
Hardware and Software Synthesis, Optimization,
and Verification from Esterel Programs

G~rard Berry

Ecole des Mines de Paris and INRIA
2004 Route des Lucioles

06565 Sophia-Antipolis, France
berry~cma.inria.fr

Abstrac t . The Esterel synchronous programming language is dedicated
to hardware or software reactive systems. The constructive semantics de-
termines the reaction of a program to an input event. Esterel programs
can be implemented in several ways that yield different time / space
tradeoffs. For all the implementations, the code is composed of a con-
trol finite-state machine that drives data-handling actions. The FSM
can be explicit or implicit. Implicit machines are Boolean circuits that
may contain cycles. The cycles are analyzed and removed using BDD-
based technique. Optimization techniques consist in register removal and
logic optimization techniques; they can be tailored to both hardware and
software targets. Verification of Esterel programs is based either on syn-
chronous observers and symbolic teachability techniques or on explicit
or implicit bisimulation reduction.

1 The Esterel Language

Esterel is a deterministic concurrent imperative language dedicated to software
or hardware reactive systems. It is being used in process control, robotics, super-
vision, embedded systems, communication protocols, hardware glue logic, MMI
drivers, and more generally for control-dominated reactive applications. The lan-
guage is described in [2, 3, 4] and in the Esterel v5 system documentation. The
main primitives are signal broadcasting, sequencing, concurrency, and preemp-
tion constructs.

An Esterel programs reacts to a sequence of inputs by producing an output
for each input. A reaction is considered to be instantaneous, which means that
the bookkeeping necessary to perform a reaction is viewed as not consuming
input time. The mathematical semantics is based on a deterministic zero-delay
model similar to tha t of digital circuits. Unlike most other circuit or synchronous
formalisms, Esterel makes it possible for programs to contain static combina-
tional (zero-delay) cycles provided that these cycles are dynamically sound. The
constructive semantics exactly characterizes sound programs. The mathematical
theory of Esterel is presented in [1].

2 T h e E x e c u t i o n S t r u c t u r e

The Esterel v5 compiler separates the control and data part of an Esterel pro-
gram. The data part is implemented either by a data path in hardware or by
standard data-handling procedures in software. The control part is a finite-state
machine that can be implemented explicitly or implicitly. Explicit automata are
very fast but they are limited to small or medium-size examples since they can be
exponential in the size of the source programs. Implicit automata are sequential
Boolean circuits composed of combinational operators and registers.

An acyclic control circuit is handled as usual by topological sorting. For a
cyclic circuit, the Esterel interpretor uses a linear-time algorithm to compute
whether the circuit is sound (constructive) for a given input. The compiler uses
a BDD-based algorithms to symbolically computes whether the circuit is con-
structive for all input sequences [8, 6]. In this case, the cyclic circuit can be
replaced by an equivalent acyclic one.

3 O p t i m i z a t i o n

We have developed original optimization algorithms for efficient hardware or
software generation from Esterel circuit format. The first step consists in remov-
ing redundant registers, using BDD-based reachability analysis techniques [9].
This step must be carefully controlled because removing too many redundant
registers can make the combinational logic explode. It is implemented using the
TiGeR BDD package developed by O. Coudert, J-C. Madre, and H. Touati and
property of Digital Equipment Corp. The second step consists in performing
combinational logic optimization, with speed criteria for hardware and area cri-
teria for software. It is implemented as a script for Berkeley's SIS system [7].
Optimization can be conducted in a hierarchical way for large programs.

4 V e r i f i c a t i o n

There are two main methods to verify properties of Esterel programs. The first
method is based on the notion of a synchronous observer introduced in [5]. A
synchronous observer is an Esterel program placed in parallel with the program
of interest and listening to its inputs and outputs. The observer emits a particular
output BUG if an anomaly shows up. The verification consists in showing that BUG
can never be emitted and in producing a counter-example otherwise. We use very
efficient reachability analysis techniques tailored for control-dominated programs
and implemented in TiGeR. The second method is the classical bisimulation
reduction method that consists in computing a reduced image of the finite state
machine, hiding what is not relevant to the property of interest. Both explicit
and implicit bisimulation are available in the Esterel verification system Xeve.

5 Tool Dis tr ibut ion

The Esterel system, the optimizers, and the verification tools are available at
h t t p : / /www, i n r i a , f r / m e i j e /me i j e - eng , html.

References

1. G. Berry. The Constructive Semantics of Esterel. available on the Web at address
http://www.inria.fr/meije/esterel/Documentation/main-papers.html, 1996.

2. G. Berry and G. Gonthier. The Esterel synchronous programming language: De-
sign, semantics, implementation. Science Of Computer Programming, 19(2):87-152,
1992.

3. F. Boussinot and It. de Simone. The Esterel language. Another Look at Real Time
Programming, Proceedings of the IEEE, 79:1293-1304, 1991.

4. N. Halbwachs. Synchronous Programming of Reactive Systems. Kluwer, 1993.
5. N. Halbwachs, F. Lagnier, and C. Ratel. Programming and verifying critical sys-

tems by means of the synchronous data-flow programming language Lustre. IEEE
Transactions on Software Engineering, Special Issue on the Specification and Anal-
ysis of Real-Time Systems, September 1992.

6. S. Malik. Analysis of cyclic combinational circuits. IEEE Trans. Computer-Aided
Design, 13(7):950-956, 1994.

7. E.M. Sentovich, K.J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha,
H. Savoj, P.R. Stephan, R.K. Brayton, and A.L. Sangiovanni-Vincentelli. Sis: A
system for sequential circuit synthesis. Technical report, University of California at
Berkeley, May 1992.

8. T. Shiple and G. Berry. Constructive analysis of cyclic circuits. In Proe. Interna-
tional Design and Test Conference ITDC 96, Paris, Franc e, 1996.

9. H. Toma, E. Sentovich, and G. Berry. Latch optimization in circuits generated from
high-level descriptions. In Proc. International Conf. on Computer-Aided Design
ICCAD'96, 1996.

