pre and post conditions. The previous theorem can now be refined
in the following way.

Theorem: Let A be a parallel composition of SL-automata and let the parallel
composition A1 II - . . [I An of the underlying automata be deadlock-flee. Then A
is deadlock-free if the following holds:

Vi,j Vp E States(A~),q E States(Aj) .
(i ~ j A A(AI) f 3 A (A j) ~ O A pA~KAjq A (a)) -+ (C)

Proof: Assume that there is a deadlock in a global state (pl, �9 �9 �9 ,pn). If we take an arbi-
trary automaton Ak then (a) (w.r.t. Pk C States(Ak)) does not hold for any automaton
which is connected with Ak, otherwise (C) would guarantee that a communication can
follow. Therefore, we can conclude that there is a deadlock in the composition of the
underlying automata in p~ which is a contradiction to the assumption. []

Several calculations in a case study for a protocol for a multiuser multimedia system
[17] have shown that the new condition is powerful enough for real applications. It is
also possible to prove the absence of deadlocks for the small protocol presented in this
paper.

If the extension of the automata as described in section 3 is used for SL-automata
then it is possible to reuse the pre and post conditions. Additional conditions only have
to be found for the states of the added trace. A more detailed theory about the reuse of
conditions is under development.

319

5 Conclusion and final remarks

The previous sections present an approach for the development of large deadlock-free
systems in small steps. The verification that a system is deadlock-free needs to be done
only for the initial system. If this system is then extended with the above extension rules
deadlock-freedom is preserved. It is shown how deadlock-free automata can be used to
come to deadlock-free SL-automata with arbitrary local variables. The advantage of the
approach is that no knowledge of the global state space is needed to guarantee deadlock-
freedom, only calculations for pairs of systems (connected automata) have to be done.

Commercially available tools like STATEMATE [12] for statecharts [11] and SDT
[26] for the asynchronous language SDL [2] have to investigate the complete state space
to guarantee deadlock-freedom. This paper proposes that such a property should be
guaranteed throughout the development process instead of investigating the complete
state space.

The property of deadlock-freedom is emphasized in this paper because its hard to
prove and, more important, once deadlock-freedom is guaranteed then the developer
can concentrate on the real tasks, i.e. obtaining the desired functionality of the system.

The method of labelling communications in SL-automata with local pre and post
conditions can also be useful for the verification of other properties. This is a topic
for further research. Another topic is the exchange of values with communications.
The specification language SL allows that values of a fixed type can be transmitted
during a communication. The value is referred to as @c for a communication c. These
communication variables can also be variables of the pre and post conditions and used
for the calculations described in section 4.

The described technique has been successfully applied by hand to some communi-
cation protocols in CoCoN [15, 18]. A feasibility study with a prototype implementation
of this approach in PROLOG has shown that the necessary calculations for the extension
of automata can be done very efficiently. An important aspect is that the K-relation only
needs to be calculated once and can then be stored in a database. Each extension adds
some informations to this database, no information needs to be changed. The whole
extension approach with optimisations will be implemented in a graphical workbench
[19] for the verification and validation of distributed systems.

Acknowledgments. The author thanks H. Tjabben of Philips Research Laboratories
Aachen and E.-R. Olderog and the other members of the 'semantics' group in Olden-
burg for helpful discussions.

References
I. K.R. Apt, E.-R. Olderog, Verification of Sequential and Concurrent Programs, Springer,

New York, 1991
2. E Belina, D. Hogrefe, The CCITT-Specification and Description Language SDL, Computer

Networks and ISDN Systems 16 (1988/89) 311-341, North-Holland
3. D. Bj~mer, H. Langmaack, C.A.R. Hoare, ProCoS I Final Deliverable, ProCoS Technical

Report ID/DTH db 13/1, January 1993
4. D. BjCrner et al., A ProCoS project description: ESPRIT BRA 3104, Bulletin of the EATCS,

39, 1989
5. J.Bowen et al., Developing Correct Systems, 5th EuroMicro Workshop on Real-Time Sys-

tems, Oulu, Finland, 1993, IEEE Computer Society Press
6. K.M.Chandy, J. Misra, Parallel Program Design, Addison-Wesley, 1988

320

7. K.E. Cheng, Towards a Formal Model for Incremental Service Specification and Interac-
tion Management Support, in L.G. Bouma, H. Veltheuijsen (Eds.), Feature Interactions in
Telecommunications Systems, I t S Press, 1994

8. D.Y. Chat, D. T. Wang, An Interactive Tool for Design, Simulation, Verification, and Syn-
thesis of Protocols, Software - Practice and Experience, Vol. 24(8), 1994

9. P. Collette, E. Knapp, Logical Foundations for Compositional Verification and Develop-
ment of Concurrent Programs in UNITY, in V.S. Alagar, M. Nivat (Eds.), Proc. Algebraic
Methodology and Software Technology '95, LNCS 936 (Springer), 1995

10. E.W. Dijkstra, Guarded Commands, Nondeterminacy and Formal Derivation of Programs,
Communications of the ACM, 18:453-457, 1975

11. D. Harel, Statecharts: A Visual Formalism for Complex Systems, Science of Computer
Programming 8, 1987

12. D. Harel et al., STATEMATE: A Working Environment for the Development of Complex
Reactive Systems, IEEE Transactions on Software Engineering, Vol. 16, No. 4, 1990

13. C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall, London, 1985
14. A. Khoumsi, Detection and Resolution of Interactions between Services of Telephone Net-

works, internal report IRO 1037, University of Montreal, 1996
15. S. Kleuker, A Gentle Introduction to Specification Engineering Using a Case Study in

Telecommunications, in P. D. Mosses, M. Nielsen, M. I. Schwartzbach, eds., Proc. TAP-
SOFT '95, LNCS 915 (Springer), 621-636,1995

16. S. Kleuker, H. Tjabben, The Incremental Development of Correct Specifications for Dis-
tributed Systems, in M.-C. Gaudel, J. Woodcock (eds.), Proc. FME '96, LNCS 1051
(Springer), 1996

17. S. Kleuker, H. Tjabben, A Formal Approach to the Development of Reliable Multi-
User Multimedia Applications, Philips Research Laboratories Aachen, Technical Report,
1168/96, ftp://ftp.informatik.uni-oldenburg.de/pub/procos/cocon/mumu.ps.Z

18. S. Kleuker, Using Formal Methods in the Development of Protocols for Multi-user Multi-
media Systems, in R. Gotzhein und J. Bredereke (eds.), Proc. of FORTE/PSTV'96, Chap-
man & Hall, 1996

19. B. Krieg-Briackner, J. Peleska, E.-R. Olderog, D. Balzer, A. Baer, UniForM: Universal
Formal Methods Workbench, in Statusseminar des BMBF, Softwaretechnologie, Berlin,
March 1996

20. E.-R. Olderog, Towards a Design Calculus for Communicating Programs, LNCS 527
(Springer), 61-77, 1991

21. E.-R. Olderog et al., ProCoS at Oldenburg: The Interface between Specification Language
and OCCAM-like Programming Language. Technical Report, Bericht 3/92, Univ. Olden-
burg, Fachbereich Informatik, 1992

22. S. Owicki, D.Gries, An Axiomatic Proof Technique for Parallel Programs, Acta Informat-
ica, 6:319-340, 1976

23. J.M. Spivey, The Z Notation: A Reference Manual, Prentice Hall International Series in
Computer Science (2nd edition), 1992

24. S. R0ssig, A Transformational Approach to the Design of Communicating Systems, PhD
thesis, University of Oldenburg, 1994

25. S. R/Sssig, M. Schenke, Specification and Stepwise Development of Communicating Sys-
tems, LNCS 551 (Springer), 1991

26. Telelogic AB, Malmo, Sweden, SDT 3.01: Users' Guide, 1995
27. M. Weske, Deadlocks in Computersystemen (in German), International Thomson Publish-

ing, 1995
28. P. Zafiropulo et al., Towards Analyzing and Synthesizing Protocols, IEEE Transactions on

Communications, Vol COM-28, No. 4, April 1980

