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Abst rac t .  Partial order based reduction techniques to reduce time and 
memory in model-checking procedures are becoming quite popular. Par- 
tial order reduction techniques exploit the independence of actions. Sym- 
metry based reduction techniques exploit the inherent structure of the 
system to reduce the state space explored during model checking. We 
provide an abstract framework for combining partial-order and symme- 
try reductions. We also present algorithms which exploit both reduction 
techniques simultaneously. 

1 I n t r o d u c t i o n  

Partial order based methods exploit the independence of actions [6, 7, 11, 14, 
15] to reduce the state space explosion in model-checking concurrent systems. 
The basic idea is that  given a set of interleaving sequence of actions, one can 
define sequences that  are equivalent up to reordering independent actions to 
be equivalent. As most specifications would not distinguish between equivalent 
sequences, one can consider a subset of sequences from each equivalence class. 
Thus, the reduction generates a state space that includes only a sufficiently big 
subset of of the sequences, representing all other equivalent ones. For example, 
assume that  the actions a and fl are independent. Independence means that it 
does not mat ter  in what order the finite-state system executes the actions a 
and/3.  Thus, a sequence uol~v is equivalent to the sequence u/3o~v. Therefore, 
if an algorithm considers the sequence uo~/3v, it can omit the sequence u~av. 
Most methods work by exploring a subset of the actions enabled from a state. 
The subset is selected according to some constraints that guarantee that  enough 
representatives, at least one from each equivalence class, will be generated. 
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Symmetry based methods exploit the architectural symmetry present in the 
system. For example, in a token ring composed of identical components, one 
can rotate the ring of processes without affecting the behavior of the system. 
Symmetry is present in any finite-state system composed of several identical 
components. Symmetry was first exploited in the teachability analysis of Petri 
Nets [8, 13]. Recently, symmetry based methods to avoid the state-explosion 
during model-checking were shown to be quite successful [3, 5, 9]. The basic idea 
is that the symmetry of the system induces an equivalence relation on the state 
space of the system. While performing model checking, one can discard the state 
s' if one has already explored an equivalent state s. 

This paper combines the symmetry and partial order based reduction tech- 
niques. Since symmetry and partial order based methods explore different phe- 
nomena of the system, it is possible for both techniques to be applied simultane- 
ously, obtaining better reduction than by applying each one of them separately. 
We show that this indeed is the case. In related work, Valmari has suggested to 
combine partial order reduction and symmetry for deadlock detection in colored 
Petri-Nets in [16]. 

The result shown here can also be interpreted more generally as combining 
two reduction techniques based on preserving equivalence (simulation) relations. 
In that respect, one can generalize the symmetry and the partial order reduc- 
tions into other equivalence preserving reductions. Although preserving other 
reductions may involve a somewhat different, specialized proof, similar ideas of 
how to 'reconciliate' between equivalence relations in order to preserve the cor- 
rectness of the checked property may be applied. Much of the effort was put to 
make the proofs of the combined reductions modular, separating as much as pos- 
sible the arguments concerning the partial order reduction from the arguments 
concerning symmetry reduction. 

The paper is organized as follows: Section 2 provides definitions used through- 
out the paper. Section 3 gives a framework for combining symmetry with in- 
dependence, which will be used to explain and prove the combined reduction 
algorithms. Section 4 gives an algorithm which preserves LTL formulas without 
the nexttime operator. Section 5 provides an algorithm which preserves CTL* 
without the nexttime operator. Section 7 concludes with some future directions 
and open problems. Due to limited space, the results of few lemmas are not 
provided here. They will appear in the full version of the paper. 

2 Prel iminaries  

In this section we introduce various definitions used throughout the paper. Sub- 
section 2.1 defines a labeled transition system. Temporal logics CTL*, CTL*-X, 
LTL, and LTL-X are not defined in this paper. The reader is referred to [2] for 
the syntax and semantics of these logics. Subsection 2.2 defines different pre- 
orders between LTSs. Subsection 3.2 defines what it means for two actions to be 
independent. 
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2.1 L a b e l e d  T r a n s i t i o n  S y s t e m  

Let A P  be a set of atomic propositions. A labeled transition system (LTS) is 
5-tuple T --- (S, R, L, Act, so), where 

- S is a finite set of states, 

- R C S • Act • S is a transition relation ((s, ~, s') E R is also written as 

s -% s' e R). 

- L : S -+ 2 AP is a labeling function which associates with each state a set of 
atomic propositions that  are true in the state. 

- Act is a finite set of actions. 

- so is the initial state. 

The function aT(S) returns the set a-successors of s in T. Tha t  is, s' E aT(S) 
iff s --% s' E R. An action ~ is said to be enabled from a state s in T if and only 
if there exists a state s' such that  s -% s' E R. The symbol enT (s) denotes the 
set of actions enabled from the state s in T. An action ~ is called invisible in T 
iff for all s and s' such that s -% s' E R we have that L(s) = L(s').  Basically, 
an invisible action does not change the t ruth of atomic propositions. The set of 
invisible actions in T is denoted by •  The set of visible actions is denoted 
by ViST. 

2.2 Va r ious  p r e - o r d e r s  b e t w e e n  p r o c e s s e s  

Given two LTSs T1 -- (S1,R1, L1,Act,  so,1) and T2 -- (S2, R2, L2,Act,  so,2), a 
relation B C_ $1 • $2 is called a bisimulation between T1 and T2 if and only if 
the following conditions hold: 

-- 80,1 B 80,2. 

- Assume that  s B s'. Then the following conditions hold: 

�9 n ( s )  = L ( s ' )  

�9 Given an arbitrary transition s -% sl E R1, there exists s~. E $2 such 
that  s' -~ s2 E R~ and sl B s2. 

�9 A symmetric condition holds with the roles of s' and s reversed. 

T1 and T~ are said to be bisimilar (denoted by T1 ~B T~) if and only if there 
exists a bisimulation between T1 and T2. 

D e f i n l t i o n l .  Let T1 = ($1, R1, L1,Act,  s0,t) and T1 -~ ($2, R2, L2, Act, so,2) be 

two LTSs. Let C _C $1 x $2 be a relation. Consider paths ~r = so 2_~ sl -~ --- 

in T1 and It' = to -~ tl  -~ --- in T2. Paths lr and ~" are called stuttering 
E-equivalent if and only if there exists infinite sequences of natural  numbers 
i 0 = 0 < i l  < i 2  < . - - a n d k 0 = 0 < k l  < k2 < -.- such that for a l l j _ > 0 t h e  
following condition is true. 
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- For all ij <_ r < ij+l and kj <_ m < kj+l, st g tin. 

Paths rr and rr' are called stuttering equivalent if they are stuttering s 
where s s s' if and only if L(s) = L(s'). Sometimes, we will refer to the set of 
integers {ij, ij + 1 , . . . ,  ij+l - 1} and {hi, kj + 1 , . . . ,  kj+~ - 1} as the j-th blocks 
Bj and B}. 

Next, we define the notion of stuttering bisimulation. Stuttering bisimulation is 
similar to bisimulation, but each LTS is allowed to take several steps to simulate 
a path of the other LTS. Given two LTSs 7"1 = (S1,Rt ,  L1,Aetl,so,1) and T2 = 
($2, R2, L~, Act~, s0,a), a relation g C_ $1 x $2 is called a stuttering bisimulation 
between T1 and T~ if and only if the following conditions hold: 

-- 80,1 C 80,2. 

- If s C s ~, then the following conditions hold: 

�9 L(s) = L(s')  

�9 For every path rr starting from s in T1 there exists a stuttering E- 
equivalent path rr' starting from s' in T~. See definition 1 for the ex- 
planation of stuttering C-equivalent. 

�9 The same condition as the previous one holds but with the roles of s and 
s' reversed. 

T1 and T2 are said to be stuttering bisimilar if and only if there exists a stuttering 
bisimulation between them. We denote this by T1 ~SB T2. 

Notice that a stuttering bisimulation relation cannot distinguish between 
next states. Therefore, it is not surprising that stuttering bisimulation preserves 
the truth of CTL* formula without the next time operator. The proof of this 
theorem first appeared in [1]. 

T h e o r e m  2. Let f be a formula in CTL*-X .  Let T1 and T2 be two stuttering 
bisimilar LTSs. Let s be a stuttering bisimulation relation between T1 and T2. 
If s g s', then TI, s ~ f if and only if T2, s' ~ f .  

T1 = ($1, R1, Lt,  Act, so,l) and T2 = ($2, R2, L~, Act, so,s) are said to be 
stuttering path equivalent (denoted by T1 ~sPE T2) if and only if 

- For every path 7r starting from s0,1 in T1 there exists a stuttering equivalent 
path rr' starting from s0,2 in T2. 

- A symmetric condition holds with the roles of s0,1 and s0,2 reversed. 

T h e o r e m 3 .  Let f be a formula in LTL-X .  Let T1 = ($1, R1, L1, Act, so,l) and 
T2 = ( $2, R2, L2, Act, so,2) be two stuttering path equivalent LTSs. 

80,1 ~ Y r 80,~ ~ f 

L e m m a  4. 7'1 ~B 7"2 implies that T1 ~ s n  T2. Similarly, T1 ~SB T2 implies that 
T1 ~-sPE T2. 

Lamina  5. The pre-orders ~B, ~SB and '~SPE a r e  transitive. 



23 

3 Reconciling Symmetry and Commutativity 

3.1 S e l e c t i o n  F u n c t i o n  a n d  A b s t r a c t  S t r u c t u r e  

D e f i n i t i o n  6. Let T = (S, R, L, Act, so) be an LTS. A function h : S -4 S is a 
selection function if and only if there exists a bisimulation relation B C S • S 
between T and T such that; 

- For all s e S ,  8 h(8)  

- s B s' implies that h(s) = h(s') 

We say that  h preserves the bisimulation relation B. 

Intuitively, the function h picks a representative from each equivalence class 
of S induced by the bisimulation B. Given a selection function h, a reduced state 
space can consist of the representative states (i.e., those in the range of h) with 
edges between them: 

D e f i n i t l o n 7 .  Given a selection function h on an LTS T = (S, R, L ,Act ,  so), 
define the corresponding abstract L T S  Th = ( Sh, Rh, Ln, Act, h(so) ) in the fol- 
lowing manner: 

- S h  = h(S). 

- rl --?4 r2 E Rh if and only if there exists s E S such that  rl  -~ s E R and 
h(s) = r2. 

- For all  r e & ,  L h ( r )  = n ( r ) .  

We will show that  the abstract (reduced) state space is bisimilar to the 
original state space. Thus, according to Theorem 2, preserves all the C T L * - X  
properties. 

L e m m a  8. Given an LTS T = (S, R, L, Act, 8o) and a selection function h, T 
and Th are bisimilar. 

Proof." Let B C S • S be a bisimulation such that h is a selection function. 
Construct Bh C S x Sh in the following manner: 

s Bh r C=~ s B r 

We will prove that  Bh is a bisimulation relation. Assume that  s Bh r. It is 
obvious that the labels of r and s match. 

- Assume that  s ~ s( E R. We need to show that r -~ r '  E Rh, with s' Bh r ~. 
Since s B r, there exists r l  E S such that  r -~ rl  E R and s' B r l .  Let 
r' = h(rl) .  By definition, r 2~ r '  E Rh and rl B r ' .  By transitivity, s I B r', 
which implies that  s' Bh r'. 

- Assume that  r -~ r' E Rh. We need to show that s -~ s' such that s ~ Bh r'. 
The definition of Rh implies that  there exists rl  such that  r 2+ rl E R and 
h(rl)  = r'. Since 8 B r, there exists s' such that 8 -~ s' and s' B r l .  Using 
the fact that r~ B r I (recall that  h(r~) = r' and h is bisimulation preserving) 
and transitivity of B, s' B r'. This implies that  s' Bh r ' .  | 
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3.2 I n d e p e n d e n t  A c t i o n s  

Now we define the concept of independent actions. 

D e f i n l t i o n 9 .  Let T = (S, R, L,Act,  so) be an LTS. An independence relation 
on actions is an irreflexive and symmetric relation I C_ Act • Act such that each 
pair of actions (c~,/?) E I (called independent actions) it must hold that for each 
s E S  

- If {~,j3} C_ enT(s), then for each state s' E aT(S) we have that /~ E enT(S'). 

- If {~,/~) _ enT(s), then there exists a path from s -~ sl s s' in T i f f  there 

exists a path s ~ rl 2~ s I in T. 

The first condition states that  if c~ and/?  are independent, then executing c~ from 
a state s, does-not disable the action/~. The second condition states that inde- 
pendent actions are commutative.  Notice that the relation I is an independence 
relation with respect to a particular LTS T. 

The lemma given below states that if I is an independence relation for T, then 
I is also an independence relation for Th. This means that  given an independence 
relation for T, we can use the same independence relation while performing 
partial-order reduction on Th. 

L e m m a  10. Let I be an independence relation for a LTS T = (S, R, L, Act, so) 
and h a bisimulation preserving selection function. In this case, I is also an 
independence relation for the corresponding abstract LTS Th (denoted by 
( Sh, l=th, Lh, Act, h(so) ) ). 

Proof." Let I be an independence relation for T. We will prove that  I is also an 
independence relation for Th. Let B be a bisimulation relation between T and 
T which is preserved by h. Assume that  (a, fl) E I. Corresponding to the two 
conditions in the definition of the independence relation we have the following 
t w o  cases :  

- Assume that  (c~,~) C enTh(r). Let r' e C~T~(r). We have to prove that  

E enwh (r'). By definition, there exists s E S such that  r -~ s and h(s) = r'. 
Since I is an independence relation for T, ~ E enT(s). Since h is bisimulation 
preserving, we also have that  s B r ~ . Therefore, ~ E enw(r~), which in turn 
implies that  fl E enw~ (r'). 

- -  Assume that  {a, ~)  C enw~ (r). Now suppose that  there exists a path r -~ 

rl ~-~ r '  in Th. Let s E S such that  r -~ s E /~  and h(s) = rl. Also assume 

that  rl  ~-~ tl  E R and h(tl) = r'. Since ~ E enr(s), we can construct a 

path r -~ s ~-~ # in T such that  # B tl .  Since I is an independence relation 

for T, there exists a path r ~ sl --~ # in T. A transition h(sl) -~ s '~ such 
that  # B s I~ exists because sl B h(sl). By transitivity, s" B t l .  Therefore, 

h(s") = h(tl) = r' .  Hence, r ~-~ h(sl) --% r' is a path in Th. 
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Only the second part of the proof uses the fact that s B s ~ implies that  h(s) = 
h(s'). | 

3 . 3  S y m m e t r y  

Let Perm(S) be the group of permutations of the finite set S. When we say G 
acts on S, we mean that  G is a subgroup of Perm(S).  If G is a subgroup of H,  
we denote it by G _< H.  Next, we define the concept of a symmetry  group G. 

D e f i n i t i o n  11. Given a LTS T = (S, R, L, Act, so), a group G acting on S is 
called a symmetry group of T i f f  

- For all o~ E Act and for all o" E G, s -% s' iff rr(s) --% cr(s'). 

- For all ~ C G, L(s) = L(cr(8)). 

Notice that  if we are interested in checking a temporal formula f ,  the labeling 
function of the LTS can be restricted to the atomic propositions occurring in 
f .  Therefore, all the restrictions on labelings given above have to only hold for 
the atomic propositions occurring in the temporal  formula f of interest. We say 
that  s and s ~ are in the same orbit iff there exists a (r E G such that c~(s) = s f. 
O C S x S is the orbit relation induced by the symmetry  group G. Given a 
LTS T = (S, R, L, Act, so) and a symmetry  group G acting on S, we define a 
representative function ~ : S -+ S. The function ~ has two properties: 

- s and ~(s) are in the same orbit. 

- If s and s' are in the same orbit, then ~(s) = ~(s'). 

The function ~ maps a state to an unique representative in its orbit. The lemma 
given below states that  ~ is a bisimulation preserving selection function for T. 
This means that  our entire framework automatically gives a method for combin- 
ing partial-order and symmetry  reductions. It is easy to show the following: 

L e m m a  12. Assume that  we are given a LTS T = (S, R, L, Act, so) and a sym- 
metry  group G acting on S. Let ~ be a representation function corresponding to 
G. In this case, ~ is a bisimulation preserving selection function. 

In the definition of the symmetry group given at the beginning of this subsec- 
tion we did not allow the actions to be permuted. This might seem overly restric- 
tive. Now we will allow the symmetry  group to permute states and actions simul- 
taneously. Next, we will prove that  this new seemingly more powerful notion of 
symmetry  is equivalent to the definition of symmetry given before. Assume that  
we are given an LTS T and a symmetry group G according to the definition 13. 
We construct an LTS T1 from T by relabeling actions such that  G is a symmetry 
group for T1 using definition 11. The group Perm(S) x Perm(Act) is the g r o u p  
of all permutations (rrl, ~.) such that  ~1 E Perm(S) and ~r2 E Perm(Act). Given 
a permutat ion r = (~1, ~2) E Perm(S) x Perm(Act), for all s E S and o~ e Act 
we define r  = r and r  = (r2(a). 



26 

D e f i n i t i o n l 3 .  Given a LTS T = (S,R,L,Act,  so), a group G _< Perm(S) • 
Perm(Act) is called a symmetry group of T i f f  

- For r 6 G, s -% s' iff r  r r  

- For all e 6 G, L(s) = L(~(s)). 

The orbit of an action a 6 Act (denoted by Oh(a)) is the following set: 

0a( ) = { # 1 3 r  e c = #)}  

Let I be an independence relation on the LTS T. Let G be the symmetry group of 
T according to definition 13. Define Oh(I) C_ Act x Act in the following manner: 

- (~, Z) E Oh(I) if and only if there exists a r 6 G such that  (r  r 6 I. 

The lemma given below states that  if I is an independence relation for T, then 
Oh(I) is also an independence relation for T. 

L e m m a  14. Let T = (S, R, L, Act, so) be a LTS and G _< Perm(S) x Perm(Act) 
be a symmetry  group of T. If I is an independence relation on T, then Oh(I) is 
an independence relation on T. 

Proof  of the lemma is omitted because of space restrictions. Now we can assume 
that  we are working with OG(I) instead of I. Notice that  in general, Oh(I) can 
be much larger than I. The lemma given below states that  the property of an 
action being invisible is an invariant for an orbit. 

L e m m a  15. Let c~ E G be an arbitrary permutat ion in G. An action a 6 i n v i sT  
iff cr(~) 6 i nv i sT .  

OG(Act) denotes the set of orbits of the actions. Given an LTS T (denoted by 
(S, R, L, Act, so)), a symmetry  group G < Perm(S) x Perm(Act) (according to 
the definition 13) and an independence relation I C Act x Act, we construct a 
symmetry  group G1 _< Perm(S),  an LTS T1 (denoted by ($1, R1, L1, Oh(Act), so)), 
and an independence relation I1 COa (Act) x Oh(Act) in the following manner: 

- S , = S .  

- n l ( s )  : n(s) .  

- s 0 o ~ )  s' 6 R1 i f f  s -% s' 6 R.  

- al �9 G1 iff there exists cr2 such that  (or1, ~r2) �9 G. 

- 0G(a) I1 0a(fl) iff for all cd �9 0a(~)  and for all fl' �9 0G(Z) we have that  
c~' I #'. 

T h e  lemma given below states that  definition 11 can be used without loss of 
generality. 

L e m m a  16. Let G be a symmetry  group of an LTS T using definition 13. Let 
T1 and G1 be constructed as before. In this case Gt is the symmetry group of 
Tt according to the definition 11 

P r o o f :  Immediate from the construction of T1. | 
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4 Algorithm for preserving L T L - X  

Let T = (S, R, L, Act, So) be an LTS and h be a bisimulation preserving selection 
function. In this section we will provide an algorithm which performs partial- 
order reduction and the reduction corresponding to the selection function h 
simultaneously. Basically, we describe an algorithm which performs the partial- 
order reduction on the abstract LTS Th = (Sh, Rh, Lh, Act, h(so)), but does not 
require the explicit construction of Th. First we present an algorithm which uses 
the structure Th. This algorithm is only given for the sake of the proof. 

1 push(h(so)) 
2 expand-node(h(so )) 

3 func t ion  expand-node(s) 
4 working-set(s) = ample(s) 
5 while working-set(s) # r do 
6 a = some action in ample(s) 
7 working-set = working-set(s)\{a} 
S for all s' E OlT h (8) do 
9 if (new(s')) then  

10 push(s') 
11 expand-node(J) 
12 create-edge(s,a,s I) 
13 fl 
14 end for all 
15 end while 
16 mark s as explored. 
17 end expand-node 

Fig. 1. State space expansion algorithm (A1) 

The routine new(s) checks that  the state s has not been explored. The function 
push(s) pushes the state s onto the search stack. We also assume that  when a 
state s is marked explored (line 16), it is popped from the search stack. 7r is 
called a run of the algorithm A1 if and only if T~ is an execution of the algorithm 
A1 where the sets ample(s) C_ enTh (8) are chosen according to the rules C l - h ,  
C2-h  and C 3- h  

- ( C l - h )  For no action a E Act\ample(s) that  is dependent on some action 
in ample(s) there exists a path rr in Th (starting from s) such that  a appears 
in 7r before an action from ample(s) appears on 7r. 

- (C 2 -h )  If ample(s) is a proper subset of the actions enabled from s in Th, 
then for no action o~ 6 ample(s) it holds that a state in the set O~Th (S) is on 
the search stack. 
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- ( C 3 -h )  If ample(s ) i s  a proper subset of enTh(S), then none of the actions 
in ample(s) are visible in Th. 

The following theorem states that  any run of the algorithm A1 produces a 
structure which is stuttering path equivalent to Th. 

T h e o r e m  17. Let T '  be the LTS produced by an arbitrary run of the algorithm 
A1. In this case Th ~----SPE TI. 

P r o o f :  See [11]. | 

Now we modify the algorithm A1 to produce algorithm A2. Algorithm A2 works 
on the LTS T, but because of some modifications it behaves as if it is performing 
the partial order reduction on the LTS Th. Algorithm A2 is constructed from 
A1 by changing lines 8, 9, 10, 11, and 12. We reproduce the whole algorithm for 
convenience, but mark the changed lines with a (**). 7~ is called a run of the 

1 push(h(s0)) 
2 expand-node(h(s0)) 

3 funct ion  expand-node(s) 
4 working-set(s) -- ample(s) 
5 while working-set(s) r r do 
6 a = some action in ample(s) 
7 working-set -- working-set(s)\{a} 
8 for all s' E aT(S) do (**) 
9 if  (new(h(s')) then  (**) 

10 push(h(s')) (**) 
11 expand-node(h(s')) (**) 
12 create-edge(s,a,h(s')) (**) 
13 fl 
14 end for all 
15 end while 
16 mark s as explored. 
17 end expand-node 

Fig. 2. State space expansion algorithm (A2) 

algorithm A2 if and only if T~ is an execution of the algorithm A2 where the 
sets ample(s) __C_ enT(s) are chosen according to the rules C1, C2, and C3. 

- (C1)  For no action a E Act\ample(s)  that  is dependent on some action in 
ample(s) there exists a path ~r in T (starting from s) such that  a appears in 
7r before an action from axaple(s) appears on 7r. 
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- (C2)  If a~tple(s) is a proper subset of the actions enabled from s in T, then 
for no action c~ E araple(s) it holds that  a state in the set h(~w(s))) is on 
the search stack. 

- (C3)  If emple(s) is a proper subset of enw(s), then none of the actions in 
a~ple(8) are visible in T. 

The lemma given below will be used in our main theorem. 

L e m m a  18. Let T = (S, R, L, Act, So) be an LTS and h a bisimulation preserv- 
ing selection function. Let Th be the corresponding abstract LTS. Then, we have 
the following conditions: 

- Let s E Sh. There exists a path s = so -?4 sl ~4 -. �9 in T if and only if there 
exists a path s = to -?4 tl  -~ - . .  in Th. Notice that exactly the same actions 
appear in the two paths. 

- An action ~ is visible in T if and only if it is visible in Th. 

- For all s E Sh, enw(s) = enTh(S). 

P r o o f :  The results are a direct consequence of the fact that  T and Th are 
bisimilar (see lemma 8). | 

Next, we prove that  given a run of the algorithm A2 there exists a run of the 
algorithm A1 such that  both runs produce the same LTS. We must emphasize 
again that  algorithm A1 only exists for the sake of the proof. In practice, A2 
will be implemented. The basic idea of the theorem is to run A1 and A2 in 
lockstep and show that  the ample sets which satisfy conditions C1, C2, and C3 
for algorithm A2 also satisfy conditions C l - h ,  C2-h ,  and C3 -h  for algorithm 
A1 at each step. 

T h e o r e m  19. For every run ~ of the algorithm A2 there exists a run T4 ~ of the 
algorithm A1 such that the LTS produced by the two runs are the same. 

P r o o f :  We will construct a run 7~' of the algorithm A1 as we trace the execution 
corresponding to the run 7"4 of the algorithm A2. At each point we will prove 
that  the following invariants hold: 

- If the run T4 chooses a set ample(s) in line 4 which satisfies conditions C1, 
C2, and C3, then ample(s) satisfies, C l - h ,  C2-h  and C3 -h  for the run T4'. 

- The state of the two runs are the same, i.e., the stacks have the same states 
and the same states are marked explored. 

Initially, the invariants hold because both the runs push h(so) on the stack. Lets 
say at some point in the execution the run T4 of the algorithm ,4.2 chooses a 
set a~aple(s) on line 4 which satisfies conditions C1, C2, and C3. Because of 
lemma 18, ample(s) also satisfies conditions C l - h  and C3-h.  Consider a state 
r e ~Th (s) where ~ E ample(s). Notice that  by definition there exists a state 
s' E ST(S) such that  r = h(s'). Now it is obvious from condition C2 that  r 
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cannot be on the search stack. So ample(s) considered by the run 7~ satisfies 
condition C2-h  for the run TO'. Also notice that lemma 18 implies that 

( mple(s) r e r(s)) * (ampi ( ) # 

Now we advance the two runs, and assume that they consider the states in the 
same order in the fo r  al l  loop starting at line 8. | 

The theorem given below states that any run of the algorithm A2 produces a 
LTS which is stuttering path equivalent to T. 

T h e o r e m  20. Let Tr be an arbitrary run of the algorithm A2. Let T '  be the 
LTS produced by the run 7r Then we have that  T -~sPE T'. 

P r o o f :  Let TO' be the run of the algorithm A1 which produces the same LTS as 
the run 7r Run TO' exists because of theorem 19. By theorem 17 T'  '~SPE Th. 
Now lemmas 4 and 5 imply that  T -~SPE T'. m 

Notice that  because of theorem 3 T and T ~ satisfy the same L T L - X  formulas. 
Therefore, one can check a specification given in L T L - X  on the smaller LTS. 

5 A l g o r i t h m  P r e s e r v i n g  C T L * - X  

The algorithm given in the previous section only preserved the existence of equiv- 
alent paths from the initial state. The semantics of branching time logics (like 
CTL*) are based on computat ion trees. Therefore, these logics can distinguish 
the branching structure of a node. Hence, to preserve branching time logics one 
has to put  more stringent restrictions on the set ample(s) considered by the 
algorithms. We call 7r a run of the of the algorithm A1 if the ample(s) satisfies 
the following condition in addition to conditions C l - h ,  C2-h ,  and C3-h.  

- (C 4 -h )  The set ample(s) is a singleton set or ample(s) = enTh(S). 

In a similar manner, We call Tr run of the of the algorithm A2 if the ample(s) 
satisfies the following condition in addition to conditions C1, C2, and C3. 

- (C4)  The set a.mple(s) is a singleton set or ample(s) = enT(s). 

The treatment  is exactly the same as in section 4. Therefore, we will skip all 
the proofs. The proofs will use lemma 18 to establish that  condition C4 implies 
condition C4-h .  An LTS T = (S, R, L, Act, so) is called deterministic if and only 
if for all s E S and a 6 Act we have that  la(s)i < 1. We assume that  the LTS 
T in question is deterministic. Notice that  given a deterministic LTS T and a 
slection function h, Th is a detereministic LTS. This restriction is needed for the 
proof of the following theorem. 

T h e o r e m  21. Let T ~ be the LTS produced by an arbitrary run of the algorithm 
A1. In this case Th -~SB T'. 
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Proof." See [6, 12]. 1 

The proof of theorem given below is exactly the same as the proof of the theo- 
rem 19. 

T h e o r e m  221 For every run Tr of the algorithm A2 there exists a run TO' of the 
algorithm A1 such that  the LTS produced by the two runs are the same. 

The theorem given below states that  any run of the algorithm A2 produces a 
LTS which is stuttering bisimilar to T. 

T h e o r e m  23. Let Tr be an arbitrary run of the algorithm A2. Let T ' be the 
LTS produced by the run 7~. Then we have that  T '~SB Tt. 

P r o o f :  Let Tr ~ be the run of the algorithm A1 which produces the same LTS as 
the run T~. Run TO' exists because of theorem 22. By theorem 21 T ' ~SB Th. By 
lemmas 4 and 5 T -~SB T t. 1 

Notice that  because of theorem 2 T and T ~ satisfy the same CTL*-X formulas. 
Therefore, one can check a specification given in CTL*-X on the smaller LTS 
T ~ instead of T. 

6 E x a m p l e  

In this section we given an example to illustrate our ideas. Figure 3 shows a 
solution to the two process mutual  exclusion problem. Ni denotes that  process 
i is the neutral section. ~ is the  trying region for the process i. Ci signals that  
process i is in the critical section. Since we are only dealing with two processes, 
i = 1 or i = 2. Whenever process 2 makes a transition f r o m  N2 to T2, it sets 
an auxiliary variable t = 1. This signals the fact that  process 1 can move into 
its critical section. A symmetric transition appears in process 1. It is obvious 
that  exchanging indices 1 and 2 is a symmetry  for this system. Let G be the 
corresponding symmetry  group. There are 8 possible actions corresponding to 
the transitions. These are shown below: 

Xl Ni --~ TI Ix lN  
o~, T1 ~ C, [~21T2 ~ C2 I 

(fi Ci ~ Ni 62 C2 --+ N2 

Following the discussion in subsection 3.3, actions with the same name but dif- 
ferent indices are in the same orbit under the action of the group G. For example, 
a l  and o~2 are in the same orbit. Renaming the actions and performing the sym- 
metry reductions we get the abstract structure given in the Figure 4. From the 
figure it should be clear what the representative function is. Also, notice that 
action o~ and/?  are independent. Now performing partial-order reduction on the 
abstract structure we get the structure given in Figure 5. 
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Fig. 3. Token Ping 
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7 Conclusion 

This paper describes techniques to combine partial-order and symmetry reduc- 
tion methods. In the future, we would like to implement our methods on some 
existing verification tools and t ry  some examples. Other interesting problem is to 
derive symmetry  and independence information from the description of the LTS 
being verified. Presently, most verification systems rely on the user to provide 
this information. We would also like to investigate whether some other reduction 
techniques could be combined using similar ideas, 
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