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A b s t r a c t .  Recent extensions to process algebras can be used to describe 
performance or error rate properties of systems. We examine an abstract 
approach to the representation of time costs within these algebras that 
permits the efficient calculation of performance bounds on systems. In 
particular we avoid the 'state explosion' caused by the parallel compo- 
sition of the representations of probabilistic time distributions. A major 
advantage of one of our approaches is its uniformity, which allows the 
eventual approximation level to be easily predicted from quality of the 
approximations to the underlying distributions. 

1 I n t r o d u c t i o n  

Recently there has been considerable interest in the use of formal methods to 
derive performance predictions for concurrent systems including [Tof90, GSST90, 
SS90, Hun91, HM93, HR94]. One particular approach is to exploit a process 
algebraic description of the system under consideration [Mil80, MilS3, Milg0, 
Tof90, Hun91, VW92, Tof93, Tof94, Tof95]. Whilst it is possible to describe large 
scale systems using such methods,  the efficient derivation of system properties 
remains difficult, as a result of the large number  of states required to describe 
such systems. In this paper  we examine how costs within a simple model can 
be considered compositionally thus permit t ing us to reason effectively over large 
scale systems. 

Consider the following two processes in some prototypical  asynchronous prob- 
abilistic process description l anguage :  

def P = -5.Dp.-b.P Q d~y = a.Dq.b.c.Q 

the intention of the above is that  the actions ~ and b in the process P are sep- 
arated in t ime by an amount  given by the distribution DR, and likewise for 
the process Q. Considering a possible parallel composition of the above two 

def 
processes: S - (P[Q)\a,  b clearly we should expect that  this process is obser- 

vationally equivalent to the process: R d~=] D?.c.R. Since the two processes will 
synchronise on the a action, then both spend some time, given by their respec- 
tive distributions, and then synchronise on the b action 2, with the process Q 

* This work is supported by an EPSRC Advanced Fellowship. 
2 This is similar to the account of asynchronous actions with duration given by Castel- 

lani and Hennessy [CH87]. 
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producing a c action. Since the processes are asynchronous if the b action (or its 
dual) becomes enabled in one process before the other we would demand that  
it wait for the dual action to become available before continuing. However a 
question remains, what is the distribution D?, and can it be derived efficiently? 
Clearly, from the simple intended semantics given above, D? is a function of the 
maximum of the two distributions Dp and DQ. 

A possible solution to the above problem is to search for a simply defined 
family of distributions (that is one whose definition rests on a small number of 
parameters) which are preserved under the compositions of a process algebra. We 
could subsequently use this distribution family to approximate the distributions 
in the model system. In terms oi" simplicity the primary candidate is the family of 
geometric distributions, as they require but a single parameter to describe each 
particular distribution. This approach has been followed by Hillston [Hil94] but, 
as we shall demonstrate later, this family of distributions is n o t  closed under 
the operations of a process algebra. 

A further possibility is the use of the very general p h a s e  d i s t r i b u t i o n s  
[Nel95] which are known to be closed under the maximum operator. However, as 
we shall observe, whilst providing a well formed closed family under the opera- 
tions of a process algebra, that  these distributions do not provide an abstraction 3. 
Indeed we are obliged to maintain as much information to describe the phase 
distribution as is present within the original description. 

Throughout  the sequel we shall use the Weighted Synchronous Calculus of 
Communicating Systems (WSCCS) to describe these composition problems. It 
may seem unreasonable to use a synchronous calculus to describe an asyn- 
chronous problem but as Milner [MilS3, Milg0] demonstrated these calculi ac- 
tually contain asynchronous calculi. Furthermore, the underlying simplicity of 
the synchronous approach often clarifies difficult t iming problems, and permits 
greater insight. 

In the next section we present a brief introduction to the calculus WSCCS, 
this can be regarded as a prototypical probabilistic process algebra. Any other 
synchronous probabilistic calculus could be used [GSSTg0, SS90, Han91]. We 
then present how distributions can be represented in WSCCS and the represen- 
tat ion of their composition. In section 5 we present the notion of abstraction 
over distributions, this is similar to notions of observational equivalence in CCS 
[MilS0,Mil90]. In section 6 we present an example calculation of the performance 
of a prototypical processor. 

2 W S C C S  

The language WSCCS [Tof90,Tof94] is an extension of Milner's SCCS [Mi183] 
a language for describing synchronous concurrent systems. Here we provide an 
introduction to the syntactic constructs that  underlie WSCCS but omit the for- 

3 For instance WSCCS actually defines the appropriate phase distributions, when rep- 
resented via a Markov Chain. 
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mal semantics and algebraic properties as they have a full description elsewhere 
[Tof94]. 

To define the language we presuppose a free abelian group Act  over a set of 
a tomic action symbols with identity ~ and the inverse of a being g. To distinguish 
multiplications over extended action names we use the symbol # to denote 
multiplication. As in SCCS, the complementary  actions a (conventionally input) 
and g (output) form the basis of communication.  Within our group we define 
that  ~ = a-1 .  The action v / denotes the performance of a communication,  taking 
one period of time, alternatively it can describe a one period delay. 

2.1 E x p r e s s i o n s  

We define a set of expressions. 

D e f i n i t i o n  2.1 A relative frequency expression (RFE) is f o rmed  f rom the fol- 
lowing syntax, with x ranging over a set o f  variable names V R F ,  and c ranging 
over a fixed field (such as N" or T~): 

e : :=  x lc le  + ele * 

Further  we assume that the expressions fo rm an abelian field. 

In the sequel we shall omit  the * in expressions, denoting expression mul- 
tiplication by juxtaposi t ion.  It should be noted that  unlike other calculi with 
expressions [Mil90] the value of our expressions can have n o  e f fec t  on the struc- 
ture of the transition graph of our system. Hence we should not expect that  
adding this extra  structure to our probabilistic process algebra will cause any 
new technical difficulties. 

2.2 W e i g h t s  

We also take a set of weights W, denoted by wi, which are of the form 4 eco k 
with e from the relative frequency expressions and the ~0 k (with k > 0) a set of 
infinite objects, with the multiplication and addition rules (assuming k > kl): 

e~k + f~ok' = e~k = f~k'  + e~k e~k + f~k = (e + f)~o k = f~k + e~k 
ea~ k * f~o k' = (ef)cz k+k' = f a S  �9 eo~ k 

2.3 T h e  C a l c u l u s  

The collection of WSCCS expressions ranged over by E is defined by the follow- 
ing BNF expression, where a E Act ,  X E V a t ,  wi E W ,  S ranging over renaming 
functions, those S :  Act  ~ Act  such that  S(,,/) = v / and S(a)  = S(~), action 
sets A C Act ,  with ~ /E  A, and arbi trary f inite indexing sets I: 

4 Here e is the relative frequency with which this choice should be taken and k is the 
priority level of this choice. The choice of notation is based in [Tof90] arising from 
the observation that priority is similar to infinite weight. 
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E ::= X I a:  E IE{w~.E~Ii  E I} I E x E I E[A  t O(E) I E[S] I#i~F,. 

We let P r  denote the set of closed expressions, and add 0 to our syntax, which 

is defined by 0 de__] ~{w~.E~l i e ~}. 
The informal interpretation of our operators is as follows: 0 a process which 

cannot proceed; X the process bound to the variable X; a : E a process 
which can perform the action a whereby becoming the process described by E; 
~{w~.E~li  C I} the weighted choice between the processes E~, the weight of the 
outcome Ei being determined by wi. We think in terms of repeated experiments 
on this process and we expect to see over a large number of experiments the 
process Ei being chosen with a relative frequency of ~ .  E x F the syn- 

chronous parallel composition of the two processes E and F.  At each step each 
process must perform an action, the composition performing the composition (in 
Act) of the individual actions; E [ A  represents a process where we only permi t  
actions in the set A. This operator is used to enforce communication and bound 
the scope of actions; O(E) represents taking the most prioritised parts of the 
pro~ss  E only; E[S] represents the process E relabelled by the function S; 
# i x E  represents the solution xi taken from solutions to the mutually recursive 
equations 2 = E. 

Often we shall omit the dot when applying prefix operators; also we drop 
trailing 0, and will use a binary plus instead of the two (or more) element indexed 
sum, thus writing ~ { l l . a  : 0, 22.b : 01i C {1, 2}} as 1.a + 2.b. Finally we allow 
ourselves to specify processes definitionally, by providing recursive definitions of 

processes. For example, we write A de-/ a : A rather than #x.a : x. The weight n 
is an abbreviation for the weight nw ~ and the weight w k is an abbreviation for 
the weight lw k. 

For a full description of the operational semantics, equivalences, and the 
algebra of WSCCS see [Tof90,Tof94]. 

3 D i s t r i b u t i o n s  in W S C C S  

We start  by describing three simple distributions in WSCCS to illustrate how 
we describe such costs and we shall then generalise these distributions. 

Example 1. The linear distribution between 1 and n can be generated by the 
following process: 

Lo(n) de] 1 . s t a r t ~ f i n i s h  : Lo(n) + (n - 1).start:  Ll(n)  + 1.~/: Lo(n) 

n l (n)  de.] 1 . f i n i sh :  Lo(n) § (n - 2).x/:  L2(n) 

nk(n) d~_] 1 . f i n i sh :  no(n) + (n - k - 1).~/: L(k+l)(n) 

L(n-1)(n) de] 1 . f i n i sh :  Lo(n) 

As a simpler example for n = 3 we obtain the following: 
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L0(a) %] 1.start#finish: L0(3) + 2.start" L1(3) + 1.,/: L0(3) 
L1(3) de_=l 1.finish: Lo(3) + 1.,/: L2(3) 
L2(3) dj  1.finish: Lo(3) 

Notice that  in the above two processes the distribution is ' initiated' by a start 
action upon which the environment will  insist, and indicates its termination with 
a f in i sh  action which we shall oblige the environment to accept. After the f in i sh  
action the  process waits to be started again. All of our distribution processes 
will follow this format.  

D e f i n i t i o n  3.1 A process P is a distribution process iff all of its transitions 
are in one of the following forms: 

P P P ) P P ) ( )*ii';i=h } P  

D e f i n i t i o n  3.2 We define P(t ,  P) to be the probability that a distribution takes 
time t to execute the actions start and f in i sh ,  we take the time of s t a r t ~ f i n i s h  
to be 1, since it requires one tick to execute. Where it is clear from the context 
we shall omit the process, simply writing P(t)  

P r o p o s i t i o n  3.3 The probability of seeing a f in i sh  action at any time in the 
1 set { 1 , . . . , n }  after the start action in the process L(n)o is: ~. That is Lo(n) is 

a correct implementation of the linear distribution. 

The above proposition can be demonstrated by direct calculation of the prob- 
ability that  a path between a start and a f in i sh  action has within the WSCCS 
calculus. Since in this, and the following example, that  path is unique the cal- 
culation is straightforward. 

Example 2. The Geometric distribution can be defined by the following process: 

Geoo(p) dej p.start•finish : Geoo(p) + (1 - p ) . s t a r t :  Geol(p) + 1.`/:  Geoo(p) 

aeol(p ) de_~.J p.f inish : Geoo(p) + (1 - p ) . v / :  Geol(p) 

P r o p o s i t i o n  3.4 The process Geoo(p) implements a geometric distribution , in . 
other words: P(t, C e o 0 ( p ) )  = p(1  - p ) ( t - 1 )  

Finally we present an example of a fixed time distribution. 

Example 3. A fixed time t > 1 between the start and finish actions: 

Fix(t)o aLI 1.start: Fix(t)1 + 1.`/: Fix(t)o 
Fix(t)1 a~l 1.`/: Fix(t)2 
Fix(t)k d~f 1.`/: Fix(t)(k+l) 
Fix(t)t ~_I 1.finish: Fix(t)o 
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3.1 G e n e r a l  Distributions 

D e f i n i t i o n  3.5 A generalised distribution process using n states is given by the 
following process expression: 

Go de=] po.start~Cfinish : Go + Z npoi.start : Gi + 1.x/ : Go 
i = 1  

Gk de=] Pk. f inish : Go + ~ npki.x/ : Gi 
i = l  

Notice that  in the above we have a large number of free parameters {p0, . . . ,  p ,}  
and for {pki[1 < i, k < n}, we omit them formally from the definition for brevity, 
but assume that  for any particular general distribution there is a fixed set of such 
parameters. 

P r o p o s i t i o n  3.6 The process Go is a distribution process. 

T h e o r e m  1. The family of distributions following the format of Go is the dis- 
crete phase distributions. That is the distribution given by the time to absorbtion 
of a discrete time Markov chain with a unique absorbing state [Ne195, pp421- 
423]. 

C o r o l l a r y  3.7 WSCCS is sufficient to express any discrete phase distribution. 

An interesting observation about the properties of such distributions and in 
part motivation for our abstraction work is the following. 

T h e o r e m 2 .  Any bounded distribution, that is one where we can find a time 
limit l such that for all t > l, P(t)  = 0 and P(t  = l) > O, requires a process with 
at least 1 states to describe it. 

An immediate corollary is that  any Fix( t )  distribution requires at least t 
states to represent it. Hence, to represent distributions of the form wait t and 
then behave as a geometric, a fairly common cost form, we may need a large 
number of states. 

The observation that  fixed or limited distributions require a large number 
of states to describe their behaviour is a severe limitation in at tempts to model 
large scale systems. The growth in the number of states in a concurrent system 
is exponential in the number states required to describe the components. Hence, 
if we wish to make use of bounded time costs at the same time as variability 
then we must find appropriate abstractions. It is clear that direct modelling, in 
this style, will be intrinsically intractable. By contrast, using continuous time 
models all fixed times have to be approximated ab intio by some distribution, 
usually with the same mean. 
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4 C o m p o s i n g  D i s t r i b u t i o n s  

To generate more natural distributions, whilst not incurring a heavy state cost, 
Erlang [Kle75,ppl19-147, Ne195, pp153-280] considered sequential and proba- 
bilistic choice 5 compositions of identical geometric distributions. These give rise 
to two simple two parameter  families of distributions. For our purposes we wish 
to consider three forms of composition on our distributions: sequential, non- 
deterministic and parallel. We shall define these compositions and then examine 
the possibility of finding families of distributions, or abstractions upon distri- 
butions that  are maintained by these compositions. In particular we wish to 
demonstrate that our compositions are closed with respect to our basic distri- 
bution family. 

4.1 S e q u e n t i a l  C o m p o s i t i o n  

We can sequentially compose two distributions as follows. Firstly, we need an 
auxiliary process to ensure that  a f inish occurs before the next start can be 
accepted: 

def 
Se = 1.start]#-g#f#finish : Se + 1.start#-~ : Sel + 1.v/: Se 

Sel d~_] l.f#finish : Se + 1.~/: Sel 

The auxiliary process above exploits the known properties of the distribution 
processes it intends to compose. It takes the start request from the environment 
and itiates the first of the two underlying distribution processes. We shall exploit 
renaming to use the f inish action of the first component of the sequence to 
initiate the second. Finally, when the second component terminates, which is 
renamed to f ,  the system has completed and a f inish signal can be sent to 
the environment. The reason we cannot simply leave the start action of the 
first component and use its f inish to initiate the second component is that  the 
system would then be capable of prematurely accepting a further start action, 
before the external f inish, violating the definition of a distribution process. 

Now we can define a sequential composition of distribution processes: 

D e f i n i t i o n  4.1 Given G10 and G20 are generalised distribution processes, their 
sequential composition G10 ; G2o is defined by 

(Glo[s/start, a/finish] • Se • G2o[f / f in ish,  a/start])[{start, f inish} 

P r o p o s i t i o n  4.2 If G10 and G20 are the initial states of two generalised dis- 
tribution processes, then G10 ; G20 is a generalised distribution process 

Example4. Let El(p) de__] Geo(p)o and Ek(p) d~_f EI(p); E(k-1)(p), then the 
family Ek(p), k > 1, are the Erlang k distributions. 

Example 5. Earlier we stated that  an interesting distribution family is the geo- 
metric after a fixed time. This can be formed as Fix(t)o ; Geo(p)o. 

Although he thought of his choice construction in terms of a parallel composition. 
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4.2 P robab i l i s t i c  Choice  

We give the definition for choosing between two distributions. Again, an auxiliary 
process for the construction: 

Chse(p) de=_] p . s t a r t # - ~ #  f # f i n i s h  : Chse(p) + p . s t a r t # - ~  : C W ( p )  
+(1 - p ) . s t a r t # s R # f # f i n i s h  : Chse(p) 
+(1 - p).start~:-s'R : C W ( p )  + 1.x/ : Chse(p) 

C W ( p )  de=] 1.fC/:finish : Cgse(p) + 1.x/: C W ( p )  

Comparing with the role of the auxiliary process for sequence, this again 
ensures that after a start action the f i n i sh  action must proceed any further 
start. 

Defini t ion  4.3 Let G10 and G20 be generalised distribution processes, then we 
can define their non-deterministic composition G10 +p G20 thus: 

(Glo[sL /s tart ,  f / f i n i s h ]  x G2o[sR/start ,  f / f i n i s h ]  x Chse(p) ) [ {start,  f i n i s h }  

Proposition 4.4 I f  G10 and G20 are the initial states of two generalised dis- 
tribution processes, then G10 +p G20 is a generalised distribution process. 

Example& Erlang's [Kle75] distribution family Hk(p) is the choice between k 
identical geometric distributions, hence we can define 

H2(p) de=] Geoo(p) +�89 Geoo(p) 

4.3 Para l le l  Composition 

We present the parallel composition of two distributions using two auxiliary pro- 
cesses. These respectively control the start and finish of the parallel composition: 

P S  d~] 1 . s t a r t # s l # s 2  : P S  + 1.x/ : P S  

P F  d~] 1 . f l # f 2 ~ C f i n i s h  : P F  + 1 . f l  : PF1 + 1.f2 : PF2 + 1.~/: P F  

PF1 de__] 1.f2~Cfinish : P F  + 1.~/: PF1 

PF2 d~] 1 . f l # f i n i s h  : P F  + l .x /  : PF2 

Again, these processes will ensure that both of the components have com- 
pleted their activity before a second start action is permitted. 

Definition 4.5 Let G10 and G20 be two generaIised distribution processes, then 
we can define their parallel composition G10 I[ G20 thus: 

( P S x Glo[s l /s tar t ,  f l l f i n i s h  ] x G2o[s2/start, f 21 f  inish ] x P F ) r { start, f i n i sh }  

Proposition 4.6 I f  G10 and G20 are the initial states of two generalised dis- 
tribution processes then G10 II G20 is a generalised distribution process. 
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Example 7. Consider the parallel composit ion of two geometric distributions 
Geo(p)o [I Geo(p)o. This is equivalent to the process: 

G~(p) dej p 2 . s t a r t# f i n i sh  : G~(p) + 2p(1 - p).start  : G~(p) 
+(1 - p)2.start : G~ + 1.~/: G~(p) 

G~(p) de=] p~. f inish : G~(p) + 2p(1 - p) .v / :  G~(p) 
+(1 -p)2.start: G~ 

G~(p) d~__] p . f i n i sh  : G~(p) + (1 - p) .x / :  O~(p) 

Notice that  in general there is no q for which Geoo (p) II Geoo (p) is even similar 
to Gco(q), let alone identical. 

4.4 D e f i n e d n e s s  

When we compose a collection of distributions together, then given that  the 
properties of the constituent distributions are well defined, the properties of the 
composit ions should be well defined. 

Example 8. We define a distribution that  is well defined in terms of probabil i ty 
1 i = o e  1 ~r and consider the following and yet does not have a mean. Let E = ~ i = 0  V = g , 

distribution: 

d~/ J" ~ if t = 10 k for integer k 
P( t ,  G) 

= \ 0  Otherwise 

Simple ari thmetic demonstrates  that  2 t = l P ( t ,  G) = 1, and 2~=l tP( t ,  G) = co. 

D e f i n i t i o n  4.7 A distribution G is defined for weight k iff given c > 0 there 
oo  k exists an n such that ~ t = n t  P(t ,  G) < 

T h e o r e m  3. Let G1 and G2 be two distributions which are defined for weight k 
then so are the distributions G1 ; G2, G1 +p G2, and G1 II G2. 

5 A b s t r a c t i o n  

In order that  we can calculate efficiently over composit ions of distributions, we 
wish to abstract  representative information and calculate only with that.  We 
star t  by  defining a general notion of abstract ion as a map  between algebras. If  
we can find destination or abstraction algebras for which a homomorphism exists 
with our composit ional system then we can form a congruence. Four forms of 
abstract ion algebra that  permit  different kinds of calculation are then presented. 

D e f i n i t i o n  5.1 We observe that our compositions form an algebra with sort 
functions N" -+ T~, and operations ;, II, and +p. We call this algebra ThA. 

D e f i n i t i o n  5.2 An abstract ion A is an algebra morphism A : ~).A --+ X where 
X is an arbitrary algebra. 
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L e m m a  4. An abstraction A induces a congruence over distributions iff it is an 
algebra homomorphism [MT91],in other words: 

A ( D ! ; D :  ) = A( ; ) (A(D1) ,A(D2) )  
A (Dt  +p D2) : A(+p)(A(D1) ,  A(D2)) 
A(DIlID2) = A( l l ) (A(D1) ,A(D2))  

D e f i n i t i o n  5.3 Two distribution processes are abstraction equivalent if  the dis- 
tributions they define are equivalent up to some abstraction A. 

L e m m a 5 .  I f  an abstraction induces a congruence with respect to distributions 
then it induces a congruence with respect to distribution processes. 

The obvious abstraction to take is that  of means. However the following ex- 
ample shows that  means are not preserved by parallel composition and therefore 
we will be unable to find an appropriate map. 

Example 9. Consider a two point distribution with equal probability of taking 
10 or 20 ticks (the unit of time). The mean for this distribution is 15 units of 
time. Composing two of these distributions in parallel we have two systems with 

1 the same mean. However the parallel distribution takes 10 with probability 
and 20 with probability 43- and has a mean of 17.5. Now compare this with the 
parallel composition of two point distributions of 15, the parallel distribution has 
mean of 15 ticks. Hence, knowing the means of two distributions is insufficient 
information to predict the mean of their parallel composition and consequently 
this cannot (unfortunately) form an appropriate abstraction. 

5.1 M i n  a n d  M a x  

The abstraction which uses the minimum and maximum values a distribution 
can take, forms a congruence inducing abstraction. This is similar to duration 
analysis [Han94]. 

D e f i n i t i o n  5.4 Take as destination algebra (Af2; ;m,~ , +prom, I] ,~)  with the op- 
erators defined as follows: 

;..m ((rail, real), (mi~, ma~)) = ((rail + mi~, real + ma~)) 
+p~.~((mil, .~al), (mi~, .~a~) ) = (.~in(mi, , mi~), max(.~a~, ma~) ) 
IJ~m((mil, .~a~), (mi~, ma~)) = (.~ax(mil, .~i~), max(ma,, ~a~)) 

with the obvious implied sorts. 

Now we define the homormorphism by mapping the operations to their ana- 
logues given above, and the distributions by taking the ordered pair formed from 
the least non-zero probability time and the maximum non-zero probability time. 

L e m m a  6. The algebra morphism defined above is a homomorphism. 

Whilst this forms a congruence it does not contain any information about 
the variability of the system. Clearly in t h e  above analysis we could take just  
the minima or the maxima individually and form a congruence. 
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5.2 T r u n c a t e d  d i s t r i b u t i o n s  

D e f i n i t i o n  5.5 Consider a distribution D and a natural T (the limit time) then 
form D[T  in the following fashion: 

ID( t )  i f t  < T D[T(t)  L 0 otherwise 

The sort of D[T  : [0, T] -+ 7r which we shall name Trun.  

We can form an algebra of our truncated distribution with suitable operators.  

D e f i n i t i o n  5.6 Consider three operators ;T, +pT and lIT: 

i=t  

;2 (T1 ,T2) ( t )  =  Tl(i)T (t -i) 
i = 0  

+v~(T1, T2)(t) = pTl (t) + (1 - p)T2(t) 
i< t  i<t  

[[T(TI,T2)(t) = Tl(t)T2(t) + T I ( t ) E T 2 ( t  - i) + T 2 ( t ) E T ~ ( t  - i) 
i = 0  i = 0  

with the obvious sorts. We can form an algebra (Trun; +pT, ;2, liT) and an ab- 
straction AT by mapping distributions to their truncations and operators to their 
truncated equivalents. 

L e m m a 7 .  The algbera morphism defined above is a homomorphism. 

We can use the est imates for various parameters  for the original distribution 
from the t runcated distribution. In particular we can define the mean of this 
distribution. 

D e f i n i t i o n  5.7 The mean #T of a truncated distribution D[T: 

T 

= } l i D ( t )  
t=O 

L e m m a S .  I f#  is the mean distribution D, with a well defined mean, then #T < 
# where PT is the mean of D[T. Furthermore lirnT~oo#T = #. 

Hence the means derived from truncated distributions are lower bounds on 
the mean of the complete distribution. Similar results can be obtained for the 
other order weights of the system, allowing analysis of variance and other dis- 
t r ibution properties. 

5.3 S u b s a m p l e d  T r u n c a t e d  

Consider the following abstract ion over a distribution. 

D e f i n i t i o n  5.8 Let D be a distribution with a > 1 and T a multiple of a natu- 
rals; we define a truncated subsampled Da IT as follows: 
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/'• 
D~ [T(t) = D(i) if  at < T 

| i=(*-1)a+1 
t 0 otherwise 

the sort of D~ r T :  [0, ~] -~ U which we shall name T r u n k .  

We can now define an algebra using operators defined in an identical fashion 
as those for t runcated distributions. 

L e m m a 9 .  There is an algebra homomorphism between 59.A and the algbera 
(Truna; +pr, ;T , liT). 

D e f i n i t i o n  5.9 The mean #T,~ of a subsampled truncated distribution Da IT: 

T_ 
ot 

#T~ = E t a D ( t )  
t=0 

L e m m a  10. I f #  is the mean of an aperiodic first weight defined distribution D 
then there exists a and T such that for all a I >_ a and T ~ >_ T #T', >_ # where 

#T, w is the mean of D~, IT. 

Hence the means derived from subsampled truncated distributions are in the 
limit upper  bounds on the mean of the complete distribution. 

5.4 B o u n d i n g  P r o b a b i l i t y  

One problem of the above descriptions is that  we lose information in the sequence 
constructions. Since above the limit we can only calculate a lower bound on 
the probabil i ty of an event occuring at that  time. If  we could mainta in  all of 
the distribution then we could predict the information we needed about  the 
components  in order to calculate a certain limit on the distribution of a system. 

D e f i n i t i o n  5.10 Given a distribution D then a bounding probabil i ty is a rela- 
t 

tion DB : (Af -+ Tt) x (TI x Af) such that (D, (p,t)) E DB(D)  if E D ( i  ) > p 
i=0 

In other words, we can put (p, t) in the bounds of D, if the probabil i ty of the 
distribution D taking less than t is a least p. We can construct DB as a function 
with repsect to t insisting that  a single choice of p is made for each t. 

D e f i n i t i o n  5.11 We can define three operators ;DB, "~-pDB and IIDB: 

((pl,  t l ) ,  t2)) = (plp2, t l  + 
-FpDB.((pl, t l ) ,  (P2, t2)) ~--- (PlP2, m a x ( t 1 ,  t2)) 
]]DB((Pl, t l) ,  (P2, t2)) = (PPl + (1 -- P)P2, max(t1, t2)) 

with the obvious sorts. 
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L e m m a l l .  There is a homomorphism between 79.4 and the algebra ((Tr • 

~;); + p D B ,  ;DB , IIDB) 

L e m m a  12. Let D be a distribution formed from a system of n components (that 
is to say n applications of either sequence, parallel or choice) then to obtain 
D B ( D , p  ~) we need to know DB(Di ,p )  for each component distribution D~. 

For example given a system of 10 components  and needing to know the 
95% limit on the system performance we need to know to within 0.995 (since 
0.9951~ > 0.95) the performance of each of the components.  

Obviously we can define a cummulat ive  distribution defined as a set of pairs 
of distribution bounds. Unfortunately, the behaviour of means derived from th is  
abstract ion can only be shown to tend to the true mean (when all t imes are sam- 
pled) it is unknown in what manner  it tends to this limit. However, performance 
requirements are frequently expressed in terms of such bounds, so their efficient 
calculation is impor tant .  

6 E x a m p l e  

As a large scale example (in this case 19 components) consider a 3 level pipelined 
asynchronous processesor as described in Figure 1. We assume that  each cycle 
requires a fetch, a decode and an execute. We assume that  there is no contention 
for the fetch unit, al though it is used 3 times in the system. In the diagram the 
costs for each of the processing elements are labelled. 

.009 

v~tc~ iJ, i, Execute 

Vix(iCx-,o) i F!II!!ssor t 

Fig.  1. The t ime costs of the components  of the fetch and execute units of a 
prototypical  processor, the final costs of the decode unit are included in the final 
composition. 
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The system presented would require 2001 states to describe the fetch unit, 
which appears independently three times in the design. The decode unit (between 
the fetch and the execute) requires 15, and the execute unit at least 20012 for the 
two fetch units it uses. The total number of states, as a phase distribution would 
be 120 * 106. At this point the distribution would still have to be generated 
from the description, and given the number of states, it is unlikely that  this 
distribution can be derived by exhaustive calculation. Hence, the distribution 
would have to be derived by some form of simulation, this rendering the formal 
model somewhat pointless. 

The probability distribution for the first 5000 ticks of the system has been 
calculated. The data  covers 99.99999% of the distribution and took 10 minutes 
of Sparc II t ime to calculate, the mean is 23.08. For comparison, the system was 
simulated, by generating samples from each of the underlying distributions, for 
30 minutes and a mean of 22.53 obtained after 100000 samples were taken. Note 

1 of the that  the calculational approach has achieved 100 times the accuracy in 
time. 

Given the simulation was run 100000 times we should not expect to see events 
of greater rarity than 1 in 105. In the simulation of processors whose costs tend 
to be dominated by rare events, such as paging, the need to accurately represent 
the presence of these events is crucial. The calculational approach has covered 
events of order 1 in 107. I t  should be noted form the distributions that t h e  
occasional cost of 4000 ticks has a freqeuncy in the range 0.00001, and hence 
we could not expect a simulation run of 100000 repetitions to correctly estimate 
its consequences. Clearly a simulation is going to require prohibitive number of 
repetitions in order that  it will achieve a reasonably accurate estimate of the 
performance of this system. 

7 C o n c l u s i o n s  a n d  F u r t h e r  W o r k  

We have demonstrated abstraction techniques that  permit simple calculation 
of performance bounds on large scale systems. Furthermore, when dealing with 
unbounded distributions, it is possible to predict in advance what quality of 
bound can be obtained given a certain degree of knowledge of the performance 
of the components of the system. We have shown two truncation methods that  
give us respectively upper and lower bounds on the average case performance 
of a system. Whilst we presented our abstractions in the context of discrete 
distributions, they would work equally well if the underlying distributions were 
continuous. This work underpins, by providing an efficient calculation strategy 
on distribution compositions, work using a greater level of abstraction to describe 
systems. In this presentation we have omitted details of how data  dependency 
can be modelled. Whilst this can be achieved in the usual way [Mil90] we leave 
it for a more abstract approach in which both data  dependency and conflict can 
be modelled. 

The notion of equivalence between distributions processes here, clearly has 
applications in the wider context of a probabilistic Calculus. In particular ab- 
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stracting over the particular paths between two events and concentrating on 
the distribution of the time. Furthermore, the ability to perform symbolic cal- 
culations with distributions permits a far greater flexibility in addressing per- 
formance problems and may be achievable with further abstractions justified 
by these underlying calculational techniques. The general framework for defin- 
ing abstractions over distributions which we have presented permits the efficient 
study of other possible abstraction methods. Calculations over the two truncated 
distribution methods have been automated, alongside a direct simulator for the 
same systems permitting comparison, this program (in SML) can be obtained 
from the author. 
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