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Abstrac t .  The Esterel synchronous programming language is dedicated 
to hardware or software reactive systems. The constructive semantics de- 
termines the reaction of a program to an input event. Esterel programs 
can be implemented in several ways that yield different time / space 
tradeoffs. For all the implementations, the code is composed of a con- 
trol finite-state machine that drives data-handling actions. The FSM 
can be explicit or implicit. Implicit machines are Boolean circuits that 
may contain cycles. The cycles are analyzed and removed using BDD- 
based technique. Optimization techniques consist in register removal and 
logic optimization techniques; they can be tailored to both hardware and 
software targets. Verification of Esterel programs is based either on syn- 
chronous observers and symbolic teachability techniques or on explicit 
or implicit bisimulation reduction. 

1 The  Esterel  Language 

Esterel is a deterministic concurrent  imperative language dedicated to software 
or hardware reactive systems. It is being used in process control, robotics, super- 
vision, embedded systems, communication protocols, hardware glue logic, MMI 
drivers, and more generally for control-dominated reactive applications. The lan- 
guage is described in [2, 3, 4] and in the Esterel v5 system documentation. The 
main primitives are signal broadcasting, sequencing, concurrency, and preemp- 
tion constructs. 

An Esterel programs reacts to a sequence of inputs by producing an output  
for each input. A reaction is considered to be instantaneous, which means that  
the bookkeeping necessary to perform a reaction is viewed as not consuming 
input time. The mathematical  semantics is based on a deterministic zero-delay 
model similar to tha t  of digital circuits. Unlike most other circuit or synchronous 
formalisms, Esterel makes it possible for programs to contain static combina- 
tional (zero-delay) cycles provided that  these cycles are dynamically sound. The 
constructive semantics exactly characterizes sound programs. The mathematical  
theory of Esterel is presented in [1]. 



2 T h e  E x e c u t i o n  S t r u c t u r e  

The Esterel v5 compiler separates the control and data part of an Esterel pro- 
gram. The data part is implemented either by a data path in hardware or by 
standard data-handling procedures in software. The control part is a finite-state 
machine that can be implemented explicitly or implicitly. Explicit automata are 
very fast but they are limited to small or medium-size examples since they can be 
exponential in the size of the source programs. Implicit automata are sequential 
Boolean circuits composed of combinational operators and registers. 

An acyclic control circuit is handled as usual by topological sorting. For a 
cyclic circuit, the Esterel interpretor uses a linear-time algorithm to compute 
whether the circuit is sound (constructive) for a given input. The compiler uses 
a BDD-based algorithms to symbolically computes whether the circuit is con- 
structive for all input sequences [8, 6]. In this case, the cyclic circuit can be 
replaced by an equivalent acyclic one. 

3 O p t i m i z a t i o n  

We have developed original optimization algorithms for efficient hardware or 
software generation from Esterel circuit format. The first step consists in remov- 
ing redundant registers, using BDD-based reachability analysis techniques [9]. 
This step must be carefully controlled because removing too many redundant 
registers can make the combinational logic explode. It is implemented using the 
TiGeR BDD package developed by O. Coudert, J-C. Madre, and H. Touati and 
property of Digital Equipment Corp. The second step consists in performing 
combinational logic optimization, with speed criteria for hardware and area cri- 
teria for software. It is implemented as a script for Berkeley's SIS system [7]. 
Optimization can be conducted in a hierarchical way for large programs. 

4 V e r i f i c a t i o n  

There are two main methods to verify properties of Esterel programs. The first 
method is based on the notion of a synchronous observer introduced in [5]. A 
synchronous observer is an Esterel program placed in parallel with the program 
of interest and listening to its inputs and outputs. The observer emits a particular 
output BUG if an anomaly shows up. The verification consists in showing that BUG 
can never be emitted and in producing a counter-example otherwise. We use very 
efficient reachability analysis techniques tailored for control-dominated programs 
and implemented in TiGeR. The second method is the classical bisimulation 
reduction method that consists in computing a reduced image of the finite state 
machine, hiding what is not relevant to the property of interest. Both explicit 
and implicit bisimulation are available in the Esterel verification system Xeve. 



5 Tool Dis tr ibut ion  

The Esterel system, the optimizers, and the verification tools are available at 
h t t p : / /www,  i n r i a ,  f r / m e i j  e /me i j  e - eng ,  html. 
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