
Compositional Performance Analysis

C. Tofts*

School of Computer Studies, Leeds Unversity, Leeds, LS2 9JT. cmnt@scs.leeds.ac.uk,
http: ://www.scs.leeds. ac.uk/chris/

A b s t r a c t . Recent extensions to process algebras can be used to describe
performance or error rate properties of systems. We examine an abstract
approach to the representation of time costs within these algebras that
permits the efficient calculation of performance bounds on systems. In
particular we avoid the 'state explosion' caused by the parallel compo-
sition of the representations of probabilistic time distributions. A major
advantage of one of our approaches is its uniformity, which allows the
eventual approximation level to be easily predicted from quality of the
approximations to the underlying distributions.

1 I n t r o d u c t i o n

Recently there has been considerable interest in the use of formal methods to
derive performance predictions for concurrent systems including [Tof90, GSST90,
SS90, Hun91, HM93, HR94]. One particular approach is to exploit a process
algebraic description of the system under consideration [Mil80, MilS3, Milg0,
Tof90, Hun91, VW92, Tof93, Tof94, Tof95]. Whilst it is possible to describe large
scale systems using such methods, the efficient derivation of system properties
remains difficult, as a result of the large number of states required to describe
such systems. In this paper we examine how costs within a simple model can
be considered compositionally thus permit t ing us to reason effectively over large
scale systems.

Consider the following two processes in some prototypical asynchronous prob-
abilistic process description l anguage :

def P = -5.Dp.-b.P Q d~y = a.Dq.b.c.Q

the intention of the above is that the actions ~ and b in the process P are sep-
arated in t ime by an amount given by the distribution DR, and likewise for
the process Q. Considering a possible parallel composition of the above two

def
processes: S - (P[Q)\a, b clearly we should expect that this process is obser-

vationally equivalent to the process: R d~=] D?.c.R. Since the two processes will
synchronise on the a action, then both spend some time, given by their respec-
tive distributions, and then synchronise on the b action 2, with the process Q

* This work is supported by an EPSRC Advanced Fellowship.
2 This is similar to the account of asynchronous actions with duration given by Castel-

lani and Hennessy [CH87].

291

producing a c action. Since the processes are asynchronous if the b action (or its
dual) becomes enabled in one process before the other we would demand that
it wait for the dual action to become available before continuing. However a
question remains, what is the distribution D?, and can it be derived efficiently?
Clearly, from the simple intended semantics given above, D? is a function of the
maximum of the two distributions Dp and DQ.

A possible solution to the above problem is to search for a simply defined
family of distributions (that is one whose definition rests on a small number of
parameters) which are preserved under the compositions of a process algebra. We
could subsequently use this distribution family to approximate the distributions
in the model system. In terms oi" simplicity the primary candidate is the family of
geometric distributions, as they require but a single parameter to describe each
particular distribution. This approach has been followed by Hillston [Hil94] but,
as we shall demonstrate later, this family of distributions is n o t closed under
the operations of a process algebra.

A further possibility is the use of the very general p h a s e d i s t r i b u t i o n s
[Nel95] which are known to be closed under the maximum operator. However, as
we shall observe, whilst providing a well formed closed family under the opera-
tions of a process algebra, that these distributions do not provide an abstraction 3.
Indeed we are obliged to maintain as much information to describe the phase
distribution as is present within the original description.

Throughout the sequel we shall use the Weighted Synchronous Calculus of
Communicating Systems (WSCCS) to describe these composition problems. It
may seem unreasonable to use a synchronous calculus to describe an asyn-
chronous problem but as Milner [MilS3, Milg0] demonstrated these calculi ac-
tually contain asynchronous calculi. Furthermore, the underlying simplicity of
the synchronous approach often clarifies difficult t iming problems, and permits
greater insight.

In the next section we present a brief introduction to the calculus WSCCS,
this can be regarded as a prototypical probabilistic process algebra. Any other
synchronous probabilistic calculus could be used [GSSTg0, SS90, Han91]. We
then present how distributions can be represented in WSCCS and the represen-
tat ion of their composition. In section 5 we present the notion of abstraction
over distributions, this is similar to notions of observational equivalence in CCS
[MilS0,Mil90]. In section 6 we present an example calculation of the performance
of a prototypical processor.

2 W S C C S

The language WSCCS [Tof90,Tof94] is an extension of Milner's SCCS [Mi183]
a language for describing synchronous concurrent systems. Here we provide an
introduction to the syntactic constructs that underlie WSCCS but omit the for-

3 For instance WSCCS actually defines the appropriate phase distributions, when rep-
resented via a Markov Chain.

292

mal semantics and algebraic properties as they have a full description elsewhere
[Tof94].

To define the language we presuppose a free abelian group Act over a set of
a tomic action symbols with identity ~ and the inverse of a being g. To distinguish
multiplications over extended action names we use the symbol # to denote
multiplication. As in SCCS, the complementary actions a (conventionally input)
and g (output) form the basis of communication. Within our group we define
that ~ = a-1 . The action v / denotes the performance of a communication, taking
one period of time, alternatively it can describe a one period delay.

2.1 E x p r e s s i o n s

We define a set of expressions.

D e f i n i t i o n 2.1 A relative frequency expression (RFE) is f o rmed f rom the fol-
lowing syntax, with x ranging over a set o f variable names V R F , and c ranging
over a fixed field (such as N" or T~):

e : := x lc le + ele *

Further we assume that the expressions fo rm an abelian field.

In the sequel we shall omit the * in expressions, denoting expression mul-
tiplication by juxtaposi t ion. It should be noted that unlike other calculi with
expressions [Mil90] the value of our expressions can have n o e f fec t on the struc-
ture of the transition graph of our system. Hence we should not expect that
adding this extra structure to our probabilistic process algebra will cause any
new technical difficulties.

2.2 W e i g h t s

We also take a set of weights W, denoted by wi, which are of the form 4 eco k
with e from the relative frequency expressions and the ~0 k (with k > 0) a set of
infinite objects, with the multiplication and addition rules (assuming k > kl):

e~k + f~ok' = e~k = f~k' + e~k e~k + f~k = (e + f)~o k = f~k + e~k
ea~ k * f~o k' = (ef)cz k+k' = f a S �9 eo~ k

2.3 T h e C a l c u l u s

The collection of WSCCS expressions ranged over by E is defined by the follow-
ing BNF expression, where a E Act , X E V a t , wi E W , S ranging over renaming
functions, those S : Act ~ Act such that S(,,/) = v / and S(a) = S(~), action
sets A C Act , with ~ /E A, and arbi trary f inite indexing sets I:

4 Here e is the relative frequency with which this choice should be taken and k is the
priority level of this choice. The choice of notation is based in [Tof90] arising from
the observation that priority is similar to infinite weight.

293

E ::= X I a: E IE{w~.E~Ii E I} I E x E I E[A t O(E) I E[S] I#i~F,.

We let P r denote the set of closed expressions, and add 0 to our syntax, which

is defined by 0 de__] ~{w~.E~l i e ~}.
The informal interpretation of our operators is as follows: 0 a process which

cannot proceed; X the process bound to the variable X; a : E a process
which can perform the action a whereby becoming the process described by E;
~{w~.E~li C I} the weighted choice between the processes E~, the weight of the
outcome Ei being determined by wi. We think in terms of repeated experiments
on this process and we expect to see over a large number of experiments the
process Ei being chosen with a relative frequency of ~ . E x F the syn-

chronous parallel composition of the two processes E and F. At each step each
process must perform an action, the composition performing the composition (in
Act) of the individual actions; E [A represents a process where we only permi t
actions in the set A. This operator is used to enforce communication and bound
the scope of actions; O(E) represents taking the most prioritised parts of the
pro~ss E only; E[S] represents the process E relabelled by the function S;
i x E represents the solution xi taken from solutions to the mutually recursive
equations 2 = E.

Often we shall omit the dot when applying prefix operators; also we drop
trailing 0, and will use a binary plus instead of the two (or more) element indexed
sum, thus writing ~ { l l . a : 0, 22.b : 01i C {1, 2}} as 1.a + 2.b. Finally we allow
ourselves to specify processes definitionally, by providing recursive definitions of

processes. For example, we write A de-/ a : A rather than #x.a : x. The weight n
is an abbreviation for the weight nw ~ and the weight w k is an abbreviation for
the weight lw k.

For a full description of the operational semantics, equivalences, and the
algebra of WSCCS see [Tof90,Tof94].

3 D i s t r i b u t i o n s in W S C C S

We start by describing three simple distributions in WSCCS to illustrate how
we describe such costs and we shall then generalise these distributions.

Example 1. The linear distribution between 1 and n can be generated by the
following process:

Lo(n) de] 1 . s t a r t ~ f i n i s h : Lo(n) + (n - 1).start: Ll(n) + 1.~/: Lo(n)

n l (n) de.] 1 . f i n i sh : Lo(n) § (n - 2).x/: L2(n)

nk(n) d~_] 1 . f i n i sh : no(n) + (n - k - 1).~/: L(k+l)(n)

L(n-1)(n) de] 1 . f i n i sh : Lo(n)

As a simpler example for n = 3 we obtain the following:

294

L0(a) %] 1.start#finish: L0(3) + 2.start" L1(3) + 1.,/: L0(3)
L1(3) de_=l 1.finish: Lo(3) + 1.,/: L2(3)
L2(3) dj 1.finish: Lo(3)

Notice that in the above two processes the distribution is ' initiated' by a start
action upon which the environment will insist, and indicates its termination with
a f in i sh action which we shall oblige the environment to accept. After the f in i sh
action the process waits to be started again. All of our distribution processes
will follow this format.

D e f i n i t i o n 3.1 A process P is a distribution process iff all of its transitions
are in one of the following forms:

P P P) P P) ()*ii';i=h } P

D e f i n i t i o n 3.2 We define P(t , P) to be the probability that a distribution takes
time t to execute the actions start and f in i sh , we take the time of s t a r t ~ f i n i s h
to be 1, since it requires one tick to execute. Where it is clear from the context
we shall omit the process, simply writing P(t)

P r o p o s i t i o n 3.3 The probability of seeing a f in i sh action at any time in the
1 set { 1 , . . . , n } after the start action in the process L(n)o is: ~. That is Lo(n) is

a correct implementation of the linear distribution.

The above proposition can be demonstrated by direct calculation of the prob-
ability that a path between a start and a f in i sh action has within the WSCCS
calculus. Since in this, and the following example, that path is unique the cal-
culation is straightforward.

Example 2. The Geometric distribution can be defined by the following process:

Geoo(p) dej p.start•finish : Geoo(p) + (1 - p) . s t a r t : Geol(p) + 1.`/: Geoo(p)

aeol(p) de_~.J p.f inish : Geoo(p) + (1 - p) . v / : Geol(p)

P r o p o s i t i o n 3.4 The process Geoo(p) implements a geometric distribution , in .
other words: P(t, C e o 0 (p)) = p(1 - p) (t - 1)

Finally we present an example of a fixed time distribution.

Example 3. A fixed time t > 1 between the start and finish actions:

Fix(t)o aLI 1.start: Fix(t)1 + 1.`/: Fix(t)o
Fix(t)1 a~l 1.`/: Fix(t)2
Fix(t)k d~f 1.`/: Fix(t)(k+l)
Fix(t)t ~_I 1.finish: Fix(t)o

295

3.1 G e n e r a l Distributions

D e f i n i t i o n 3.5 A generalised distribution process using n states is given by the
following process expression:

Go de=] po.start~Cfinish : Go + Z npoi.start : Gi + 1.x/ : Go
i = 1

Gk de=] Pk. f inish : Go + ~ npki.x/ : Gi
i = l

Notice that in the above we have a large number of free parameters {p0, . . . , p ,}
and for {pki[1 < i, k < n}, we omit them formally from the definition for brevity,
but assume that for any particular general distribution there is a fixed set of such
parameters.

P r o p o s i t i o n 3.6 The process Go is a distribution process.

T h e o r e m 1. The family of distributions following the format of Go is the dis-
crete phase distributions. That is the distribution given by the time to absorbtion
of a discrete time Markov chain with a unique absorbing state [Ne195, pp421-
423].

C o r o l l a r y 3.7 WSCCS is sufficient to express any discrete phase distribution.

An interesting observation about the properties of such distributions and in
part motivation for our abstraction work is the following.

T h e o r e m 2 . Any bounded distribution, that is one where we can find a time
limit l such that for all t > l, P(t) = 0 and P(t = l) > O, requires a process with
at least 1 states to describe it.

An immediate corollary is that any Fix(t) distribution requires at least t
states to represent it. Hence, to represent distributions of the form wait t and
then behave as a geometric, a fairly common cost form, we may need a large
number of states.

The observation that fixed or limited distributions require a large number
of states to describe their behaviour is a severe limitation in at tempts to model
large scale systems. The growth in the number of states in a concurrent system
is exponential in the number states required to describe the components. Hence,
if we wish to make use of bounded time costs at the same time as variability
then we must find appropriate abstractions. It is clear that direct modelling, in
this style, will be intrinsically intractable. By contrast, using continuous time
models all fixed times have to be approximated ab intio by some distribution,
usually with the same mean.

296

4 C o m p o s i n g D i s t r i b u t i o n s

To generate more natural distributions, whilst not incurring a heavy state cost,
Erlang [Kle75,ppl19-147, Ne195, pp153-280] considered sequential and proba-
bilistic choice 5 compositions of identical geometric distributions. These give rise
to two simple two parameter families of distributions. For our purposes we wish
to consider three forms of composition on our distributions: sequential, non-
deterministic and parallel. We shall define these compositions and then examine
the possibility of finding families of distributions, or abstractions upon distri-
butions that are maintained by these compositions. In particular we wish to
demonstrate that our compositions are closed with respect to our basic distri-
bution family.

4.1 S e q u e n t i a l C o m p o s i t i o n

We can sequentially compose two distributions as follows. Firstly, we need an
auxiliary process to ensure that a f inish occurs before the next start can be
accepted:

def
Se = 1.start]#-g#f#finish : Se + 1.start#-~ : Sel + 1.v/: Se

Sel d~_] l.f#finish : Se + 1.~/: Sel

The auxiliary process above exploits the known properties of the distribution
processes it intends to compose. It takes the start request from the environment
and itiates the first of the two underlying distribution processes. We shall exploit
renaming to use the f inish action of the first component of the sequence to
initiate the second. Finally, when the second component terminates, which is
renamed to f , the system has completed and a f inish signal can be sent to
the environment. The reason we cannot simply leave the start action of the
first component and use its f inish to initiate the second component is that the
system would then be capable of prematurely accepting a further start action,
before the external f inish, violating the definition of a distribution process.

Now we can define a sequential composition of distribution processes:

D e f i n i t i o n 4.1 Given G10 and G20 are generalised distribution processes, their
sequential composition G10 ; G2o is defined by

(Glo[s/start, a/finish] • Se • G2o[f / f in ish, a/start])[{start, f inish}

P r o p o s i t i o n 4.2 If G10 and G20 are the initial states of two generalised dis-
tribution processes, then G10 ; G20 is a generalised distribution process

Example4. Let El(p) de__] Geo(p)o and Ek(p) d~_f EI(p); E(k-1)(p), then the
family Ek(p), k > 1, are the Erlang k distributions.

Example 5. Earlier we stated that an interesting distribution family is the geo-
metric after a fixed time. This can be formed as Fix(t)o ; Geo(p)o.

Although he thought of his choice construction in terms of a parallel composition.

297

4.2 P robab i l i s t i c Choice

We give the definition for choosing between two distributions. Again, an auxiliary
process for the construction:

Chse(p) de=_] p . s t a r t # - ~ # f # f i n i s h : Chse(p) + p . s t a r t # - ~ : C W (p)
+(1 - p) . s t a r t # s R # f # f i n i s h : Chse(p)
+(1 - p).start~:-s'R : C W (p) + 1.x/ : Chse(p)

C W (p) de=] 1.fC/:finish : Cgse(p) + 1.x/: C W (p)

Comparing with the role of the auxiliary process for sequence, this again
ensures that after a start action the f i n i sh action must proceed any further
start.

Defini t ion 4.3 Let G10 and G20 be generalised distribution processes, then we
can define their non-deterministic composition G10 +p G20 thus:

(Glo[sL /s tart , f / f i n i s h] x G2o[sR/start , f / f i n i s h] x Chse(p)) [{start, f i n i s h }

Proposition 4.4 I f G10 and G20 are the initial states of two generalised dis-
tribution processes, then G10 +p G20 is a generalised distribution process.

Example& Erlang's [Kle75] distribution family Hk(p) is the choice between k
identical geometric distributions, hence we can define

H2(p) de=] Geoo(p) +�89 Geoo(p)

4.3 Para l le l Composition

We present the parallel composition of two distributions using two auxiliary pro-
cesses. These respectively control the start and finish of the parallel composition:

P S d~] 1 . s t a r t # s l # s 2 : P S + 1.x/ : P S

P F d~] 1 . f l # f 2 ~ C f i n i s h : P F + 1 . f l : PF1 + 1.f2 : PF2 + 1.~/: P F

PF1 de__] 1.f2~Cfinish : P F + 1.~/: PF1

PF2 d~] 1 . f l # f i n i s h : P F + l .x / : PF2

Again, these processes will ensure that both of the components have com-
pleted their activity before a second start action is permitted.

Definition 4.5 Let G10 and G20 be two generaIised distribution processes, then
we can define their parallel composition G10 I[G20 thus:

(P S x Glo[s l /s tar t , f l l f i n i s h] x G2o[s2/start, f 21 f inish] x P F) r { start, f i n i sh }

Proposition 4.6 I f G10 and G20 are the initial states of two generalised dis-
tribution processes then G10 II G20 is a generalised distribution process.

298

Example 7. Consider the parallel composit ion of two geometric distributions
Geo(p)o [I Geo(p)o. This is equivalent to the process:

G~(p) dej p 2 . s t a r t# f i n i sh : G~(p) + 2p(1 - p).start : G~(p)
+(1 - p)2.start : G~ + 1.~/: G~(p)

G~(p) de=] p~. f inish : G~(p) + 2p(1 - p) .v / : G~(p)
+(1 -p)2.start: G~

G~(p) d~__] p . f i n i sh : G~(p) + (1 - p) .x / : O~(p)

Notice that in general there is no q for which Geoo (p) II Geoo (p) is even similar
to Gco(q), let alone identical.

4.4 D e f i n e d n e s s

When we compose a collection of distributions together, then given that the
properties of the constituent distributions are well defined, the properties of the
composit ions should be well defined.

Example 8. We define a distribution that is well defined in terms of probabil i ty
1 i = o e 1 ~r and consider the following and yet does not have a mean. Let E = ~ i = 0 V = g ,

distribution:

d~/ J" ~ if t = 10 k for integer k
P(t , G)

= \ 0 Otherwise

Simple ari thmetic demonstrates that 2 t = l P (t , G) = 1, and 2~=l tP(t , G) = co.

D e f i n i t i o n 4.7 A distribution G is defined for weight k iff given c > 0 there
oo k exists an n such that ~ t = n t P(t , G) <

T h e o r e m 3. Let G1 and G2 be two distributions which are defined for weight k
then so are the distributions G1 ; G2, G1 +p G2, and G1 II G2.

5 A b s t r a c t i o n

In order that we can calculate efficiently over composit ions of distributions, we
wish to abstract representative information and calculate only with that. We
star t by defining a general notion of abstract ion as a map between algebras. If
we can find destination or abstraction algebras for which a homomorphism exists
with our composit ional system then we can form a congruence. Four forms of
abstract ion algebra that permit different kinds of calculation are then presented.

D e f i n i t i o n 5.1 We observe that our compositions form an algebra with sort
functions N" -+ T~, and operations ;, II, and +p. We call this algebra ThA.

D e f i n i t i o n 5.2 An abstract ion A is an algebra morphism A : ~).A --+ X where
X is an arbitrary algebra.

299

L e m m a 4. An abstraction A induces a congruence over distributions iff it is an
algebra homomorphism [MT91],in other words:

A (D ! ; D :) = A(;) (A(D1) ,A(D2))
A (Dt +p D2) : A(+p)(A(D1) , A(D2))
A(DIlID2) = A(l l) (A(D1) ,A(D2))

D e f i n i t i o n 5.3 Two distribution processes are abstraction equivalent if the dis-
tributions they define are equivalent up to some abstraction A.

L e m m a 5 . I f an abstraction induces a congruence with respect to distributions
then it induces a congruence with respect to distribution processes.

The obvious abstraction to take is that of means. However the following ex-
ample shows that means are not preserved by parallel composition and therefore
we will be unable to find an appropriate map.

Example 9. Consider a two point distribution with equal probability of taking
10 or 20 ticks (the unit of time). The mean for this distribution is 15 units of
time. Composing two of these distributions in parallel we have two systems with

1 the same mean. However the parallel distribution takes 10 with probability
and 20 with probability 43- and has a mean of 17.5. Now compare this with the
parallel composition of two point distributions of 15, the parallel distribution has
mean of 15 ticks. Hence, knowing the means of two distributions is insufficient
information to predict the mean of their parallel composition and consequently
this cannot (unfortunately) form an appropriate abstraction.

5.1 M i n a n d M a x

The abstraction which uses the minimum and maximum values a distribution
can take, forms a congruence inducing abstraction. This is similar to duration
analysis [Han94].

D e f i n i t i o n 5.4 Take as destination algebra (Af2; ;m,~ , +prom, I] ,~) with the op-
erators defined as follows:

;..m ((rail, real), (mi~, ma~)) = ((rail + mi~, real + ma~))
+p~.~((mil, .~al), (mi~, .~a~)) = (.~in(mi, , mi~), max(.~a~, ma~))
IJ~m((mil, .~a~), (mi~, ma~)) = (.~ax(mil, .~i~), max(ma,, ~a~))

with the obvious implied sorts.

Now we define the homormorphism by mapping the operations to their ana-
logues given above, and the distributions by taking the ordered pair formed from
the least non-zero probability time and the maximum non-zero probability time.

L e m m a 6. The algebra morphism defined above is a homomorphism.

Whilst this forms a congruence it does not contain any information about
the variability of the system. Clearly in t h e above analysis we could take just
the minima or the maxima individually and form a congruence.

300

5.2 T r u n c a t e d d i s t r i b u t i o n s

D e f i n i t i o n 5.5 Consider a distribution D and a natural T (the limit time) then
form D[T in the following fashion:

ID(t) i f t < T D[T(t) L 0 otherwise

The sort of D[T : [0, T] -+ 7r which we shall name Trun.

We can form an algebra of our truncated distribution with suitable operators.

D e f i n i t i o n 5.6 Consider three operators ;T, +pT and lIT:

i=t

;2 (T1 ,T2) (t) = Tl(i)T (t -i)
i = 0

+v~(T1, T2)(t) = pTl (t) + (1 - p)T2(t)
i< t i<t

[[T(TI,T2)(t) = Tl(t)T2(t) + T I (t) E T 2 (t - i) + T 2 (t) E T ~ (t - i)
i = 0 i = 0

with the obvious sorts. We can form an algebra (Trun; +pT, ;2, liT) and an ab-
straction AT by mapping distributions to their truncations and operators to their
truncated equivalents.

L e m m a 7 . The algbera morphism defined above is a homomorphism.

We can use the est imates for various parameters for the original distribution
from the t runcated distribution. In particular we can define the mean of this
distribution.

D e f i n i t i o n 5.7 The mean #T of a truncated distribution D[T:

T

= } l i D (t)
t=O

L e m m a S . I f# is the mean distribution D, with a well defined mean, then #T <
where PT is the mean of D[T. Furthermore lirnT~oo#T = #.

Hence the means derived from truncated distributions are lower bounds on
the mean of the complete distribution. Similar results can be obtained for the
other order weights of the system, allowing analysis of variance and other dis-
t r ibution properties.

5.3 S u b s a m p l e d T r u n c a t e d

Consider the following abstract ion over a distribution.

D e f i n i t i o n 5.8 Let D be a distribution with a > 1 and T a multiple of a natu-
rals; we define a truncated subsampled Da IT as follows:

301

/'•
D~ [T(t) = D(i) if at < T

| i=(*-1)a+1
t 0 otherwise

the sort of D~ r T : [0, ~] -~ U which we shall name T r u n k .

We can now define an algebra using operators defined in an identical fashion
as those for t runcated distributions.

L e m m a 9 . There is an algebra homomorphism between 59.A and the algbera
(Truna; +pr, ;T , liT).

D e f i n i t i o n 5.9 The mean #T,~ of a subsampled truncated distribution Da IT:

T_
ot

#T~ = E t a D (t)
t=0

L e m m a 10. I f # is the mean of an aperiodic first weight defined distribution D
then there exists a and T such that for all a I >_ a and T ~ >_ T #T', >_ # where

#T, w is the mean of D~, IT.

Hence the means derived from subsampled truncated distributions are in the
limit upper bounds on the mean of the complete distribution.

5.4 B o u n d i n g P r o b a b i l i t y

One problem of the above descriptions is that we lose information in the sequence
constructions. Since above the limit we can only calculate a lower bound on
the probabil i ty of an event occuring at that time. If we could mainta in all of
the distribution then we could predict the information we needed about the
components in order to calculate a certain limit on the distribution of a system.

D e f i n i t i o n 5.10 Given a distribution D then a bounding probabil i ty is a rela-
t

tion DB : (Af -+ Tt) x (TI x Af) such that (D, (p,t)) E DB(D) if E D (i) > p
i=0

In other words, we can put (p, t) in the bounds of D, if the probabil i ty of the
distribution D taking less than t is a least p. We can construct DB as a function
with repsect to t insisting that a single choice of p is made for each t.

D e f i n i t i o n 5.11 We can define three operators ;DB, "~-pDB and IIDB:

((pl, t l) , t2)) = (plp2, t l +
-FpDB.((pl, t l) , (P2, t2)) ~--- (PlP2, m a x (t 1 , t2))
]]DB((Pl, t l) , (P2, t2)) = (PPl + (1 -- P)P2, max(t1, t2))

with the obvious sorts.

302

L e m m a l l . There is a homomorphism between 79.4 and the algebra ((Tr •

~;); + p D B , ;DB , IIDB)

L e m m a 12. Let D be a distribution formed from a system of n components (that
is to say n applications of either sequence, parallel or choice) then to obtain
D B (D , p ~) we need to know DB(Di ,p) for each component distribution D~.

For example given a system of 10 components and needing to know the
95% limit on the system performance we need to know to within 0.995 (since
0.9951~ > 0.95) the performance of each of the components.

Obviously we can define a cummulat ive distribution defined as a set of pairs
of distribution bounds. Unfortunately, the behaviour of means derived from th is
abstract ion can only be shown to tend to the true mean (when all t imes are sam-
pled) it is unknown in what manner it tends to this limit. However, performance
requirements are frequently expressed in terms of such bounds, so their efficient
calculation is impor tant .

6 E x a m p l e

As a large scale example (in this case 19 components) consider a 3 level pipelined
asynchronous processesor as described in Figure 1. We assume that each cycle
requires a fetch, a decode and an execute. We assume that there is no contention
for the fetch unit, al though it is used 3 times in the system. In the diagram the
costs for each of the processing elements are labelled.

.009

v~tc~ iJ, i, Execute

Vix(iCx-,o) i F!II!!ssor t

Fig. 1. The t ime costs of the components of the fetch and execute units of a
prototypical processor, the final costs of the decode unit are included in the final
composition.

303

The system presented would require 2001 states to describe the fetch unit,
which appears independently three times in the design. The decode unit (between
the fetch and the execute) requires 15, and the execute unit at least 20012 for the
two fetch units it uses. The total number of states, as a phase distribution would
be 120 * 106. At this point the distribution would still have to be generated
from the description, and given the number of states, it is unlikely that this
distribution can be derived by exhaustive calculation. Hence, the distribution
would have to be derived by some form of simulation, this rendering the formal
model somewhat pointless.

The probability distribution for the first 5000 ticks of the system has been
calculated. The data covers 99.99999% of the distribution and took 10 minutes
of Sparc II t ime to calculate, the mean is 23.08. For comparison, the system was
simulated, by generating samples from each of the underlying distributions, for
30 minutes and a mean of 22.53 obtained after 100000 samples were taken. Note

1 of the that the calculational approach has achieved 100 times the accuracy in
time.

Given the simulation was run 100000 times we should not expect to see events
of greater rarity than 1 in 105. In the simulation of processors whose costs tend
to be dominated by rare events, such as paging, the need to accurately represent
the presence of these events is crucial. The calculational approach has covered
events of order 1 in 107. I t should be noted form the distributions that t h e
occasional cost of 4000 ticks has a freqeuncy in the range 0.00001, and hence
we could not expect a simulation run of 100000 repetitions to correctly estimate
its consequences. Clearly a simulation is going to require prohibitive number of
repetitions in order that it will achieve a reasonably accurate estimate of the
performance of this system.

7 C o n c l u s i o n s a n d F u r t h e r W o r k

We have demonstrated abstraction techniques that permit simple calculation
of performance bounds on large scale systems. Furthermore, when dealing with
unbounded distributions, it is possible to predict in advance what quality of
bound can be obtained given a certain degree of knowledge of the performance
of the components of the system. We have shown two truncation methods that
give us respectively upper and lower bounds on the average case performance
of a system. Whilst we presented our abstractions in the context of discrete
distributions, they would work equally well if the underlying distributions were
continuous. This work underpins, by providing an efficient calculation strategy
on distribution compositions, work using a greater level of abstraction to describe
systems. In this presentation we have omitted details of how data dependency
can be modelled. Whilst this can be achieved in the usual way [Mil90] we leave
it for a more abstract approach in which both data dependency and conflict can
be modelled.

The notion of equivalence between distributions processes here, clearly has
applications in the wider context of a probabilistic Calculus. In particular ab-

304

stracting over the particular paths between two events and concentrating on
the distribution of the time. Furthermore, the ability to perform symbolic cal-
culations with distributions permits a far greater flexibility in addressing per-
formance problems and may be achievable with further abstractions justified
by these underlying calculational techniques. The general framework for defin-
ing abstractions over distributions which we have presented permits the efficient
study of other possible abstraction methods. Calculations over the two truncated
distribution methods have been automated, alongside a direct simulator for the
same systems permitting comparison, this program (in SML) can be obtained
from the author.

8

[CH87]

[GSST90]

[Han91]

[Han94]

[Hil94]

[HJ94]

EHoa85]
[HM93]

[HR94]

[Kle75]
[Mil80]
[MilS3]

[Mil90]
[MT91]

[Ne195]

[paz71]
[SS90]

[Tof90]

[Tot93]

[Tof94]

[To f95]

[vw92]

305

Bibliography.

I. CasteUani and M. Hennessey, Distributed Bisimulation, Report Sussex University
5/87, July 1987.
R. van Glabbeek, S. A. Smolka, B. Steffen and C.Tofts, Reactive, Generative and
Stratified Models of Probabilistic Processes, proceedings LICS 1990.
H. Harmsson, Time and probability in Formal Design of Distributed Systems PhD
Thesis, Department of Computer Systems Uppsala University Uppsala Sweden.
TR DoCS 91/27. 1991
M.R. Hansen, Model Checking Discrete Duration Calculus, FACS 6A:826-845,
1994.
J. Hilston, A Compositional Approach to Performance Modelling, PhD Thesis,
Department of Computer Science, University of Edinburgh, 1994.
H. Hansson and B. Jonsson, A Logic for Reasoning about Time and Reliability,
FACS (6):512-535, 1994.
C. A. R. Hoare, Communicating Sequential Processes, Prentice-Hall 1985.
J. Hilston and F. Moller Proceedings of 1st Conference on Process Algebra and
Performance Modelling, Edinburgh Computer Science Departmental Report, 1993
U. Herzog and M. Rettlebach, Proceedings of 2nd Conference on Process Algebra
and Performance Modelling, 1994
L. Klein_rock, Queueing Systems, Volumes I and II, John Wiley, 1975.
R. Milner, Calculus of Communicating System, LNCS92, 1980.
R. Milner, Calculi for Synchrony and Asynchrony, Theoretical Computer Science
25(3), pp 267-310, 1983.
R. Milner, Communication and Concurrency, Prentice Hall, 1990.
K. Meinke and J.V. Tucker, Universal Algebra, pp189-411 in Hanbook of Logic
in Computer Science, ed S. Abramsky, D. Gabbay and T. S. E. Maibaum, Oxfor
University Press, 1991.
K. Nelson, Probability, Stochastic Processes and Queueing Theory, Springer Ver-
lag, 1995.
A. Paz, Introduction to Probabilistic Automata, Academic Press, 1971.
S. Smolka and B. Steffen, Priority as Extremal Probability, Proceedings Concur
'90, LNCS 458, 1990.
C. Toffs, A Synchronous Calculus of Relative Frequency, CONCUR '90, Springer
Verlag, LNCS 458.
C. Toffs, Exact Solutions to Finite State Simulation Problems, Research Report,
Department of Computer Science, University of Calgary, 1993.
C. Toffs, Processes with Probabilities, Priorities and Time, FACS 6(5): 536-564,
1994.
C. Toffs, Exact and Approximate Analytic Solutions of Properties of Probabilistic
Processes, Proceedings first TACAS 1995, LNCS 1017.
S. F. M. van Vlijmen, A. van Waveren, An Algebraic Specification of a Model Fac-
tory, Research Report, University of Amsterdam Programming Research Group,
1992.

