
Combining Partial Order and Symmetry
Reductions

E. Allen Emerson I * and Somesh Jha 2 ** and Doron Peled 3

1 Department of Computer Science, University of Texas, Austin, TX, USA
2 School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA

3 Bell Laboratories, Lucent Technologies, 700 Mountain Ave., Murray Hill, N J, USA

Abst rac t . Partial order based reduction techniques to reduce time and
memory in model-checking procedures are becoming quite popular. Par-
tial order reduction techniques exploit the independence of actions. Sym-
metry based reduction techniques exploit the inherent structure of the
system to reduce the state space explored during model checking. We
provide an abstract framework for combining partial-order and symme-
try reductions. We also present algorithms which exploit both reduction
techniques simultaneously.

1 I n t r o d u c t i o n

Partial order based methods exploit the independence of actions [6, 7, 11, 14,
15] to reduce the state space explosion in model-checking concurrent systems.
The basic idea is that given a set of interleaving sequence of actions, one can
define sequences that are equivalent up to reordering independent actions to
be equivalent. As most specifications would not distinguish between equivalent
sequences, one can consider a subset of sequences from each equivalence class.
Thus, the reduction generates a state space that includes only a sufficiently big
subset of of the sequences, representing all other equivalent ones. For example,
assume that the actions a and fl are independent. Independence means that it
does not mat ter in what order the finite-state system executes the actions a
and/3. Thus, a sequence uol~v is equivalent to the sequence u/3o~v. Therefore,
if an algorithm considers the sequence uo~/3v, it can omit the sequence u~av.
Most methods work by exploring a subset of the actions enabled from a state.
The subset is selected according to some constraints that guarantee that enough
representatives, at least one from each equivalence class, will be generated.

* The research of the first author was supported by NSF under grant no. CCR-9415496
and Semiconductor Research Corporation under contract 96-DP-388.

** The reseach of the second author was sponsored in part by the National Science
Foundation under grant no. CCR-8722633, by the Semiconductor Research Corpora-
tion under contract 92-DJk294, and by the Wright Laboratory, Aeronautical Systems
Center, Air Force Materiel Command, USAF, and the Advanced Research Projects
Agency (ARPA) under gram F33615-93-1-1330.

20

Symmetry based methods exploit the architectural symmetry present in the
system. For example, in a token ring composed of identical components, one
can rotate the ring of processes without affecting the behavior of the system.
Symmetry is present in any finite-state system composed of several identical
components. Symmetry was first exploited in the teachability analysis of Petri
Nets [8, 13]. Recently, symmetry based methods to avoid the state-explosion
during model-checking were shown to be quite successful [3, 5, 9]. The basic idea
is that the symmetry of the system induces an equivalence relation on the state
space of the system. While performing model checking, one can discard the state
s' if one has already explored an equivalent state s.

This paper combines the symmetry and partial order based reduction tech-
niques. Since symmetry and partial order based methods explore different phe-
nomena of the system, it is possible for both techniques to be applied simultane-
ously, obtaining better reduction than by applying each one of them separately.
We show that this indeed is the case. In related work, Valmari has suggested to
combine partial order reduction and symmetry for deadlock detection in colored
Petri-Nets in [16].

The result shown here can also be interpreted more generally as combining
two reduction techniques based on preserving equivalence (simulation) relations.
In that respect, one can generalize the symmetry and the partial order reduc-
tions into other equivalence preserving reductions. Although preserving other
reductions may involve a somewhat different, specialized proof, similar ideas of
how to 'reconciliate' between equivalence relations in order to preserve the cor-
rectness of the checked property may be applied. Much of the effort was put to
make the proofs of the combined reductions modular, separating as much as pos-
sible the arguments concerning the partial order reduction from the arguments
concerning symmetry reduction.

The paper is organized as follows: Section 2 provides definitions used through-
out the paper. Section 3 gives a framework for combining symmetry with in-
dependence, which will be used to explain and prove the combined reduction
algorithms. Section 4 gives an algorithm which preserves LTL formulas without
the nexttime operator. Section 5 provides an algorithm which preserves CTL*
without the nexttime operator. Section 7 concludes with some future directions
and open problems. Due to limited space, the results of few lemmas are not
provided here. They will appear in the full version of the paper.

2 Prel iminaries

In this section we introduce various definitions used throughout the paper. Sub-
section 2.1 defines a labeled transition system. Temporal logics CTL*, CTL*-X,
LTL, and LTL-X are not defined in this paper. The reader is referred to [2] for
the syntax and semantics of these logics. Subsection 2.2 defines different pre-
orders between LTSs. Subsection 3.2 defines what it means for two actions to be
independent.

2]

2.1 L a b e l e d T r a n s i t i o n S y s t e m

Let A P be a set of atomic propositions. A labeled transition system (LTS) is
5-tuple T --- (S, R, L, Act, so), where

- S is a finite set of states,

- R C S • Act • S is a transition relation ((s, ~, s') E R is also written as

s -% s' e R).

- L : S -+ 2 AP is a labeling function which associates with each state a set of
atomic propositions that are true in the state.

- Act is a finite set of actions.

- so is the initial state.

The function aT(S) returns the set a-successors of s in T. Tha t is, s' E aT(S)
iff s --% s' E R. An action ~ is said to be enabled from a state s in T if and only
if there exists a state s' such that s -% s' E R. The symbol enT (s) denotes the
set of actions enabled from the state s in T. An action ~ is called invisible in T
iff for all s and s' such that s -% s' E R we have that L(s) = L(s'). Basically,
an invisible action does not change the t ruth of atomic propositions. The set of
invisible actions in T is denoted by • The set of visible actions is denoted
by ViST.

2.2 Va r ious p r e - o r d e r s b e t w e e n p r o c e s s e s

Given two LTSs T1 -- (S1,R1, L1,Act, so,1) and T2 -- (S2, R2, L2,Act, so,2), a
relation B C_ $1 • $2 is called a bisimulation between T1 and T2 if and only if
the following conditions hold:

-- 80,1 B 80,2.

- Assume that s B s'. Then the following conditions hold:

�9 n (s) = L (s ')

�9 Given an arbitrary transition s -% sl E R1, there exists s~. E $2 such
that s' -~ s2 E R~ and sl B s2.

�9 A symmetric condition holds with the roles of s' and s reversed.

T1 and T~ are said to be bisimilar (denoted by T1 ~B T~) if and only if there
exists a bisimulation between T1 and T2.

D e f i n l t i o n l . Let T1 = ($1, R1, L1,Act, s0,t) and T1 -~ ($2, R2, L2, Act, so,2) be

two LTSs. Let C _C $1 x $2 be a relation. Consider paths ~r = so 2_~ sl -~ ---

in T1 and It' = to -~ tl -~ --- in T2. Paths lr and ~" are called stuttering
E-equivalent if and only if there exists infinite sequences of natural numbers
i 0 = 0 < i l < i 2 < . - - a n d k 0 = 0 < k l < k2 < -.- such that for a l l j _ > 0 t h e
following condition is true.

22

- For all ij <_ r < ij+l and kj <_ m < kj+l, st g tin.

Paths rr and rr' are called stuttering equivalent if they are stuttering s
where s s s' if and only if L(s) = L(s'). Sometimes, we will refer to the set of
integers {ij, ij + 1 , . . . , ij+l - 1} and {hi, kj + 1 , . . . , kj+~ - 1} as the j-th blocks
Bj and B}.

Next, we define the notion of stuttering bisimulation. Stuttering bisimulation is
similar to bisimulation, but each LTS is allowed to take several steps to simulate
a path of the other LTS. Given two LTSs 7"1 = (S1,Rt , L1,Aetl,so,1) and T2 =
($2, R2, L~, Act~, s0,a), a relation g C_ $1 x $2 is called a stuttering bisimulation
between T1 and T~ if and only if the following conditions hold:

-- 80,1 C 80,2.

- If s C s ~, then the following conditions hold:

�9 L(s) = L(s')

�9 For every path rr starting from s in T1 there exists a stuttering E-
equivalent path rr' starting from s' in T~. See definition 1 for the ex-
planation of stuttering C-equivalent.

�9 The same condition as the previous one holds but with the roles of s and
s' reversed.

T1 and T2 are said to be stuttering bisimilar if and only if there exists a stuttering
bisimulation between them. We denote this by T1 ~SB T2.

Notice that a stuttering bisimulation relation cannot distinguish between
next states. Therefore, it is not surprising that stuttering bisimulation preserves
the truth of CTL* formula without the next time operator. The proof of this
theorem first appeared in [1].

T h e o r e m 2. Let f be a formula in CTL*-X . Let T1 and T2 be two stuttering
bisimilar LTSs. Let s be a stuttering bisimulation relation between T1 and T2.
If s g s', then TI, s ~ f if and only if T2, s' ~ f .

T1 = ($1, R1, Lt, Act, so,l) and T2 = ($2, R2, L~, Act, so,s) are said to be
stuttering path equivalent (denoted by T1 ~sPE T2) if and only if

- For every path 7r starting from s0,1 in T1 there exists a stuttering equivalent
path rr' starting from s0,2 in T2.

- A symmetric condition holds with the roles of s0,1 and s0,2 reversed.

T h e o r e m 3 . Let f be a formula in LTL-X . Let T1 = ($1, R1, L1, Act, so,l) and
T2 = ($2, R2, L2, Act, so,2) be two stuttering path equivalent LTSs.

80,1 ~ Y r 80,~ ~ f

L e m m a 4. 7'1 ~B 7"2 implies that T1 ~ s n T2. Similarly, T1 ~SB T2 implies that
T1 ~-sPE T2.

Lamina 5. The pre-orders ~B, ~SB and '~SPE a r e transitive.

23

3 Reconciling Symmetry and Commutativity

3.1 S e l e c t i o n F u n c t i o n a n d A b s t r a c t S t r u c t u r e

D e f i n i t i o n 6. Let T = (S, R, L, Act, so) be an LTS. A function h : S -4 S is a
selection function if and only if there exists a bisimulation relation B C S • S
between T and T such that;

- For all s e S , 8 h(8)

- s B s' implies that h(s) = h(s')

We say that h preserves the bisimulation relation B.

Intuitively, the function h picks a representative from each equivalence class
of S induced by the bisimulation B. Given a selection function h, a reduced state
space can consist of the representative states (i.e., those in the range of h) with
edges between them:

D e f i n i t l o n 7 . Given a selection function h on an LTS T = (S, R, L ,Act , so),
define the corresponding abstract L T S Th = (Sh, Rh, Ln, Act, h(so)) in the fol-
lowing manner:

- S h = h(S).

- rl --?4 r2 E Rh if and only if there exists s E S such that rl -~ s E R and
h(s) = r2.

- For all r e & , L h (r) = n (r) .

We will show that the abstract (reduced) state space is bisimilar to the
original state space. Thus, according to Theorem 2, preserves all the C T L * - X
properties.

L e m m a 8. Given an LTS T = (S, R, L, Act, 8o) and a selection function h, T
and Th are bisimilar.

Proof." Let B C S • S be a bisimulation such that h is a selection function.
Construct Bh C S x Sh in the following manner:

s Bh r C=~ s B r

We will prove that Bh is a bisimulation relation. Assume that s Bh r. It is
obvious that the labels of r and s match.

- Assume that s ~ s(E R. We need to show that r -~ r ' E Rh, with s' Bh r ~.
Since s B r, there exists r l E S such that r -~ rl E R and s' B r l . Let
r' = h(rl) . By definition, r 2~ r ' E Rh and rl B r ' . By transitivity, s I B r',
which implies that s' Bh r'.

- Assume that r -~ r' E Rh. We need to show that s -~ s' such that s ~ Bh r'.
The definition of Rh implies that there exists rl such that r 2+ rl E R and
h(rl) = r'. Since 8 B r, there exists s' such that 8 -~ s' and s' B r l . Using
the fact that r~ B r I (recall that h(r~) = r' and h is bisimulation preserving)
and transitivity of B, s' B r'. This implies that s' Bh r ' . |

24

3.2 I n d e p e n d e n t A c t i o n s

Now we define the concept of independent actions.

D e f i n l t i o n 9 . Let T = (S, R, L,Act, so) be an LTS. An independence relation
on actions is an irreflexive and symmetric relation I C_ Act • Act such that each
pair of actions (c~,/?) E I (called independent actions) it must hold that for each
s E S

- If {~,j3} C_ enT(s), then for each state s' E aT(S) we have that /~ E enT(S').

- If {~,/~) _ enT(s), then there exists a path from s -~ sl s s' in T i f f there

exists a path s ~ rl 2~ s I in T.

The first condition states that if c~ and/? are independent, then executing c~ from
a state s, does-not disable the action/~. The second condition states that inde-
pendent actions are commutative. Notice that the relation I is an independence
relation with respect to a particular LTS T.

The lemma given below states that if I is an independence relation for T, then
I is also an independence relation for Th. This means that given an independence
relation for T, we can use the same independence relation while performing
partial-order reduction on Th.

L e m m a 10. Let I be an independence relation for a LTS T = (S, R, L, Act, so)
and h a bisimulation preserving selection function. In this case, I is also an
independence relation for the corresponding abstract LTS Th (denoted by
(Sh, l=th, Lh, Act, h(so))).

Proof." Let I be an independence relation for T. We will prove that I is also an
independence relation for Th. Let B be a bisimulation relation between T and
T which is preserved by h. Assume that (a, fl) E I. Corresponding to the two
conditions in the definition of the independence relation we have the following
t w o cases :

- Assume that (c~,~) C enTh(r). Let r' e C~T~(r). We have to prove that

E enwh (r'). By definition, there exists s E S such that r -~ s and h(s) = r'.
Since I is an independence relation for T, ~ E enT(s). Since h is bisimulation
preserving, we also have that s B r ~ . Therefore, ~ E enw(r~), which in turn
implies that fl E enw~ (r').

- - Assume that {a, ~) C enw~ (r). Now suppose that there exists a path r -~

rl ~-~ r ' in Th. Let s E S such that r -~ s E /~ and h(s) = rl. Also assume

that rl ~-~ tl E R and h(tl) = r'. Since ~ E enr(s), we can construct a

path r -~ s ~-~ # in T such that # B tl . Since I is an independence relation

for T, there exists a path r ~ sl --~ # in T. A transition h(sl) -~ s '~ such
that # B s I~ exists because sl B h(sl). By transitivity, s" B t l . Therefore,

h(s") = h(tl) = r' . Hence, r ~-~ h(sl) --% r' is a path in Th.

25

Only the second part of the proof uses the fact that s B s ~ implies that h(s) =
h(s'). |

3 . 3 S y m m e t r y

Let Perm(S) be the group of permutations of the finite set S. When we say G
acts on S, we mean that G is a subgroup of Perm(S). If G is a subgroup of H,
we denote it by G _< H. Next, we define the concept of a symmetry group G.

D e f i n i t i o n 11. Given a LTS T = (S, R, L, Act, so), a group G acting on S is
called a symmetry group of T i f f

- For all o~ E Act and for all o" E G, s -% s' iff rr(s) --% cr(s').

- For all ~ C G, L(s) = L(cr(8)).

Notice that if we are interested in checking a temporal formula f , the labeling
function of the LTS can be restricted to the atomic propositions occurring in
f . Therefore, all the restrictions on labelings given above have to only hold for
the atomic propositions occurring in the temporal formula f of interest. We say
that s and s ~ are in the same orbit iff there exists a (r E G such that c~(s) = s f.
O C S x S is the orbit relation induced by the symmetry group G. Given a
LTS T = (S, R, L, Act, so) and a symmetry group G acting on S, we define a
representative function ~ : S -+ S. The function ~ has two properties:

- s and ~(s) are in the same orbit.

- If s and s' are in the same orbit, then ~(s) = ~(s').

The function ~ maps a state to an unique representative in its orbit. The lemma
given below states that ~ is a bisimulation preserving selection function for T.
This means that our entire framework automatically gives a method for combin-
ing partial-order and symmetry reductions. It is easy to show the following:

L e m m a 12. Assume that we are given a LTS T = (S, R, L, Act, so) and a sym-
metry group G acting on S. Let ~ be a representation function corresponding to
G. In this case, ~ is a bisimulation preserving selection function.

In the definition of the symmetry group given at the beginning of this subsec-
tion we did not allow the actions to be permuted. This might seem overly restric-
tive. Now we will allow the symmetry group to permute states and actions simul-
taneously. Next, we will prove that this new seemingly more powerful notion of
symmetry is equivalent to the definition of symmetry given before. Assume that
we are given an LTS T and a symmetry group G according to the definition 13.
We construct an LTS T1 from T by relabeling actions such that G is a symmetry
group for T1 using definition 11. The group Perm(S) x Perm(Act) is the g r o u p
of all permutations (rrl, ~.) such that ~1 E Perm(S) and ~r2 E Perm(Act). Given
a permutat ion r = (~1, ~2) E Perm(S) x Perm(Act), for all s E S and o~ e Act
we define r = r and r = (r2(a).

26

D e f i n i t i o n l 3 . Given a LTS T = (S,R,L,Act, so), a group G _< Perm(S) •
Perm(Act) is called a symmetry group of T i f f

- For r 6 G, s -% s' iff r r r

- For all e 6 G, L(s) = L(~(s)).

The orbit of an action a 6 Act (denoted by Oh(a)) is the following set:

0a() = { # 1 3 r e c = #)}

Let I be an independence relation on the LTS T. Let G be the symmetry group of
T according to definition 13. Define Oh(I) C_ Act x Act in the following manner:

- (~, Z) E Oh(I) if and only if there exists a r 6 G such that (r r 6 I.

The lemma given below states that if I is an independence relation for T, then
Oh(I) is also an independence relation for T.

L e m m a 14. Let T = (S, R, L, Act, so) be a LTS and G _< Perm(S) x Perm(Act)
be a symmetry group of T. If I is an independence relation on T, then Oh(I) is
an independence relation on T.

Proof of the lemma is omitted because of space restrictions. Now we can assume
that we are working with OG(I) instead of I. Notice that in general, Oh(I) can
be much larger than I. The lemma given below states that the property of an
action being invisible is an invariant for an orbit.

L e m m a 15. Let c~ E G be an arbitrary permutat ion in G. An action a 6 i n v i sT
iff cr(~) 6 i nv i sT .

OG(Act) denotes the set of orbits of the actions. Given an LTS T (denoted by
(S, R, L, Act, so)), a symmetry group G < Perm(S) x Perm(Act) (according to
the definition 13) and an independence relation I C Act x Act, we construct a
symmetry group G1 _< Perm(S), an LTS T1 (denoted by ($1, R1, L1, Oh(Act), so)),
and an independence relation I1 COa (Act) x Oh(Act) in the following manner:

- S , = S .

- n l (s) : n(s) .

- s 0 o ~) s' 6 R1 i f f s -% s' 6 R.

- al �9 G1 iff there exists cr2 such that (or1, ~r2) �9 G.

- 0G(a) I1 0a(fl) iff for all cd �9 0a(~) and for all fl' �9 0G(Z) we have that
c~' I #'.

T h e lemma given below states that definition 11 can be used without loss of
generality.

L e m m a 16. Let G be a symmetry group of an LTS T using definition 13. Let
T1 and G1 be constructed as before. In this case Gt is the symmetry group of
Tt according to the definition 11

P r o o f : Immediate from the construction of T1. |

27

4 Algorithm for preserving L T L - X

Let T = (S, R, L, Act, So) be an LTS and h be a bisimulation preserving selection
function. In this section we will provide an algorithm which performs partial-
order reduction and the reduction corresponding to the selection function h
simultaneously. Basically, we describe an algorithm which performs the partial-
order reduction on the abstract LTS Th = (Sh, Rh, Lh, Act, h(so)), but does not
require the explicit construction of Th. First we present an algorithm which uses
the structure Th. This algorithm is only given for the sake of the proof.

1 push(h(so))
2 expand-node(h(so))

3 func t ion expand-node(s)
4 working-set(s) = ample(s)
5 while working-set(s) # r do
6 a = some action in ample(s)
7 working-set = working-set(s)\{a}
S for all s' E OlT h (8) do
9 if (new(s')) then

10 push(s')
11 expand-node(J)
12 create-edge(s,a,s I)
13 fl
14 end for all
15 end while
16 mark s as explored.
17 end expand-node

Fig. 1. State space expansion algorithm (A1)

The routine new(s) checks that the state s has not been explored. The function
push(s) pushes the state s onto the search stack. We also assume that when a
state s is marked explored (line 16), it is popped from the search stack. 7r is
called a run of the algorithm A1 if and only if T~ is an execution of the algorithm
A1 where the sets ample(s) C_ enTh (8) are chosen according to the rules C l - h ,
C2-h and C 3- h

- (C l - h) For no action a E Act\ample(s) that is dependent on some action
in ample(s) there exists a path rr in Th (starting from s) such that a appears
in 7r before an action from ample(s) appears on 7r.

- (C 2 -h) If ample(s) is a proper subset of the actions enabled from s in Th,
then for no action o~ 6 ample(s) it holds that a state in the set O~Th (S) is on
the search stack.

28

- (C 3 -h) If ample(s) i s a proper subset of enTh(S), then none of the actions
in ample(s) are visible in Th.

The following theorem states that any run of the algorithm A1 produces a
structure which is stuttering path equivalent to Th.

T h e o r e m 17. Let T ' be the LTS produced by an arbitrary run of the algorithm
A1. In this case Th ~----SPE TI.

P r o o f : See [11]. |

Now we modify the algorithm A1 to produce algorithm A2. Algorithm A2 works
on the LTS T, but because of some modifications it behaves as if it is performing
the partial order reduction on the LTS Th. Algorithm A2 is constructed from
A1 by changing lines 8, 9, 10, 11, and 12. We reproduce the whole algorithm for
convenience, but mark the changed lines with a (**). 7~ is called a run of the

1 push(h(s0))
2 expand-node(h(s0))

3 funct ion expand-node(s)
4 working-set(s) -- ample(s)
5 while working-set(s) r r do
6 a = some action in ample(s)
7 working-set -- working-set(s)\{a}
8 for all s' E aT(S) do (**)
9 if (new(h(s')) then (**)

10 push(h(s')) (**)
11 expand-node(h(s')) (**)
12 create-edge(s,a,h(s')) (**)
13 fl
14 end for all
15 end while
16 mark s as explored.
17 end expand-node

Fig. 2. State space expansion algorithm (A2)

algorithm A2 if and only if T~ is an execution of the algorithm A2 where the
sets ample(s) __C_ enT(s) are chosen according to the rules C1, C2, and C3.

- (C1) For no action a E Act\ample(s) that is dependent on some action in
ample(s) there exists a path ~r in T (starting from s) such that a appears in
7r before an action from axaple(s) appears on 7r.

29

- (C2) If a~tple(s) is a proper subset of the actions enabled from s in T, then
for no action c~ E araple(s) it holds that a state in the set h(~w(s))) is on
the search stack.

- (C3) If emple(s) is a proper subset of enw(s), then none of the actions in
a~ple(8) are visible in T.

The lemma given below will be used in our main theorem.

L e m m a 18. Let T = (S, R, L, Act, So) be an LTS and h a bisimulation preserv-
ing selection function. Let Th be the corresponding abstract LTS. Then, we have
the following conditions:

- Let s E Sh. There exists a path s = so -?4 sl ~4 -. �9 in T if and only if there
exists a path s = to -?4 tl -~ - . . in Th. Notice that exactly the same actions
appear in the two paths.

- An action ~ is visible in T if and only if it is visible in Th.

- For all s E Sh, enw(s) = enTh(S).

P r o o f : The results are a direct consequence of the fact that T and Th are
bisimilar (see lemma 8). |

Next, we prove that given a run of the algorithm A2 there exists a run of the
algorithm A1 such that both runs produce the same LTS. We must emphasize
again that algorithm A1 only exists for the sake of the proof. In practice, A2
will be implemented. The basic idea of the theorem is to run A1 and A2 in
lockstep and show that the ample sets which satisfy conditions C1, C2, and C3
for algorithm A2 also satisfy conditions C l - h , C2-h , and C3 -h for algorithm
A1 at each step.

T h e o r e m 19. For every run ~ of the algorithm A2 there exists a run T4 ~ of the
algorithm A1 such that the LTS produced by the two runs are the same.

P r o o f : We will construct a run 7~' of the algorithm A1 as we trace the execution
corresponding to the run 7"4 of the algorithm A2. At each point we will prove
that the following invariants hold:

- If the run T4 chooses a set ample(s) in line 4 which satisfies conditions C1,
C2, and C3, then ample(s) satisfies, C l - h , C2-h and C3 -h for the run T4'.

- The state of the two runs are the same, i.e., the stacks have the same states
and the same states are marked explored.

Initially, the invariants hold because both the runs push h(so) on the stack. Lets
say at some point in the execution the run T4 of the algorithm ,4.2 chooses a
set a~aple(s) on line 4 which satisfies conditions C1, C2, and C3. Because of
lemma 18, ample(s) also satisfies conditions C l - h and C3-h. Consider a state
r e ~Th (s) where ~ E ample(s). Notice that by definition there exists a state
s' E ST(S) such that r = h(s'). Now it is obvious from condition C2 that r

30

cannot be on the search stack. So ample(s) considered by the run 7~ satisfies
condition C2-h for the run TO'. Also notice that lemma 18 implies that

(mple(s) r e r(s)) * (ampi () #

Now we advance the two runs, and assume that they consider the states in the
same order in the fo r al l loop starting at line 8. |

The theorem given below states that any run of the algorithm A2 produces a
LTS which is stuttering path equivalent to T.

T h e o r e m 20. Let Tr be an arbitrary run of the algorithm A2. Let T ' be the
LTS produced by the run 7r Then we have that T -~sPE T'.

P r o o f : Let TO' be the run of the algorithm A1 which produces the same LTS as
the run 7r Run TO' exists because of theorem 19. By theorem 17 T' '~SPE Th.
Now lemmas 4 and 5 imply that T -~SPE T'. m

Notice that because of theorem 3 T and T ~ satisfy the same L T L - X formulas.
Therefore, one can check a specification given in L T L - X on the smaller LTS.

5 A l g o r i t h m P r e s e r v i n g C T L * - X

The algorithm given in the previous section only preserved the existence of equiv-
alent paths from the initial state. The semantics of branching time logics (like
CTL*) are based on computat ion trees. Therefore, these logics can distinguish
the branching structure of a node. Hence, to preserve branching time logics one
has to put more stringent restrictions on the set ample(s) considered by the
algorithms. We call 7r a run of the of the algorithm A1 if the ample(s) satisfies
the following condition in addition to conditions C l - h , C2-h , and C3-h.

- (C 4 -h) The set ample(s) is a singleton set or ample(s) = enTh(S).

In a similar manner, We call Tr run of the of the algorithm A2 if the ample(s)
satisfies the following condition in addition to conditions C1, C2, and C3.

- (C4) The set a.mple(s) is a singleton set or ample(s) = enT(s).

The treatment is exactly the same as in section 4. Therefore, we will skip all
the proofs. The proofs will use lemma 18 to establish that condition C4 implies
condition C4-h . An LTS T = (S, R, L, Act, so) is called deterministic if and only
if for all s E S and a 6 Act we have that la(s)i < 1. We assume that the LTS
T in question is deterministic. Notice that given a deterministic LTS T and a
slection function h, Th is a detereministic LTS. This restriction is needed for the
proof of the following theorem.

T h e o r e m 21. Let T ~ be the LTS produced by an arbitrary run of the algorithm
A1. In this case Th -~SB T'.

31

Proof." See [6, 12]. 1

The proof of theorem given below is exactly the same as the proof of the theo-
rem 19.

T h e o r e m 221 For every run Tr of the algorithm A2 there exists a run TO' of the
algorithm A1 such that the LTS produced by the two runs are the same.

The theorem given below states that any run of the algorithm A2 produces a
LTS which is stuttering bisimilar to T.

T h e o r e m 23. Let Tr be an arbitrary run of the algorithm A2. Let T ' be the
LTS produced by the run 7~. Then we have that T '~SB Tt.

P r o o f : Let Tr ~ be the run of the algorithm A1 which produces the same LTS as
the run T~. Run TO' exists because of theorem 22. By theorem 21 T ' ~SB Th. By
lemmas 4 and 5 T -~SB T t. 1

Notice that because of theorem 2 T and T ~ satisfy the same CTL*-X formulas.
Therefore, one can check a specification given in CTL*-X on the smaller LTS
T ~ instead of T.

6 E x a m p l e

In this section we given an example to illustrate our ideas. Figure 3 shows a
solution to the two process mutual exclusion problem. Ni denotes that process
i is the neutral section. ~ is the trying region for the process i. Ci signals that
process i is in the critical section. Since we are only dealing with two processes,
i = 1 or i = 2. Whenever process 2 makes a transition f r o m N2 to T2, it sets
an auxiliary variable t = 1. This signals the fact that process 1 can move into
its critical section. A symmetric transition appears in process 1. It is obvious
that exchanging indices 1 and 2 is a symmetry for this system. Let G be the
corresponding symmetry group. There are 8 possible actions corresponding to
the transitions. These are shown below:

Xl Ni --~ TI Ix lN
o~, T1 ~ C, [~21T2 ~ C2 I

(fi Ci ~ Ni 62 C2 --+ N2

Following the discussion in subsection 3.3, actions with the same name but dif-
ferent indices are in the same orbit under the action of the group G. For example,
a l and o~2 are in the same orbit. Renaming the actions and performing the sym-
metry reductions we get the abstract structure given in the Figure 4. From the
figure it should be clear what the representative function is. Also, notice that
action o~ and/? are independent. Now performing partial-order reduction on the
abstract structure we get the structure given in Figure 5.

32

Fig. 3. Token Ping

,X

%
(T1 T2

Fig. 4. Quotient Structure

t=l)

C1 T2)
Fig. 5. Quotient Structure with PO

reduction

33

7 Conclusion

This paper describes techniques to combine partial-order and symmetry reduc-
tion methods. In the future, we would like to implement our methods on some
existing verification tools and t ry some examples. Other interesting problem is to
derive symmetry and independence information from the description of the LTS
being verified. Presently, most verification systems rely on the user to provide
this information. We would also like to investigate whether some other reduction
techniques could be combined using similar ideas,

References

1. M.C. Browne, E.M. Clarke, and O. Grumberg. Characterizing fmite kripke struc-
tures in propositional temporal logic. Theoretical Computer Science, 59:115-131,
1988.

2. E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Transactions
on Programming Languages and Systems, 8(2):244-263, April 1986.

3. E.M. Clarke, T.Filkorn, and S.Jha. Exploiting symmetry in temporal logic model
checking. In Courcoubetis [4].

4. C. Courcoubetis, editor. Proceedings of the Fifth Workshop on Computer-Aided
Verification, volume 697 of Lecture Notes in Computer Science. Springer-Verlag,
June 1993.

5. E. Allen Emerson and A. Prasad Sistla. Symmetry and model checking. In Cour-
coubetis [4].

6. Rob Gerth, Ruurd Kuiper, Doron Peled, and Wojciech Penczek. A partial order
approach to branching time logic model checking. In Third Israel Symposium on
Theory on Computing and Systems, pages 130-139, Tel Aviv, Israel, 1995. IEEE.

7. P. Godefroid. Using partial orders to improve automatic verification methods. In
Kurshan and Clarke [10].

8. P. Huber, A.M. 3ensen, L.O. 3epsen, and K. Jensen. Towards reachability trees
for high-level petri nets. In G. Rozenberg, editor, Advances on Petri Nets, pages
215-233, 1984.

9. C.W. Ip and D. Dill. Better verification through symmetry. In L. Claesen, edi-
tor, Proceedings of the Eleventh International Symposium on Computer Hardware
Description Languages and their Applications. North-Holland, April 1993.

10. R. P. Kurshan and E. M. Clarke, editors. Proceedings of the 1990 Workshop on
Computer-Aided Verification. Springer-Veriag, June 1990.

11. Doron Peled. All from one, one from all: on model checking using representatives.
In 5th International Con]erence on Computer Aided Verification, Greece, number
697 in LNCS, pages 409-423, Elounda Crete, Greece, 1993. Springer-Verlag.

34

12. Doron Peled. Partial order reduction: Linear and branching temporal logics and
process algebras. In Partial Orders Methods in Verification, DIMACS, Princeton,
N J, USA, 1996. American Mathematical Society.

13. P.H. Starke. Reachabifity analysis of petri nets using symmetries. Syst. Anal.
Model. Simul., 8(4/5):293-303, 1991.

14. A. Valmari. Stubborn sets for reduced state space generation. In Proceedings of
the Tenth International Conference on Application and Theory of Petri Nets, 1989.

15. A. Valmari. A stubborn attack on the state explosion problem. In Kurshan and
Clarke [10].

16. A. Valmari. Stubborn sets of colored petri nets. In Proceedings of the 12th In-
ternational Conference on Application and Theory of Petri Nets, pages 102-121,
Gjern, Denmark, 1991.

