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ABSTRACT. A declarative conceptual modelling language, implemented as 
an extension to Prolog, is described. The language is based on an extended 
version of the entity-relationship (ER) model for the declaration of the infor- 
mation classes and the formulation of queries, and adopts an abstract data 
type (ADT) approach to define and execute application-oriented update 
operations. 

The language is an integral part of a workbench that provides rapid proto- 
typing at the conceptual level and that supports expert level features. 
Simple examples to illustrate the direct use of the workbench over a data- 
base / knowledge base application and the addition of expert level features 
are also included. 

1. Introduction 

This paper ftrst describes a declarative conceptual modelling language that is part 
of a workbench to support the direct use of knowledge base/database applications, 
as well as to serve as a foundation for expert level features to be developed over 
these applications. Then it illustrates the direct use of the workbench over a data- 
base / knowledge base application and the addition of expert level features. 

The language follows an extended version of the entity-relationship (ER) model 
for the declaration of the information classes and the formulation of queries, and 
adopts an abstract data type (ADT) approach to define and execute application- 
oriented update operations. The language is implemented as an extension to 
Prolog, following a declarative style, in the sense that every aspect of an applica- 
tion is declared with the help of facts and clauses, including the update operations. 

In this ER/ADT information/operation model, individual entity instances retain 
their identity across the different classes to which they may belong (via the is_a 
hierarchy), with respect to their existence, attributes and participation in relation- 
ship instances. Also, in the spirit of abstract data types, update requests are 
limited to the utilization of application-oriented operations. 

The workbench permits rapid prototyping of the ER design, that is, the 
workbench does not treat the ER design as a mere documentation of the applica- 
tion, but as an executable specification. The workbench provides a better basis 
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for expert level features, because their specification can take advantage of the 
richer ER/ADT semantics. The workbench also contains a transparent SQL 
interface and a query-the-user facility, described in [Fu2]. 

The direct use of the workbench is demonstrated over an example database. After 
presenting its specification, we describe the execution of queries and update oper- 
ations. Next, it is shown how to add rules, as needed when extending databases to 
knowledge bases. Over the example thus expanded, we show how queries can be 
handled by expert level features, running under the workbench, so as to avoid mis- 
construals. Features like these are being experimented in prototypes developed as 
part of project NICE [CF,HCF], whose purpose is to investigate cooperative 
query processing methods to reduce the cost of developing "help desks" and 
similar advanced database interfaces. Cooperative query processing has been 
explored, for example, in [BJ,CCL,CD], through the use of richer conceptual 
models, and in [Mo], via the generalization of failed queries. A natural language 
database query system, which recognizes users" presuppositions about the applica- 
tion domain, is also described in [Ka]. The problem of detecting and responding 
to plan-generation misconstruals is investigated in [Qu]. A good survey of user 
model techniques can be found in [KW]. 

The paper is organized as follows. Section 2 presents the syntax for the structural 
aspects of the languages and discusses queries and updates. Section 3 illustrates 
the direct use of the workbench over an example, which is taken again in section 4 
where expert level features that contribute to avoid misconstruals are examined. 
Section 5 contains the conclusion. Finally, Appendix A lists the complete specifi- 
cation of the example in section 3 and Appendix B gives a Prolog implementation 
of the algorithm to block misconstruals, described in section 4. 

2. Description of  the Language 

2.1. Facts and Fact Frames 

A fact denotes the existence of either an entity or a relationship instance, or cap- 
tures that one such instance has a certain value for a given attribute. In the pro- 
totype, whenever the same attribute name is used in the definition of more than 
one entity or relationship class, it implies that the attribute will have the same 
domain. A key is an identifying attribute, in the sense that entity or relationship 
instances that have the same value for the key are indeed the same instance, 
regardless of the class to which such instances belong. In the current prototype, 
entity instances cannot have compound keys, i.e. keys consisting of more than one 
attribute. The key of a relationship instance, on the contrary, is in general com- 
pound, since it consists of the keys of the participating entity instances; an excep- 
tion is the case of binary one-to-n relationship instances, whose key is that of the 
determining participant (i.e. the participating entity depicted on the "n side" in the 
ER diagram). 

A database for a conceptual schema is a set of facts. The syntax for facts is: 



591 

<entity cl ass>r 
<entity cl ass>r bute>(<val ue>) 
<rel ati onshi p cl ass>#<parti ci pants I i st> 
<rel ati onshi p cl ass>#<parti ci pants I i st>\<attri bute> (<value>) 

where <parti ci pants I i st> is a list of pairs of the form <entity cl ass>r 

To refer to more than one attribute of an entity or relationship instance, a frame 
construct can be used: 

<entity class>r has <attribute frame> 
<rel ati onshi p cl ass>#<parti ci pants I i st> has <attribute frame> 

where <attri bute frame> is a list of <attribute>:<val ue> pairs. If <attribute> is 
multivalued, then <value> will unify with one of the values the attribute currently 
has, and with the other values upon backtracking. 

If this is not the appropriate behavior, a different construct can be used: 

<entity cl ass>r has_gr <attribute frame> 
<relationship class>#<participants l ist> has gr <attribute frame> 

where <attribute frame> contains a pair, <attribute>:<val ue>, if the attribute is 
single valued, or a pair <attribute>:<list of values>, if the attribute is multi- 
valued. In the latter case, <l i st  of val ues> naturally is the list of  values <attri  - 
bute> currently has. 

2.2. Classes of Facts 

The conceptual schema of a database at the ER/ADT level is specified through 
clauses that defme the entity and relationship classes that exist and the structure of 
the is_a hierarchy. Relationships of arbitrary arity are allowed and binary 
one-to-n relationships are singled out. The syntax of the clauses to declare the 
conceptual schema is: 

enti ty(<enti ty cl ass>,<key>) 
is_a(<entity class>,<entity class>) 
relationship(<relationship class>,<participant classes>) 
one_to_n(<relationship class>,<determining participant class>) 
attribute (<entity cl ass>,<attri bute>) 
attribute (<rel ati onshi p cl ass>,<attri bute>) 
domain (<attri bute>,<val ue vari abl e>,<val i di ty check>,<cardi nal i ty>) 

where <participant classes> is a list of <entity class> elements, <validity 
check> is an expression involving <value vari able> to defme the possible values 
that can be associated with <attribute>, and <cardinality> is either #single" or 
"multi", to distinguish between single and multivalued attributes. 

Attributes and participation in relationships are inherited along the is_a hierarchy. 
The current prototype does not provide mechanisms to avoid ambiguities in case 
of inheritance from more than one parent class, or when a class inherits an attri- 
bute also defined in the class. 
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2.3. Data Structure Declaration and Mapping 

Facts are stored in relational data structures, which can take the form of ground 
unit clauses of Prolog predicates or tuples of SQL tables. In both cases, the rela- 
tional schema is declared by clauses of the form: 

structure(<structure name>, <attribute list>) 

where <structure name> is either a predicate symbol or the name of an SQL table. 
The names of the structures to be handled as SQL tables should be indicated in a 
clause: 

sq l_s t ruc tures(<l i s t  of structure names>) 

To ease the mapping between ER/ADT and relational schemas, the current pro- 
totype requires that the names of the columns of SQL tables be the same as the 
names of the corresponding attributes. On the other hand, the names of the data 
structures (predicates or tables) are arbitrary. The mapping between the two 
schemas is established by clauses with the following format: 

ent_structure(<entity class>, <name of data structure>) 
rep_ent structure(<entity class>, <name of data structure>) 
rel_structure(<relationship class>, <name of data structure>) 
rep_rel structure(<relationship class>, <name of data structure>) 
ext_ent_structure (<entity cl ass>, <rel ationshi ps>, <name of data structure>) 

where <rel ati onshi ps> is a list of <rel ationshi p cl ass>. 

The motivation for these different clauses comes from the way we design rela- 
tional structures to accommodate the entity-relationship facts. Exactly one data 
structure, designated respectively by an "ent_structure" or "rel_structure" clause, 
must correspond to each entity or relationship class, storing the key attributes 
together with all the single-valued attributes. For each multivalued attribute, there 
must be a data structure, indicated in a "rep_ent_structure" or "reprel_structure", 
containing only the key and the attribute involved. Finally, whenever an entity 
class E participates in one or more one-to-n relationship classes, the data structure 
of E is extended to also represent the relationships. In such cases, an 
"extent  structure" clause (instead of an "ent_structure" clause) is used to desig- 
nate the data structure. A detailed description of the design method is found in 
[TCF]. 

2.4. Operations over Facts 

In the spirit of abstract data types, the only way to update facts is through pre- 
defined application-oriented operations. Following a convenient STRIPS-like 
scheme [FN,LA], each operation 0 is specified by a set of clauses, which indicate 
the facts that are added and deleted by 0 (i.e., the effects of 0) and the precon- 
ditions for the execution of 0, in terms of logical expressions involving facts that 
should or should not hold. The syntax of the clauses to specify operations is: 
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<operation>(<name of operation>, <parameter l is t>)  
added(<fact>,<operation>) <- <antecedent> 
deleted(<fact>,<operation>) <- <antecedent> 
precond(<operation>,<expression involving facts>) <- <antecedent> 

where <parameter 1 i st> consists of the names of the domains to which the 
parameter values must belong. An "operation" clause provides the signature of an 
operation, and the designer must ensure its consistency with the other clauses 
referring to the operation. In the "added", "deleted" and "precond" clauses, the 
<antecedent>, which is a Prolog expression, is often omitted. When present, it 
provides additional criteria to check whether the clause is applicable and contrib- 
utes to the instantiation of variables appearing in the head of the clause. Notice 
that the Prolog expression may in particular refer to other such clauses and to 
database facts. Of special interest is the case of the antecedent expression of a 
"precond" clause of an operation 0 referring to "added" and "deleted" clauses of 0; 
in such cases, the "precond" clause may indeed express a post-condition rather 
than a precondition, since it is allowed to look at the effects that the execution of 
0 would have. 

Preconditions are used to enforce integrity constraints dynamically, in the sense 
that they restrict the application of the defined operations to guarantee that they 
can only lead to valid states. 

In adherence to the original ADT principles, operations do not "belong" to 
classes, as happens with strict object-oriented systems. Instances of several classes 
may be affected by an operation that refers to them through its parameters. As a 
consequence, inheritance of operations along the is_a hierarchy is provided in a 
trivial way. To see why this is true, assume the existence of an instance i of an 
entity class E, such that E i s a F. Assume further that an operation 0 includes as 
one of its parameters a reference to an instance of class F. Then, since we require 
that instances of an entity class must also exist as instances of all classes located 
above it in the is_a hierarchy, we conclude that 0 is applicable to i simply because 
i is also an instance of F. 

As a related point that can be illustrated by further elaborating the above example, 
consider the specification of an operation 0' this time referring to instances of E. 
Suppose that we want the effects of 0' to subsume the effects of 0, in the sense 
that 0' has all the effects of 0 plus some others. The indication of subsumed 
effects can be succinctly done by including either or both of the following clauses 
in the definition of 0 ': 

added(F, 0') <- added(F, O) 
deleted(F, 0') <-deleted(F, O) 

the same provision being possible for preconditions, through the inclusion of 
"precond" clauses of an analogous format. 

In addition to the precond, added and deleted clauses belonging to a specific 
application, there may be present a number of general (i.e. application- 
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independent) clauses of these types distinguished by the prefix "sys". The current 
version of the prototype contains "sys:precond" clauses establishing that: 

PI .  an instance of an entity-class E such that E is_a F can be added only if the 
instance exists in class F 

P2. a value of an attribute of an entity or relationship instance can only be 
added if the instance exists 

P3. a relationship instance can be added only if all participating entity instances 
exist 

Clauses of type "sys:deleted " are also included, establishing that: 

DI.  if an instance of an entity-class E is deleted, then it is also deleted from all 
entity-classes F such that F is_a_ E (letting "is_a" be the transitive closure of 
"is a") 

D2. if an instance of an entity or relationship class is deleted then all its attri- 
butes are also deleted 

D3. if an instance of an entity-class is deleted then all relationship instances 
where it participates are deleted 

These general clauses are based on assumptions that are often adopted with the 
entity-relationship model. Broadly speaking, they preserve integrity constraints 
inherent in the model. The "sys:precond" clauses restrict additions, whereas the 
"sys:deleted" clauses propagate deletions. The presence of these "sys" clauses 
reduces the number of clauses that an application designer has to introduce for 
each operation. On the other hand, the designer can make a "sys:precond" clause 
vacuous for a specific operation 0 by simply providing an appropriate "precond", 
"added" or "deleted" clause in the deflrtition of 0. For example, pre-condition P2 
becomes vacuous, if an operatio n 0 that is allowed to add a value for an attribute 
of an instance, also adds the instance itself. Similarly, the propagation of deletions 
can be changed into blocking for an operation 0 by attaching a "precond" clause 
to 0 that enforces the blocking of the operation. For example, the designer may 
include a "precond" clause preventing the deletion of an entity instance, if a certain 
attribute of the entity is still defined, or if the instance still participates in some 
instance of a specified relationship class. 

A few "sys:added" and "sys:deleted" clauses were included to handle certain situ- 
ations where null values are involved. Although these clauses are meaningful at 
the conceptual level, since nulls are used here to express undefined values, we 
must point out that their presence is mainly justified to ensure the correct 
mapping of the ER facts into the relational structures. In our STRIPS-based 
method to define operations, a "deleted" clause is the way to indicate that an oper- 
ation 0 causes, as one of its effects, a single-valued attribute A of an entity or 
relationship instance to become undefined. A "sys:added" clause complements the 
deletion of the current value of A, by assigning to it the null value. Conversely, 
the addition of a value to a currently undefined attribute is complemented by the 
removal of its null value, through a "sys:deleted" clause. Note that, in the present 
prototype, to replace a non-null value of a single-valued attribute by another non- 
null value, both a "deleted" and an "added" clause must be provided. One-tom 
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relationships are treated in about the same way as single-valued attributes. The 
removal of an one-to-n relationship instance, which of course entails the removal 
of all its attributes, is complemented through "sys:added" clauses to indicate (by 
inserting nulls) that the participant on the "one side" and the single-valued 
relationship attributes have become undefined. Notice that, if this participant is 
replaced by another one, rather than removed, the current relationship attributes 
are equally removed. Finally, a "sys:deleted" clause provides the deletion of a null 
denoting an undefined participant when a valid participant is added. 

We have still two more "sys:precond" clauses to mention. They implement our 
strategy (proposed in [VF]) to handle operations in case some of its effects already 
hold. These clauses prevent the execution if one or more facts that the operation 
should add are already present in the database or if facts to be deleted are absent. 
We fmd that this "all or nothing" strategy is compatible with the notion of data- 
base transactions, where several commands are involved and there is no commit- 
ment with respect to database updates if any failure occurs. 

2.5. Query and Update Requests 

Over an ER/ADT database, a user can formulate query requests and update 
requests as Prolog goals. For queries, a goal would consist of a Prolog expression 
involving one or more facts with the syntax described in section 2.1. 

If a query refers to an attribute of an entity or relationship instance and, although 
the instance exists, the value of the attribute is currently undefined, the query fails 
as would be expected. However, we decided that the prototype should allow 
queries on undefmed attributes declared as single-valued to succeed in the special 
case where the query mentions the "null" value explicitly. 

The frame construct is convenient in the formulation of queries if more than one 
attribute is mentioned in connection to the same entity or relationship instance. 
Frames can be used in flexible ways. If a term corresponding to a frame is indi- 
cated by a variable, the execution of the goal will instantiate the variable to a list 
involving all attributes of the given entity or relationship instance which have non- 
null values in the database. If the user is only haterested in a few specific attri- 
butes, he may indicate the frame explicitly as a list containing the desired 
attributes in any order he chooses, paired with variables to be instantiated with 
the corresponding values; in this case, for attributes whose value is not defined the 
respective variables will remain uninstantiated. Powerful operations have been 
introduced for frames, especially unification and generalization [Full. Moreover, 
a query with frames has a better performance than a conceptually equivalent 
query where attributes of the same instance are indicated separately, since by 
working on entire frames the prototype is able to collapse database accesses so 
that each access retrieves all values requested that happen to be kept in the same 
underlying data structure. 
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Query requests can also involve schema information. All types of declarative 
clauses described in sections 2.2 and 2.4 (and even section 2.3, if one needs to 
reach a lower level) can appear in goal expressions. 

Update requests are effected by goal expressions containing calls to the defined 
operations. Although, syntactically, these calls are direct, they are actually inter- 
cepted by a meta-predicate "exec_op" which checks the values of the parameters 
that are not variables or "null"s, tests the preconditions and, in case of success, 
applies additions and deletions to the appropriate data structures to reflect what 
the added and deleted clauses specify. 

At the beginning of a session, where query and update requests will be posed, two 
preparatory goals must be executed: 

<- enabl e_structures 0 -  
<- enabl e_operati ons () .  

the effect of the former being that the "sql_fact" predicate of the PSQL tool is 
applied (as described in [Fu21) to all structures in the "sqlstructures" clause, 
whereas the effect of the latter is to add to the workspace clauses of the form: 

<operation templ ate> <- exec op (<operati on templ ate>) 

where <operati on templ ate> consists of the operation name followed by a paren- 
thesized sequence of variables denoting the formal parameters of the operation. 
The ability to enter calls to operations directly, that we mentioned earlier in this 
section, results from the presence of these clauses. 

3. An Example of Direct Utilization of the Workbench 

This section briefly describes an application and illustrates the power of the query 
language. Appendix A contains the complete description of the example as it runs 
under the Prolog prototype. 

3.1. Conceptual Level Specification of the Application 

The conceptual level specification defines entity classes that correspond to 
employees, trainees, departments, projects and clients, where trainees are a sub- 
class of employees. It also defines relationship classes capturing that employees 
work in departments and participate in projects, and that clients sponsor depart- 
ments in view of specific projects. Furthermore, the specification contains integ- 
rity constraints requiring that an employee can work in only one department and 
that he can only participate in sponsored projects of his department. 

The mapping between the conceptual level specification and the relational data 
structure level specification has the following properties: it keeps the data on 
employees and on departments in SQL tables; it embeds the "works" one-to-n 
relationship in the "emp" table, together with the attributes of employees; and it 
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maintains the attribute "task" of relationship "participates", which is multivalued, 
in a separate table. 

The application has operations to install a department indicating the city where its 
headquarters will be, to hire employees to work in a department, to hire trainees, 
to separately designate the job that an employee will have in his department, to 
raise an employee's salary, to fire an employee, to propose a project, to associate 
in a sponsorship contract a client and a department with respect to a project, to 
assign employees to projects, to add more tasks to assigned employees, to give 
final approval to a project, and a few others. 

Some features in the definition of operations deserve comments (we refer the 
reader to Appendix A). The assign operation has a precondition saying that an 
employee E can be assigned to a project P only if E works in a department that 
sponsors P. The salary raise operation affects only the salary of an employee, by 
adding the indicated amount (to reflect this update, only one field of the appro- 
priate "emp" tuple is changed). When a project is initially proposed, it is marked 
as pending, a condition that can be later removed by an execution of the approve 
operation issued by the Projects Control Department, say (this removal is imple- 
mented by setting to "null" the second field of the corresponding "pr" clause. The 
definition of operation to hire trainees includes an "added" clause concisely 
declaring that the operation adds all facts added by the operation that hires 
employees. 

3.2. Sample Executions of the Operations 

Suppose that thedatabase is initiaUy empty and that thefoUowing operations are 
executed: 

G1. <- i n s t a l l ( ' D l ' , ' N Y ' ) .  
G2. <- h i r e ( ' M c C o y ' , 1 8 8 , ' D l ' ) .  
G3. <- des igna te ( 'McCoy ' , ' cha i r ' ) .  
G4. <- p ropose( 'A lpha ' ) .  
G5. <- associate( 'Spock L t d . ' , ' D 1 ' , ' A l p h a ' , 1 g g 1 , ' c 1 2 3 ' ) .  
G6. <- h i r e _ t r ( ' S a v i k ' , 8 8 , ' D l ' , ' g r a d u a t e ' ) .  
G7. <- a s s i g n ( ' S a v i k ' , ' A l p h a ' , ' r e c o r d - k e e p i n g ' ) .  
G8. <- add_ task( 'Sav ik ' , 'A lpha ' , ' commun ica t ions ' ) .  

From the definition of the operations in Appendix A, the reader may fred what 
facts will start to hold or cease to hold when these goals are executed, and how 
the data structures will be updated. In particular, the reader may appreciate the 
consequences of the application-independent clauses (prefixed with "sys") that 
establish general preconditions and effects of operations. For instance, if the goal 
"<-fi re (' S avi k ')"  is executed, the direct effect is that Savik ceases to exist as an 
employee, but the "sys" clauses will also make her cease to exist as a trainee, and 
all facts related to attributes of this entity instance in both entity classes, as well as 
of its participation in relationships, will be also removed. 
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By wayofanexample ,  wefoUowthe execution of G6. RecaUfromAppendixA 
the defmition of'2fire"and "q-fire-tr": 

HI. operation(hire, [name,sal,dname]). 
H2. added(empCN, hire(N,S,D)). 
H3. added(empCN\sal (S), hire(N,S,D)). 
H4. added(works#[empCN,deptCD], hire(N,S,D)). 

Hr. operation(hire_tr,[name,sal,dname,level]). 
H6. added(F, hire_tr(N,S,D,L)) <- added(F, hire(N,S,D)). 
H7. added(traineeCN, hire_tr(N,S,D,L)). 
H8. added(traineeCN\level (L), hire_tr(N,S,D,L)). 

The execution of goal G6, "<- hire_tr('Savik',80,'D1','graduate')", d~ectly 
creates the foUowing new facts, via H7 and H8: 

FI. added(traineeg'Savik', hire_tr('Savik',80,'Dl','graduate')). 
F2. added(traineer 

hire_tr('Savik',BO,'Dl','graduate')). 

and, ind~ectly, the foUowing new facts, v i aH6andH2 ,  H3andH4:  

F3. added(empr hire('Savik',80,'D1')). 
F4. added(empr hire('Savik',BO,'D1')). 
F5. added(works#[empr162 hire('Savik',8O,'D1')). 

The conceptual information expressed by F1 through F5 is in fact stored, via the 
mapping clauses, as the foUowing two ground unit clauses (but recall that k is in 
part physically ~ored as SQL tuples): 

R1. emp('Savik',80,'Dl ' ,null). 
R2. t r( 'Savik ' , 'graduate') .  

The complete database at the end of the execution of the operations in G1 
through G8also contains the clauses: 

R3. 
R4. 
R5. 
R6. 
R7. 
R8. 
Rg. 
RIO. 

dept('D1','NY'). 
emp('McCoy',lOO,'Dl','chair'). 
pr( 'Alpha',true). 
cln('Spock Ltd. ' , 'new').  
spon('Spock Ltd.','D1','Alpha',lg91,'c123'). 
part('Sav~k','Alpha'). 
tsk('Savik','Alpha','record-keeping'). 
tsk('Savik','Alpha','communications'). 

3.3. Sample Queries 

Considering the database state reached through the executions of operations given 
in the preceding section, it is easy to see that the sample queries below will 
produce the result indicated (notice that queries (3) and (5) use the frame con- 
struct): 

(I) query: who works in department DI? 
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in Prolog: <- forall(works#[empr162 wri te(N)).  
answer: 'McCoy', 'Savik' 

(2) query: to what en t i t y  classes does Savik belong? 
in Prolog: <- fo ra l l (E : 'Sav ik ' ,  wr i te(E)) .  
answer: emp, trainee 

(3) query: give al l  at t r ibutes available on Savik, as trainee. 
in Prolog: <- traineer has F & wri te(F).  
answer: [ level:graduate, sal:8@] 

(4) query: is there some employee whose job is s t i l l  undefined? 
in Prolog: <- works#[empr162 & write(N-D). 
answer: 'Savik' - 'DI '  

(5) query: which tasks have been assigned to Savik in project Alpha? 
in Prolog: <- part icipates#[empr162 has_gr F 

& wri te(F).  
answer: [task: [ 'communications', 'record-keeping']] 

(6) query: is i t  true that project Alpha is sponsored for 1991? 
in Prolog: <- sponsorsr162162162 

& wri te(yes).  
answer: yes 

(7) query: has project Alpha been approved already? 
in Prolog: <- (~ projr & write(yes) 

[ p r s t ( ' s t i l l  pending') & nl) .  
answer: s t i l l  pending 

3.4. Adding a Knowledge Base Rule 

Until now we have only considered a factual database in the present example. 
Knowledge bases would, in addition, include rules. To provide an example, to be 
further explored in connection with the expert level features of the next section, 
we introduce a rule establishing that a project is "ongoing", in the sense that its 
execution is under way, if it is being sponsored for the current year and it is no 
longer pending. Besides the rule, we assume some way to indicate the current 
year, which could be an access to the system's internal clock or a unit clause. The 
Prolog declarations follow. As a step towards a pseudo-natural language notation, 
"ongoing" is introduced as a prefix operator, obviating the need for the special 
symbols used at the ER/ADT level: 

op("ongoing",prefix,5@). 

current (1991). 
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ongoing P <- 
current(Y) & 
sponsors#[clientr162162 & 
~projr 

Given the state of the database captured in clauses R1 through R10, the query 
request 

<- ongoing 'Alpha'. 

will fail, since the project is indeed currently sponsored but it is still pending. 

4. An Example of Expert Level Features: Avoiding Misconstruals 

In this section we illustrate how the user interface provided by the workbench can 
be enhanced by the superimposition of expert level features. 

The purpose of the features to be presented is to intercept query requests and 
provide more than literal answers to what is asked. More specifically, answers will 
in some situations be expanded in order to avoid invalid user inferences, or mis- 
construals [We], as explained in section 4.1. To detect that an answer can lead a 
particular user to a misconstrual, one must have available models of the individual 
users (or classes of users). 

In [HCF] we have outlined a formal approach to user modelling that is fully com- 
patible with the logic programming paradigm. Based on this approach, we 
propose an algorithm to prevent a broad class of misconstruals, in the context of 
queries only, described in section 4.2. Section 4.3 traces two queries that may 
induce misconstruals, over the example introduced in section 3.4. 

4.1. Misconstruals and User Modelling 

When interacting with a database, a user is typically tempted to infer further infor- 
mation from that explicitly obtained from previous queries. However, his infer- 
ences are not necessarily valid, because his model of the world is often incomplete 
or even faulty. For example, after consulting the database, an auditor may fred 
that a project, P, has gained the support of a client for the current year, and 
unadvisedly infer that its execution will start at once, when the actual beginning of 
the activities still depends on the approval of the Projects Control Department. A 
more cooperative database system would have informed the auditor that the cli- 
ent's sponsorship has indeed been granted, assumed as the original question, and 
would have added that the beginning of activities has been delayed. To achieve 
cooperativeness, the system would naturally have some model of typical auditors. 

To address the problem of invalid user .inferences, we consider a cooperative inter- 
face that passes additional information to the user when it discovers that he has 
gathered enough data to infer information that contradicts the database. The 
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interface essentially simulates user's inferences and compares the result with what 
can be derived from the database. 

We assume that, in the context of a given session, the user remembers his past 
interactions with the deductive database and that he can use the information thus 
obtained in his (real world) inferences. The results of past interactions in the 
current session are kept in a log, which will indicate that certain facts hold and 
that certain other facts do not hold in the database. 

For simplicity, we consider that the interface knows exactly the class of users 
accessing the database at a given time, which isolates our problem from that of 
classifying users. Thus, from now on, when we refer to the user, we mean any 
user in this class. The user model is a theory, designed together with the database, 
that abstracts out the rules that the user adopts to reason about the domain of 
discourse in question. We stress that we use the term "user model" to mean a 
model of how the user reasons, which is somewhat different from the use of the 
term in the literature. 

We model the user's inferences during a session by the deductions from the user 
model and the positive facts that the current log indicates to hold. In particular, 
we assume that the user reasons about negated facts only through negation as 
finite failure [L1]. This intuitively means that, in a given session, we model the 
inference of a negated fact --1 A, by the failure, in a finite number of steps, to fmd a 
proof for A from the user model and the facts that the log indicates to hold. 

For a detailed discussion of the theoretical aspects involved, see [HCF]. 

4.2. Algorithm to Avoid Misconstruals 

The cooperative interface we propose uses an algorithm to process users" queries 
so as to avoid misconstruals. It does not take into account update operations, 
however. This section informally outlines the algorithm for the propositional case 
only, whereas Appendix B contains the Prolog implementation for the full first- 
order case. 

The algorithm consists of two mutually recursive parts, that we call "query" and 
"propagate". In the "query" part, given a query request A formulated by a user tl, 
the algorithm first checks if A follows from what the user already knows, i.e. from 
the model of O extended with the knowledge placed in the user log during the 
process. If this fails, query A is posed to the database (provided that the authori- 
zation requirements are fulfilled). If this also fails, the process stops. If A follows 
from the database, A is added to the log, and the "propagate" part is entered to 
look at possible misconstruals induced by A. 

More specifically, "propagate" takes in turn each conditional clause V <- [3 in the 
model of U such that A is one of the facts conjoined in B and processes the clause 
as follows. If V follows from what the user already knows and also from the data- 
base, then Y is not by itself a misconstrual, but it may indirectly cause one, which 
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is checked by calling "propagate" recursively to examine the consequences of u If 
u follows from what the user already knows, but it does not follow from the data- 
base, then Y is a misconstrual. To avoid that the user infer u the algorithm first 
looks for some negated fact Z in the body B of the clause in question such that 7 
follows from the database. To check Z against the database, "query" is called 
recursively. If one such negated fact is found, it is added to the log, effectively 
inhibiting henceforward the erroneous deduction of Y. Otherwise, on returning ~o 
the execution of "propagate", a clause is added to the log to explicitly block the 
deduction of u 

If the algorithm is executed again for the same query A, the query will be answered 
from the user's model plus log and no further action is needed. Also, queries 
involving the misconstruals thus identified will correctly end in failure. 

The Prolog implementation of the algorithm was designed for the full first-order 
case and it is prepared to handle the propagation of variable bindings, as suggested 
in [HCF]. It also distinguishes the clauses belonging to the user's model (and to 
his log) from the system's clauses by adding to the former a prefix which is typi- 
cally the user's identification (userid). 

4.3. Informal Description of two Examples 

We give in this section two examples, both related to the rule introduced in 
section 3.4, to indicate how the interface operates. The examples axe introduced 
informally, with the pertinent Prolog expressions shown in figures 1, 2 and 3. The 
first example illustrates how to avoid misconstruals that arise when the user incor- 
rectly invokes negation as fmite failure for the lack of information, whereas the 
second example has to do with a type of misconstrual that arises when the user 
has inadequate rules. 

Consider that the deductive database has a rule saying that a project is ongoing if 
duly sponsored by a client and if it is not pending. Suppose that project alpha is 
sponsored for the current year and that it is still pending (i.e. the Projects Control 
Department has not yet issued its approval). That is, let D be the following 
deductive database (see Figure 1 for the formal definition): 

13.1. Project p is ongoing, if p is sponsored and it is not pending 
[3.2.  Project Alpha is sponsored 
D.3. Project Alpha is pending 
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/* rules */ 

op("ongoing",prefix,50). 

ongoing P <- 
current(Y) & 
sponsors#[clientr162162 & 
~projr 

/* facts */ 

current(ig91). 

dept('Dl','NY'). 
pr('Alpha',true). 
cln('Spock Ltd.', 'new'). 
spon('Spock Ltd.','D1','Alpha',I991,'c123'). 

Figure 1: Deductive Database 

Suppose that the user believes in the same rule as the database, that is, that a 
project is ongoing if duly sponsored, by a client and if it is not pending. This is 
equivalent to assuming a user model U that contains only one rule (see Figure 2 
for the formal definitions): 

U. 1. Project p is ongoing, if p is sponsored and it is not pending 

Suppose now that the user starts the dialog with the query: 

Q. Is project Alpha sponsored? 

The answer to Q therefore is YES. That is, at this point the user knows: 

A 1 . Project Alpha is sponsored 

If no extra information is passed to the user in the log, after the first query he will 
know fact A1, from which he would wrongly infer fact A2: 

A 2. Project Alpha is ongoing 

However, the interface will anticipate and avoid this misconstrual as follows. By 
applying the algorithm of the preceding section to simulate a deduction R of A 2 
from the user model U and A 1 , it will detect that R cannot be accepted because it 
is possible to infer the negation of fact A3: 

A 3. Project p is pending 

from U and A 1 , by negation as finite failure, whereas it is not possible to infer the 
negation of A 3 from the database (since the database in fact includes A3). Hence, 
the interface will include A 3 in the log to avoid the user's misconstrual. Indeed, 
the user can no longer infer A 2 using the complete information he obtained from 
the database (that is, A 1 and A3). 
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The answer combined with the extra information in the log is roughly equivalent 
to the following English sentence: 

Project Alpha is sponsored, but it is not ongoing because it is pending 

/ *  knowledge when session starts * /  

u: (ongoing P) <- 
current(Y) & 
u: (sponsors#[clientr162162 & 

u: (projr 

/ *  query posed * /  

<- query(sponsors#[clientr162162 a). 

/ *  knowledge added to log * /  

u:(sponsors#[clientr L td . ' ,  deptr projr 
u:(projr 

Figure 2: User U 

We stress that the rnisconstrual we just illustrated was caused by an incorrect use 
of negation as finite failure and that it could be blocked by including an additional 
fact in the log. Our next example illustrates a second type of misconstrual that 
arises when the user has inadequate rules. 

Suppose now that the user believes that a project is always ongoing, if it is spon- 
sored. That is, let the user model now be V (see Figure 3 for the formal deft- 
nitions): 

V. 1. Project p is ongoing, if p is sponsored 

Assume the same deductive database D (including rule D.1 exactly as before). 
Then, the answer to Q remains unchanged, from which the user can again 
wrongly infer fact A 2. The interface will again detect that A 2 does not follow 
from the database. The interface cannot block this misconstrual, however, by 
inserting additional facts in the log because the user's perception of the domain of 
discourse differs from that captured by the rules of the database. The interface 
will then act differently and include in the log an indication that A 2 is not deduct- 
ible from the database. 

The user can still infer A 2 from the answer to his query. However, his inference 
will not be consistent with the current log, since the log indicates that A 2 does not 
hold. 

The final answer will then be equivalent to the sentence: 
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Project Alpha is sponsored but it is not ongoing. 

/* knowledge when session starts */ 

v: (ongoing P) <- 
current(Y) & 
v: (sponsors#[clientr162 

/* query posed */ 

<- query(sponsors#[clientr162162 b). 

/* knowledge added to log */ 

v:(sponsors#[clientr Ltd.', deptr projr 
v:failed(ongoing 'Alpha'). 

Figure 3: User V 

5. Conclusion 

We described a declarative conceptual modelling language that is an integral part 
of a workbench that provides rapid prototyping at the conceptual level and that 
supports expert level features. We also provided simple examples to illustrate the 
direct use of the workbench over a database / knowledge base application, as well 
as the exploration of its use in connection with expert level features aiming at pro- 
riding cooperative interfaces to information systems. 

The prototype of the workbench is at an early stage of development, but it already 
implements all features of the language here described. It can be extended in 
several ways, either as a consequence of enriching the ER/ADT model, or to 
focus on the optimization of the algorithms and their implementation, among 
other points. 

References 

[AP] 

[BJI 

[CCL] 

J. F. Allen and C. R. Perrault, "Analyzing intentions in utterances", Arti- 
ficial Intelligence 15:3 (1980), 143-178. 
L. Bolc and M. Jarke (eds.), Cooperative Interfaces to Information 
Systems, Springer-Verlag (1986). 
W. Chu, Q. Chen and R-C. Lee, "Cooperative Query Answering via 
Type Abstraction Hierarchy", Proc. Int. Working Conference on Coop- 
erating Knowledge based Systems, Univ. Keele, UK (1990). 



606 

[CDI 

[CFI 

[FNI 

[Full 

[Fu2] 

[HCF] 

[Ka] 

[KWl 

[LAI 

[Lll 
[Mo] 

[Qul 

[TCF1 

[VFI 

[Wel 

F. Cuppens and R. Demolombe, "Cooperative answering: a method- 
ology to provide intelligent access to databases", Proc. of the Second 
International Conference on Expert Database Systems, L. Kerschberg 
(ed.), Benjamin/Cummings (1989), 621-643. 
M. A. Casanova and A. L. Furtado, "An Information System Environ- 
ment based on Plan Generation", Proc. Int. Working Conference on 
Cooperating Knowledge based Systems, Keele, UK (1990). 
R. E. Fikes and N. J. Nilsson - "STRIPS: a new approach to the appli- 
cation of theorem proving to problem solving" - Artificial Intelligence 2 
(1971) 189-208. 
A. L. Furtado - "Exploring the extensibility of IBM Prolog" - technical 
report CCR-124 - Rio Scientific Center of IBM Brasil (1991). 
A. L. Furtado - "Two integrated tools for IBM Prolog: query-the-user 
& transparent use of SQL" - technical report CCR-126 - Rio Scientific 
Center of IBM Brasil (1991). 
A. S. Hemerly, M. A. Casanova and A. L. Furtado, "Cooperative 
behaviour through request modification", Proc. 10th Intq. Conf. on the 
Entity-Relationship Approach, San Mateo, CA, USA (1991) 607-621. 
S. J. Kaplan, "Cooperative Responses from a Portable Natural Language 
Query System", Artificial Intelligence 19:2 (1982), 165-187. 
A. Kobsa and W. Walalster (eds.), User Models in Dialog Systems, 
Springer-Verlag (1989). 
D. J. Litman and J. F. Allen - "A plan recognition model for subdi- 
alogues in conversations" - Cognitive Science 11 (1987) 163-200. 
J.W. Lloyd, Foundations of Logic Programming, Springer-Verlag (1987). 
A. Motro, "Query generalization: a technique for handling query failure", 
Proc. First International Workshop on Expert Database Systems (1984), 
314-325. 
A. Quilici, "Detecting and Responding to Plan-Oriented Miscon- 
ceptions", in User Models in Dialog Systems, A. Kobsa and W. Wahlster 
(eds.), Springer-Verlag (1989). 
L. Tucherman, M. A. Casanova and A. L. Furtado - "The CHRIS con- 
sultant - a tool for database design and rapid prototyping" - Information 
Systems 15:2 (1990). 
P. A. S. Veloso and A. L. Furtado - "Fowards simpler and yet complete 
formal specifications" - in "Information systems: theoretical and formal 
aspects" - A. Semadas, J. Bubenko and A. Olive (eds.) - North-Holland 
Pub. Co. (1985) 175-189. 
B. L. Webber, "Questions, answers and responses: interacting with 
knowledge base systems", in On knowledge base management systems, 
M.L. Brodie and J. Mylopoulos (eds.) - Springer (1986). 



607 

APPENDIX A 

EXAMPLE DATABASE / KNOWLEDGE BASE 

declaring entity classes and attributes 

entity(emp,name). 
entity(trainee,name). 
entity(dept,dname). 
entity(proj,pname). 
entity(client,cname). 

trainee is a emp. 

attribute(emp,sal). 
attribute(trainee,level). 
attribute(dept,city). 
attribute(proj,pending)o 
attribute(client,status). 

relationship(works, [emp,dept]). 
relationship(participates, [emp,proj]). 
relationship(sponsors, [client,dept,proj]). 

one_to_n (works, emp). 

attribute(works,job). 
attribute(sponsors,contract). 
attribute(sponsors,year). 
attribute(participates,task). 

domain(name,V,is_string(V),single). 
domain(dname,V,is_string(V),single). 
domain(pname,V,is_string(V),single). 
domain (cname, V, i s_stri ng (V) ,si ngl e). 
domain (sal ,V, i s_numb (V) ,single). 
domain(level ,V, 

V == 'graduate' I V == 'undergraduate',single). 
domain(city,V,is_string(V),single). 
domain(pending,V,V == true,single). 
domain(status,V,is_string(V),single). 
domain(job,V,is_string(ll),single). 
domain(contract,V, 

stconc('c',N,V) & st to at(N,M) & is_int(M),single). 
domain(year,V,in_range(V,1988,2888),single). 
domain(task,V,is_string(V),multi). 
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declaring data structures 

structure(emp, [name,sal,dname,job]). 
structure(dept, [dname,city]). 
structure(pr, [pname,pending]). 
structure(tr, [name,level]). 
structure(acc, [name,account]). 
structure(part, [name,pname]). 
structure(tsk, [name,pname,task]). 
structure(cln, [cname,status]). 
structure(spon, [cname,dname,pname,year,contract]). 

sql_structures([emp,dept]). 

mapping between classes and data structures 

ext_ent_structure(emp, [works], emp). 
ent_structure(trainee, tr). 
ent_structure(dept, dept). 
ent_structure(proj, pr). 
ent_structure(client, cln). 

rel_structure(participates, part). 
rel_structure(sponsors, spon). 

rep_rel_structure(participates, tsk). 

defining operations 

operation(install, [dname,city]). 
added(deptCD, install (D,C)). 
added (deptCD\ci ty(C), instal I (D,C)). 

operation (propose, [pname]). 
added (projCP, propose (P)). 
added (projCP\pendi ng (true), propose (P)). 

operation(approve, [pname]). 
deleted(projr approve(P)). 

operation(hire, [name,sal,dname]). 
added(empr hire(N,S,D)). 
added(empCN\sal(S), hire(N,S,D)). 
added(works#[empr hire(N,S,D)). 
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operati on (hi re_t r, [name, sal, dname, 1 evel ] ). 
added(F, hire_tr(N,S,D,L)) <- added(F, hire(N,S,D)). 
added (trai neer hire_tr(N,S,D,L)). 
added(traineer (L), hire_tr(N,S,D,L)). 

operation(raise,[name,increment]). 
added(empr raise(N,l)) <- 

empr & S := $8 + I . 
deleted(empr raise(N,I)) <- 

empr 

operation(designate, [name,job]). 
added(works#[empr162 designate(N,J)). 
deleted(works#[empr162 designate(N,K)) <- 

works#[empr162 

operation(fire, [name]). 
deleted (empr fi re (X)). 

operation(assign, [name,pname,task]). 
precond(assign(N,P,T), 

works#[empr162 & 
sponsors#[clientr162162 

added(participates#[empr162 assign(N,P,T)). 
added(participates#[empr162 assign(N,P,T)). 

operation(add_task, [name,pname,task]). 
added(participates#[empr162 add_task(N,P,T)). 

operation(associate, [cname,dname,pname,year,contract]). 
added(clientr <- ~clientr 
added(clientr <- 

~clientr 
added(sponsors#[clientr162162 

associate(C,D,P,Y,Cn)). 
added(sponsors#[clientr162162 

associate(C,D,P,Y,Cn)). 
added(sponsors#[clientr162162 

associate(C,D,P,Y,Cn)). 

example of a knowledge-base rule 

op('ongoing",prefix,5@). 

current(Ig91). 
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ongoing P <- 
current(Y) & 
sponsors#[clientr162162 & 
~projr 

APPENDIX B 

/*  ALGORITHM TO AVOID MISCONSTRUALS * /  

query(X, U) <- 
U : X & / .  

query(X,U) <- 
authorized(X) & 
X& 
nl & 
write(sys : X - succeeds) & 
log(U : X) & 
propagate(X,U). 

propagate(X,U) <- 
fora11( conditional_clause(U : Y <- B) & 

in_conjunction(U : X,B) & 
(delax(gb(*)) I true) & addax(gb(nil)) & U : Y, 
(gb(C) & inv(C,Cl) & certU(CI,U) & 

(certD(Cl,Z) -> (write(sys : Z - fai ls) & 
log mis(Z,U)); 

propagate(Y,U)) & fai l  )). 

/*  cert i f ication test for the deductive database * /  

certD([ ] ,X)  <- / & f a i l .  
certD([~V!C],X) <- ~V-> ( /  & certD(C,X)); X=~V . 
certD([  V!C],X) <- V-> ( /  & certD(C,X)); X*V . 

/ *  cert i f ication test for the log - an optimization * /  

certU([ ] ,U)  <- / .  
certU([~V!C],U) <- / & certU(C,U). 
certU([V!C],U) <- / & (U:fai led(V)-> ( /  & f a i l ) ;  certU(C,U)). 

log_mis(~X,U) <- addax(U:X,log,l) & write (~X - blocked). 
log_mis(X,U) <- addax(U:failed(X),log,1) & write (X - blocked). 

log(X) <- addax(X,log) & write (X - added). 
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y_(X) <- gb(C) & delax(gb(C)) & addax(gb([X!C])). 
n_(X) <- gb(C) & delax(gb(C)) & addax(gb([~X!C])). 

authorized (X). 

/ *  u t i l i t i e s  * /  

condi t i  onal_cl ause (X) <- 
ax(*,X). 

in_conjunction(X,X) <- ~X : . .  [ "& ' ! * ]  & / ( ) .  
in_conjunction(X,X & *).  
in_conjunction(X,* & R) <- in_conjunction(X,R). 

i nv (k, LI) <-i nv (L, [ ] ,  L I ) .  
inv( [ ] ,L ,L)<-cut ( ) .  
inv([H!k] ,kL,k l)<- cut() & inv(k, [H!kk] ,L l ) .  


