
Partial Model Checking with ROBDDs*

Henrik Reif Andersen Jr Staunstrup Niels Maretti

Department of Information Technology, Building 344,
Technical University of Denmark, DK-2800 Lyngby, Denmark.

Abstract . This paper introduces a technique for localizing model checking of con-
current state-based systems. The technique, called partial model checking, is fully
automatic and performs model checking by gradually specializing the specification
with respect to the concurrent components one by one, computing a "concurrent
weakest precondition." Specifications are invariance properties and the concurrent
components are sets of transitions. Both are expressed as predicates represented by
Reduced Ordered Binary Decision Diagrams (ROBDDs). The self-reducing proper-
ties of ROBDDs are important for the success of the technique.

We describe experimental results obtained on four different examples.

1 I n t r o d u c t i o n

The major problem with automatic model checking is what has been known
as the state-explosion problem: the combinatorial explosion of global states
when combining loosely coupled concurrent components. Many techniques to
overcome this problem have been proposed. Some techniques require manual
assistance in decomposing the verification tasks, others are fully automatic.
Examples of the first kind are [5,7,11,16]. Examples of the second kind are
partial order methods [10] and Reduced Ordered Binary Decision Diagrams
[2] (ROBDDs). Of course, it is to be expected that manual methods are more
powerful than fully automatic methods but due to the appealing ease of use,
it is of great interest to push the border of automatic verification as far as
possible.

The technique described in this paper is of the second, fully automatic,
kind and it tries to push the border by improving on the ROBDD-techniques.
The central idea is to utilize the structure of the concurrent system in a com-
positional fashion: the specification is gradually transformed by specializing
it with respect to the concurrent components one by one, akin to computing
weakest preconditions for sequential programs [8]. Each residual specifica-
tion provides a partial answer to the original verification problem, hence the
name partial model checking. This idea has been successfully applied to the
event-based model CCS and the specification formalism known as the modal
#-calculus [1]. We apply the same idea to state-based systems with specifica-
tions given as state predicates and observe the same positive result although

* Work supported by the Danish Technical Research Council, project CoDesign.
E-mail and WWW addresses of the first two authors: {hra, js t} �9
http ://www. it. dtu. dk/{ ~hra, ~j st}.

36

the necessary steps turn out to be quite different. First of all, we utilize the
compactness of ROBDDs instead of the carefully designed minimization al-
gorithms in [1]. Secondly, the ROBDD version is a variation of a backwards
reachability computation whereas the event-based version did not contain
any explicit state-space computation.

The new technique is evaluated and compar.ed with more standard tech-
niques by a series of experiments carried out on four examples. The results
are clearly in favour of the new technique.

2 M o d e l s

Our system model consists of n concurrent components referred to as pro-
cesses, working on a global set of binary variables V. States]~y of the system
are total functions assigning a binary value]~ = {0, 1} to each variable. Each
process consists of a set of transitions Ti _C B y • B y, i.e., sets of pairs of
states. The system starts in any of a set of initial states I C]~y and proceeds
stepwise by non-deterministically performing one of the transitions of the
processes. We shall use s, t, u E]~y to range over states, I , P, B, F, Q c]~y
to range over subsets of states and R, S, T C_]~y x]~y to range over relations.
Thus a system is described as a triple

(V, {Ti I 1 < i < n}, I).

This is a very simple model with plenty of room for improvements in various
directions. For instance, we could split the variables into sets of local variables,
each "read" and "written" only by one process, together with a set of shared
variables. However, the technique makes no explicit use of such information
and the simple model suffices to demonstrate it. Of course, we expect that
transitions that are somehow related belong to the same process. Moreover,
typically there are variables that are read and written by one process only,
thereby providing local state for this process. This is certainly the case for all
the examples. It turns out that the amount of local state and the simplicity of
interdependence between processes has an important impact on the usefulness
of partial model checking. The mathematical explanation of the technique is
nevertheless completely independent of these parameters.

The verification problem we consider is the following reachability problem:
given a property (a set of states) P, will the system when started in one of
the initial states always stay in states that belong to P? This problem covers
what is often known as safety properties.

3 Three Verification Techniques

Before explaining the verification techniques some notation is introduced.
To avoid introducing any particular syntax only elementary notions of set

37

theory are used. Moreover, for uniformity we often consider a subset P C B V
as being a relation P . C_ B ~ x B y between the singleton set B ~ = {.} and B y
such that a state s belongs to P if and only if (. , s) belongs to P. . Sometimes
we shall by a slight abuse of notation refrain from making this distinction
explicit.

If S C B v x B y and T C B y x]~w are two relations between sets of states
we denote their relational composition by

T o S = {(s , t) 13u 6]~y. (s ,u) E S , (u , t) E T}.

In particular, if P is a set of states and T is a relation between states, then
T o Po is the image of P under T, a set of states, represented as a relation. If
T C_ B y x]~y is a set of transitions we denote by T* its reflexive, transitive
closure:

T O = {(s,s) l s e B v}

T n+l = T o T n

T* = U Tn
n

T h e f - t e c h n i q u e

Taking T = T1 U. . . UTn for a system with transition relations Ti, we can now
formulate our verification problem formally as determining whether T* o Io
is a subset of Po or, by the aforementioned slight abuse of notation, whether:

T* o I C_ P. (1)

An obvious way to answer this question is to compute the left-hand side
and check whether the set inclusion holds. We can do this by a well-known
forwards fixed-point iteration, computing Fi's until a fixed point is reached,
where

F 0 = r

g~+l = (T oF~) u I .

The forward fixed-point iteration can be realized using ROBDDs to represent
the set of states and the transitions. We refer to it as the f-technique. Section
5 describes experiments with the f-technique and compares it with the two
other techniques explained below.

The b-technique

The inclusion (1) can be formulated differently by the use of an operator -o.
Assume T C_ B W • B v and S C_ B U • B V, then T --o S C_]~u x]~w is defined
by

T - o S = {(u,w) e B U • W I V v E B y. (w,v) E T ~ (u,v) E S } .

38

The notation T --o S represents "the set of states (s, t) for which t through
T always leads to states u such that (s, u) is in S." As a special case, for
a subset P (i.e., U = 9) and relation T*, T* --o p is the simpler "set of
states tha t through sequences of T-transitions only can lead to states in P."
In program verification this is known as the weakest precondition.

From the definitions of o and --o it is now easy to check the following
relationship:

T* o l C P r I C T* --o P

More generally, for any relation R it is also easy to deduce that

(T o R) - - o S = R ~ (T - - o S) , (2)

This shows how composition can be replaced by --o. The verification problem
can now be rephrased as

I c_ T* -0 p. (3)

We can compute the right-hand side by a backwards fixed-point iteration,

B0 = B y

Bi+l = (T -o Bi) n P

and check the inclusion (3). We refer to this as the b-technique.
Using terminology from fixed-point theory [17], the f- and b-techniques

can be characterized as computation of the least and greatest fixed-points of
the functions (T o _) U I or (T -o _) A P, respectively, followed by tests for
implication, _ C_ P and I _C _, respectively.

The q-technique

Neither the f- nor the b-technique make use of the structure of the system.
The transitions are t reated like a single relation. The quotienting technique
introduced here, which we shall refer to as the q-technique, is a refinement
of the backwards iteration. The idea is to exploit the (modular) structure
of the system by taking one of the processes at a time and work it into the
specification giving a new specification. The new specification should hold
for the remaining system if and only the original specification holds for the
complete system.

It amounts to computing T* -o p without first computing T = T1 U. - . U
Tn and use T in a backwards iteration. Instead we shall compute T~ ---o p for
some k and proceed with the other Ti's. Since the Ti's can be interchanged
freely prior to the quotienting, when explaining the technique k is simply
chosen decreasingly from n down to 1. There is an important choice in this
numbering when it comes to actual experiments. The choice can greatly influ-
ence the efficiency of the verification, as we shall see in section 5. Removing
a Tk does not suffice on its own. We need to keep a simplified version of the
removed transitions as captured by the following theorem:

3g

n-2

I 11

: il- l I-ZTIi- -I ,_ ~ , _ _ _ _ ' O~

I

I._ . j

Fig. 1. Sketch of the quotienting technique. After one step T1 is replaced by $1 and
the original P = Q0 by Q1. After two steps T1 and T2 are replaced by $2 and Q1
by Q~. After n - 2 further steps all the Ti's are replaced by S~ and Q0 by Q~. The
final answer is obtained by computing S~ --~ Q~.

T h e o r e m 1 (Q u o t i e n t i n g t h e o r e m) . Assume P C_]~v is a set of states
and let Ti C_ B y • B y for 1 < i < n be n sets of transitions with T = Uin=l Ti.
Take Qo = P and So = 0. Define inductively]or i E {0, . . . ,n - 1}:

Q i + l = (Si u T~+I)* - ~ Qi

S~+1 = (S~ v T~+~) n (Qi+~ x Q~+~)

Then for all i �9 { 0 , . . . , n},

T* --o p = (S~ U Ti+l U . . . U Tn)* --o Q~ (4)

The proof is given in appendix A.
We cannot remove Ti completely, but must incorporate a simplified ver-

sion of it in Si as indicated in Figure 1. This is needed since our logic for
expressing Qi is not powerful enough to capture the "full effect" of Ti. It was
not needed for the event-based version in [1].

As a special application of the theorem we take i : n to obtain

T * - - o P = S ~ - ~ Q n .

The q-technique consists of computing iteratively first the Qi's and Si's then
S n --o Qn and finally check whether I C S* -~ Qn holds.

It is not difficult to see that for all relations R, R* --~ Qi is a subset of Qi,
which implies that Qi+l c Qi. In fact, each step in the iterative computation
of Qi+l employs sets that are included in Qi. This implies that if the system
does not satisfy the original property, this could be discovered earlier by
checking each time for inclusion of I.

Example. We illustrate the q-technique by a small example consisting of two
components T1 and T2 which should satisfy the property P:

(T1 UT2)* -~ P

40

We assume that the only variables are x and y, and use the notation I1r for
the set of states s E I~ {~'~} in which the Boolean expression r evaluates to 1.
The property is P = II~xi]. The transitions are T1 = {(s, s[1/x]) I s(y) = 1},
which changes x to 1 in states where y is 1, and T2 = {(s, s[O/y]) I s(x) = 1},
which changes y to 0 when x is 1.

The sequence of quotients is computed as follows. Firstly, Q0 = P = N~xl]
and So = 0. Secondly,

Q1 -- (So u T1)* --o Q0 = TI* --o }l-~xll = II--~x A -~yIt
$1 : (So LJ T1) N Q1 • Q1 = T1 n II~x A ~Yll • [[~x A ~Yll = O.

Thirdly,

Qu = ($1 u T2)* --* Q1 = T2* --* U~x A -~Yl] = ll-~x A ~Yll
S: = ($1 U T2) N Q2 • Q: = T2 n H~x A -~YU •]l ax A ~Yi] = 0,

and finally,
(T1 u T2)* P = Q2 = II x A yll.

From this we see that the initial state must belong to II-~x A -~yH~ The only
satisfactory choice is therefore s(x) = 0 and s(y) = O. All other choices would
yield a system not satisfying P.

The relation $1 turns out to be empty since T1 is not enabled inside the
domain of interest, Q1 • Q1- However, if we instead use the transition relation
T~ = T1 U {(s, s[O/x])] s(y) = 0} we get S1 -~- $ 2 : {(S, 8[0/X]) i s(y) = 0}.
The result nevertheless remains the same: U-~x A -~Yll �9

We believe that major improvements to the technique should go through
simplifying the Si's in the iteration. They represent a simplified version of
the Ti's that have been quotiented out. We see no way of avoiding them in
general apart from manual assistance by guessing invariants and eliminating
iterations altogether. It is a subject for future work to determine situations
where the Si's could he left out or simplified.

4 R O B D D I m p l e m e n t a t i o n

Having explained the mathematics behind the tree verification techniques we
now focus on the implementation of the techniques using Reduced Ordered
Binary Decision Diagrams [2]. Section 5 describes experiments carried out
with this implementation.

The computations are implemented as ROBDD-operations. Sets of states
P C_ ~ y are represented by their characteristic Boolean function f p from s y
to]~, yielding 1 for the values of variables that correspond to states in P.
Realizing this function as an ROBDD requires fixing the ordering of variables.
We have in all examples consistently chosen the order in which they occur
naturally in the system ("from left to right"). To represent relations R C

41

B V • B V a copy of all the variables of x E V denoted by x I E V ~ is introduced.
These will be jointty ordered by interleaving, taking x' immediately after x,
and otherwise respect the ordering of V [12]. Relations are represented by
Boolean functions fR from B wUy' to B yielding 1 exactly for values of the
variables that correspond to a pair in R.

The set theoretic operations needed to compute the Si's, the Qi's, S~ -~
Qn, and I C_ S* --~ Qn are 1) the image of a relation when applied to a
set of states, 2) the union of two sets of states, 3) the intersection of two
sets of states, 4) the product relation Q • Q of a set of states Q, and finally
5) the "implication" -o. All five are implementable by standard ROBDD-
operations: 1) by existential quantification and conjunction: 3x.R A P, 2) by
disjunction, 3) by conjunction, 4) by renaming of variables and conjunction,
and 5) by universal quantification and implication: VxqR ~ P. These are all
described in Bryant's paper [2].

Moreover, in the computation of Si+l we make use of the ROBDD restrict
operator of Coudert, Berthet and Madre [6]. This operator allows for the
simplification of an ROBDD f to an ROBDD g such that f A d = g A d for
some domain of interest d. As d we can use at the i ' th step Qi since Q~ keeps
decreasing.

5 E x p e r i m e n t s

We carried out a series of experiments with the three verification techniques
(f, b, and q) on four examples: a modulo N-counter, an arbiter, Milner's
Scheduler, and a FIFO queue. We shall briefly describe each example along
with the experimental results. All examples share the feature that they are
parameterized by a size, n, making possible an analysis of the verification time
as a function of the size. Our main emphasis will be on how these running
times grow for each of the three techniques. We found no need to precisely
enumerate the transitions of all the examples although we do describe Mil-
ner's Scheduler in greater detail to illustrate how this is done.

All results are measured using an ROBDD-package implemented in Stan-
dard ML of New Jersey version 0.93 running on a SUN Sparc 20.1 The running
time is determined as the total CPU time spent by the Unix process (includ-
ing garbage collections). The examples have been chosen with the purpose of
being simple enough to be easily understandable, and more importantly, to
be scalable. In some of the examples we tried a slight variation of the iter-
ation schemes by precomputing the transitive closure of each individual Ti.
This precomputation was only rarely an advantage for any of the techniques
and is therefore not shown in the examples 2.

1 The P~OBDD package is available from http://www.it.dtu.dk/~hra
2 The transitive closure of a relation was computed by a straightforward iteration.

We did not experiment with any more advanced way of computing it, such as

42

3500

3000

2500

2000

1500

1000

500

0

Counter

b
f ,

] q

,/

j~
5 10 15 20 25 30

n
35

16000
14000
12O00
10OOO

8000
6O00

4000
2000

0
2

Arbiter

b * J

f , / /
q

/

i

4 6 8 10 12
FI

Fig. 2. Running times for the counter and arbiter. Times are in seconds.

5.1 M o d u l o - N C o u n t e r

The first example, a modulo-N counter with constant response time, is a
speed-independent hardware design [9]. For simplicity we assume tha t N is a
power of two and thus the counter is a modulo-2 ~ counter. The counter has
one input, a, and two outputs, p and q. Every signal change on the input a
is acknowledged by a signal change of either p or q. The first 2 n - 1 up-going
changes (i.e., from 0 to 1) on a are acknowledged by up-going changes on p
and the last change, the 2n-th, is acknowledged by an up-going change on q.
The same with down-going changes. The requirement of constant response
t ime makes the construction non-trivial. The design was done by Christian
D. Nielsen [14] and has many similarities with the design described in [9]. We
verify the simple proper ty tha t p and q are never set to one simultaneously,
i.e., tha t for all reachable states -~(p A q) holds.

The modulo-2 n counter is constructed as the composition of n identical
components. The q-technique was realized by removing the components in
order from the component closest to the output. The experiments (figure 2)
show tha t the quotienting is considerable faster than both the forwards and
backwards iterations.

5.2 A r b i t e r

The second example is an arbiter. An arbiter is a circuit that provides indi-
visible access to a shared resource, e.g., a bus or a peripheral. The arbiter
described here is implemented as a binary tree in which all internal nodes
are identical. The arbi t rat ion algorithm is based on passing a unique token
around the tree. An external process using the arbiter is connected to a leaf
of the tree, and it may use the resource only when tha t leaf has the token.
We model the external device by a transit ion tha t non-deterministically can
choose to issue a request. We verified that no two external devices can be
granted access to the shared resource at the same time. (A full description

iterative squaring [4]. The purpose of the experiments was not to validate such
tricks but to compare the three iteration techniques.

43

J

\

t
\ I

!

\ I

f ~
I

I \

I \
I 'S

! \
! '[-"

I

!

'~ I !

Fig. 3. Milner's Scheduler

\

can be found in [15].) The running times are shown in figure 2. Again we
observe that the quotienting is clearly fastest. We quotiented out from the
right-most leave towards the left and up. The other direction from the top
and downwards, turned out to be a catastrophe. This seems to indicate that
components that assign to variables present in the specification should be
quotiented out first.

5 .3 M i l n e r ' s S c h e d u l e r

The third example also passes a token but now between processes arranged
in a ring. The example is Milner's Scheduler [13]. The system consists of n
cyclers, connected in a ring, that co-operates on starting and detecting ter-
mination of n tasks that are not further described, see figure 3. The scheduler
must make sure that the n tasks are always started in order but the tasks
are allowed to terminate in any order. This is one of the properties that has
to be shown to hold for the model. The cyclers fulfill this by passing a token:
the holder of the token is the only process allowed to start its task.

All cyclers are similar except that one of them has the token in its initial
state the others do not. For each cycler i there are three variables ti, h~, and
ci. The variable tl is 1 when task i is running and 0 when it is terminated; hi
is 1 when cycler i has a token, 0 otherwise; c~ is 1 when cycler i - 1 has put
down the token and cycler i has not yet picked it up. Hence, a cycler starts a
task by changing ti from 0 to 1 and detects its termination when ti is again
changed back to 0. It picks up the token by changing ci from 1 to 0 and puts
it down by changing ci+l from 0 to 1.

44

4000
3500

3000
2500

2000
1500
1000

500

0
0

Scheduler, all

! b *
/ f

/ q
/

!
/

/
/

/
f f

j " / " = : :L -:.

5 10 15 20 25 30
n

6000

5000

4000

3000

2000

t000

0

Scheduler, one

T b �9

q ///,,~

5 10 15 20 25 30
n

Fig. 4. Running times verifying Pa]l and Pone for Milner's Scheduler.

In describing the transitions of the systems, we use for a state s the nota-
tion of substitution. For a state s, s[v/x] denotes the state that is identical to
s except tha t it maps x to v. We shall also allow sequences of substitutions
to be written as s [v l / x l , . . . , v n / X n] . Substitutions provide the semantical
counterpart of assignments.

The set of variables is V = {ci, hi , t i I 1 < i < n}, the single initial state
is I = {s} with S(Cl) = 1 and s(x) = 0 for all x E V \ Cl, and finally the
transitions of the i ' th cycler are

T~ = { (s , s[1/ti , O/ci, 1/hi])] s(ci) = 1, s(ti) = O, s(hi) = 1}
U { (s , s[1/ci rood ~ + 1 , 0 / h i]) I s(hi) = 1, s(ti) = 0}
u { (s , s [O/ t i]) I s(ti) = 1}.

The first two transitions are performed by the cycler, the last by the task it
is controlling. We verified two properties, Pau and Pone- The first expresses
that at most one of c l , . . . , Cn is true:

Pall = {s l V i , j . l < i , j < n and s(ci) = s(cj) = l ~ i = j }

and the second that there is not a token on both place cl and c,~:

Pono = {8 I ~(Cl) = 0 or 8(~n) = 0} .

The cyclers are quotiented out from number 1 and upwards. Figure 4 shows
the running times. We observe that the q-techniques is again faster than the
f-technique, comparable to the b-technique when verifying Pall. It is consid-
erably faster than the b-technique when verifying Pone. This indicates that
the quotienting performs bet ter when the property to be verified is simple.

5.4 Asynchronous FIFO Queue

The fourth example is of a quite different nature. It has the benefit, from an
experimental point of view, that we can vary both the amount of internal
state and the total number of processes. The example is an asynchronous

45

FIFO queue consisting of n FIFO processes each of which is built up from
m cells. A cell can hold one of three values: E (for empty), T (for true)
and F (for false). Values are sent into the queue as sequences of E, T and
F ' s such that T 's and F ' s are separated by at least one E. A valid input
sequence could for instance be E T T T T E E E F F E T E T T E representing the
value sequence T, F, T, T. We shall verify that the output sequence of the
buffer also respects the property of having at least one E between changes
of T and F. Since we use only Boolean variables we shall encode these three
values as the pairs E = (0, 0), F = (0, 1), T = (1, 0) and leave (1, 1) as an
invalid value.

A FIFO with n processes of m cells contains 2(nm + 2) variables:

V -- {x0 , . . . , Xnm+l, Yo,-.-, Yam+l}.

Each pair of variables (xj ,yj) stores one value of a cell. The transitions of
FIFO process i E {1 , . . . ,n} are as follows:

Ti = {(s, s[s(x3-1)/xj,s(yi_l)/yj]) I
im < j <_im + m - 1 ,
S (X j - I) = 8 (y j - 1) = 0 x o r S(Xj+I) ---- s (y j + l) = 0}

The conditions ensure that the value of the pair (xj-1, Yj-1) is only copied
to (xj ,yj) if not both of (X j - l , y j -1) and (xj+l,yj+l) are E = (0,0).

xO

Yo

. , [. ; ; .

xl x2 x.~ !xm+l x2.~ '~ ix(~_l)m+l x~.~
Yl Y2 Ym i Ym-t- 1 y2m ~ ' ,Y (n -1)m+l y a m

. ~ , . J , .

Fig. 5. The FIFO queue with n processes of m cells

Xn~n+l

Ynm+l

Again we quotiented out the FIFO processes starting with 1 and upwards.
The running times are shown in figure 6. Quotienting is again fastest. When
increasing m to 10 and 20 we observed that the difference becomes slightly
larger. Relatively, the quotienting technique is around 3.5 times faster than
the forwards iteration for m = 6 and this increases to 5 times faster when
m = 20. For the backwards iteration the increase is from a factor of 2.5 to
3.5.

5.5 C o m m e n t s o n the E x p e r i m e n t s

The q-technique is bet ter than the f-technique in all experiments and, with
one exception, it is also bet ter than the b-technique. In this one exception
(the property Pall for Milner's Scheduler) the running times are comparable
for the b- and q-technique. Moreover, it seems that partial model checking
behaves bet ter the simpler the property to be verified and the more local state

4 6

oo

7 0

6 0

5 0

4 0

3 0

2 0

1 0

0

F i f o

f , / . , " .
q . ;.~'-

./.7"
2 a , ; ; 7 6

n

Fig. 6. Running times for the FIFO with m = 6

in each process. This was confirmed by Milner's Scheduler and the FIFO
queue. However, we observed a curious exception with the arbiter. When we
changed the property to simply be that the leaves with numbers n/2 and n - 1
should not both simultaneously be granted access instead of the requirement
used in section 5.2, the performance of the quotienting degenerates compared
to forwards iterations so much that they have almost identical running times
when the transitive closure (per process) is precomputed and otherwise the
forwards iteration is faster. We have found no good explanation for this.

Of course, measured times can always be questioned, and certainly there
are more efficient ROBDD packages around on which the experiments could
be repeated. We expect that the three techniques would benefit equally well
from a more efficient package.

6 R e l a t e d W o r k

The closest related work seems to be Burch et al [3]. They also t ry to avoid
building the complete transition relation T = Tt U T2 U . . . U Tn (using our
notation) and instead keep a list of the individual tra~isition relations. When
computing the reachable states by a forward iterations, they repeatedly iter-
ate each transition relation independently until a fixed point is reached. Our
approach differs in at least three respects.

Firstly, it is a backwards iteration that utilizes the property to be verified
in simplifying the computation. This avoids constructing the complete set
of reachable states. Secondly, a T~ is only used for one fixed-point iteration,
whereafter it is added, in a simplified version, to the accumulating set of
transitions Si. Finally, we exploit the modular structure provided by the
designer by quotienting out one process - and not only a single transition - at
a time. The examples in this paper show that this can reduce the verification
effort significantly.

47

7 Conclusion

A new technique for proving safety properties that a t tempts to utilize the
structure of the system under consideration has been presented. A series of
experiments has been carried out to validate the new technique. We find
that the experiments are promising: In all our experiments the running times
are bet ter than for a forwards fixed-point iteration and with one exception
(the property Pall for Milner's Scheduler) also a backwards iteration, thereby
improving on the ROBDD technique which already is a big improvement over
naive state-space exploration.

Acknowledgment

Thanks are due to Henrik Hulgaard for his detailed and constructive com-
ments on a draft. Thanks are also due to the anonymous referees.

References

1. Henrik R. Andersen. Partial model checking (extended abstract). In Proceed-
ings, Tenth Annual IEEE Symposium on Logic in Computer Science, pages
398-407, La Jolla, San Diego, 26-29 July 1995. IEEE Computer Society Press.

2. R.E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE
Transactions on Computers, 8(C-35):677-691, 1986.

3. J. R. Burch, E. M. Clarke, and D. E. Long. Symbolic model checking with
partitioned transition relations. In A. Halaas and P. B. Denyer, editors, Proc.
1991 Int. Conf. on VLSI, August 1991.

4. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Sym-
bolic model checking: 1020 states and beyond. In Proceedings, Fifth Annual
IEEE Symposium on Logic in Computer Science, pages 428-439. IEEE Com-
puter Society Press, 1990.

5. E.M. Clarke, D.E. Long, and K.L. McMillan. Compositional model checking. In
Proceedings, Fourth Annual Symposium on Logic in Computer Science, pages
353-362, Asilomar Conference Center, Pacific Grove, California, June 5-8 1989.
IEEE Computer Society Press.

6. Olivier Coudert, Christian Berthet, and Jean Christophe Madre. Verification
of synchronous sequential machines based on symbolic execution. In J. Sifakis,
editor, Automatic Verification Methods for Finite State Systems. Proceedings,
volume 407 of LNCS, pages 365-373. Springer-Verlag, 1989.

7. Mads Dam. Compositional proof systems for model checking infinite state
systems. In I. Lee and S. Smolka, editors, CONCUR'95, 6th International
Conference, volume 962 of Lecture Notes in Computer Science, pages 12-26,
Philadelphia, PA, USA, August 21 - 24 1995.

8. E.W. Dijkstra. A discipline of programming. Englewood Cliffs, N.J. : Prentice-
Hall, 1976.

9. Jo C. Ebergen and Ad M. G. Peeters. Design and analysis of delay-insensitive
modulo-N counters. Formal Methods in Systems Design, 3(3), December 1993.

48

10. Patrice Godefroid and Pierre Wolper. A partial approach to model checking.
In Proceedings, Sixth Annual IEEE Symposium on Logic in Computer Science,
pages 406-415, Amsterdam, The Netherlands, 15-18 July 1991. IEEE Computer
Society Press.

11. R.P. Kurshan and Ken McMillan. A structural induction theorem for processes.
In Eighth Annual ACM Symposium on Principles of Distributed Computing,
pages 239-248. ACM, 1989.

12. K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, Nor-
well Massachusetts, 1993.

13. Robin Milner. Communication and Concurrency. Prentice Hall, 1989.
14. Christian D. Nielsen. Performance Aspects of Delay-Insensitive Design. PhD

thesis, Department of Computer Science, Technical University of Denmark,
1994.

15. J0rgen Staunstrup. A formal approach to hardware design. Kluwer Academic
Publishers, 1994.

16. Colin Stirling. A complete compositional modal proof system for a subset
of CCS. volume 194 of Lecture Notes in Computer Science, pages 475-486.
Springer-Verlag, 1985.

17. A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific
Journal of Mathematics, 5:285-309, 1955.

A P r o o f o f t h e Q u o t i e n t i n g T h e o r e m 1

T h e o r e m 1 (Q u o t i e n t i n g t h e o r e m) Assume P C]~y is a set of states
_ n T and let Ti C]~y x]~y for 1 < i < n be n set of transitions with T = Ui=l i.

Take Qo = P and So = 0. Define induetively for i E { 0 , . . . , n - 1}:

Qi+l = (S~ u T~+I)* - o Q~

Si+1 = (Si U Ti+l) ('l (Qi+I x Q/+I)

Then for all i 6 {0 , .~ . ,n} ,

T * - o P : (S i U T i + l U . . . U T,~)* -o Qi (5)

Proof. We shall prove (5) by (bounded) induction on i. For i = 0 it holds by
definition of T, So and Qo. For 1 < i < n, we compute as follows:

T * ----o p : (S i _ 1 U T i U . . . U T n) * ~ Q i - 1

by the induction hypothesis

= (S~-i u Td* o (S~_I u T~ U-. - U T~)* ~ Q~_~

by a simple property of transitive closure

: (S{-I U Ti O... U T~)* -o ((S{-I U Ti)* -o Q{-I)

by (2)

= (S~-i u T~ u . . . u T~)* --o Q~

by definition of Qi

49

_~ { s e Q l V t .

= {8 e Q IW.

since R

={s~QIW.

- - { s E Q I V t . 3u. (s,u) ERQUU,(u, t) E (RQUU)*
= (Rq u v)* -~ Q.

We shall prove that for arbitrary R, U, and Q satisfying R --o Q = Q:

(R u V)* --o Q = ((R n Q x Q) u u)* --o Q (6)

This allows us to proceed with:

(Si-1 U Ti U. . . U T~)* -o e i

= (((Si-1 U Ti) n Qi x Qi) u Ti+l u . . . u T,~)* -.o Qi

since (Si--1 U Ti) -o Qi = Qi

= (Si u Ti+l . . . u T~)* -o Qi

by defnition of Si

proving (5) for i. Now, to prove (6) recall that (R U U)* --o Q is the largest
fixed point of the map f : _ ~ (R U U --o _) n Q and (RQ U U)* -o Q of
the map g : _ ~-+ (RQ U U --o _) n Q where we abbreviate R N Q x Q by RQ.
Since --o is easily seen to be anti-monotone in its left component it is clear
that (R U U)* ---o Q c_ (RQ U U)* -o Q. We shall prove the Other direction
by showing that (RQ U U)* -o Q is a postfixed point of f and then since
(R U U)* --o Q is the largest such fixed point, the inclusion follows from
Tarski's theorem [17]. Hence, we apply f to (RQ U U)* --o Q and compute:

R u U -o ((n~ u U)* --o Q)

: (Rq u ui* o (R u U) -~ Q

= {s I yr. 3u. (s, u) ~ R u U, (u, t) ~ (n~ u U)* ~ t e Q}

= (s lV t . (3u.(s ,u) E R , (u , t) E (R Q U U) * =V t e Q) &
(3u. (8,~) e v,(~,t) e (RQ u V)* ~ t e Q)}

(3~. (8, u) ~ R, (u, t) ~ (Rq u v)* ~ t ~ Q) &
(qu. (s,u) E V,(u,t) E (RQUU)* =v t E Q)}

(3u. u E Q , (s , u) E R , (u , t) E (R Q U U) * ~ t E Q) &
(3~. (8,~) e u, (~,t) e (Rq u u)* ~ t e Q)}

--o Q = Q implies R o Q _c Q, thus s E Q, (s, u) E R implies u E Q

(qu. (s, u) ~ RQ, (u, t) ~ (Rp U U)* =~ t E Q) &
(3u. (s,u) E U,(u,t) E (RQUU)* :=~ t E Q)}

This completes the proof.

