
A Declarative Conceptual Modelling Language:
Description and Example Applications

Marco A. Casanova 1 , Andrea S. Hemerly 1 and Antonio L. Furtado 1,2

1Centro Cientifico Rio 2Departamento de Informhtica
IBM Brasil Pontificia Universidade Cat6lica do RJ

Caixa Postal 4624 R. Marquts de S. Vicente, 225
20.001, Rio de Janeiro, RJ - Brasil 22.453, Rio de Janeiro, ILl - Brasil

ABSTRACT. A declarative conceptual modelling language, implemented as
an extension to Prolog, is described. The language is based on an extended
version of the entity-relationship (ER) model for the declaration of the infor-
mation classes and the formulation of queries, and adopts an abstract data
type (ADT) approach to define and execute application-oriented update
operations.

The language is an integral part of a workbench that provides rapid proto-
typing at the conceptual level and that supports expert level features.
Simple examples to illustrate the direct use of the workbench over a data-
base / knowledge base application and the addition of expert level features
are also included.

1. Introduction

This paper ftrst describes a declarative conceptual modelling language that is part
of a workbench to support the direct use of knowledge base/database applications,
as well as to serve as a foundation for expert level features to be developed over
these applications. Then it illustrates the direct use of the workbench over a data-
base / knowledge base application and the addition of expert level features.

The language follows an extended version of the entity-relationship (ER) model
for the declaration of the information classes and the formulation of queries, and
adopts an abstract data type (ADT) approach to define and execute application-
oriented update operations. The language is implemented as an extension to
Prolog, following a declarative style, in the sense that every aspect of an applica-
tion is declared with the help of facts and clauses, including the update operations.

In this ER/ADT information/operation model, individual entity instances retain
their identity across the different classes to which they may belong (via the is_a
hierarchy), with respect to their existence, attributes and participation in relation-
ship instances. Also, in the spirit of abstract data types, update requests are
limited to the utilization of application-oriented operations.

The workbench permits rapid prototyping of the ER design, that is, the
workbench does not treat the ER design as a mere documentation of the applica-
tion, but as an executable specification. The workbench provides a better basis

590

for expert level features, because their specification can take advantage of the
richer ER/ADT semantics. The workbench also contains a transparent SQL
interface and a query-the-user facility, described in [Fu2].

The direct use of the workbench is demonstrated over an example database. After
presenting its specification, we describe the execution of queries and update oper-
ations. Next, it is shown how to add rules, as needed when extending databases to
knowledge bases. Over the example thus expanded, we show how queries can be
handled by expert level features, running under the workbench, so as to avoid mis-
construals. Features like these are being experimented in prototypes developed as
part of project NICE [CF,HCF], whose purpose is to investigate cooperative
query processing methods to reduce the cost of developing "help desks" and
similar advanced database interfaces. Cooperative query processing has been
explored, for example, in [BJ,CCL,CD], through the use of richer conceptual
models, and in [Mo], via the generalization of failed queries. A natural language
database query system, which recognizes users" presuppositions about the applica-
tion domain, is also described in [Ka]. The problem of detecting and responding
to plan-generation misconstruals is investigated in [Qu]. A good survey of user
model techniques can be found in [KW].

The paper is organized as follows. Section 2 presents the syntax for the structural
aspects of the languages and discusses queries and updates. Section 3 illustrates
the direct use of the workbench over an example, which is taken again in section 4
where expert level features that contribute to avoid misconstruals are examined.
Section 5 contains the conclusion. Finally, Appendix A lists the complete specifi-
cation of the example in section 3 and Appendix B gives a Prolog implementation
of the algorithm to block misconstruals, described in section 4.

2. Description of the Language

2.1. Facts and Fact Frames

A fact denotes the existence of either an entity or a relationship instance, or cap-
tures that one such instance has a certain value for a given attribute. In the pro-
totype, whenever the same attribute name is used in the definition of more than
one entity or relationship class, it implies that the attribute will have the same
domain. A key is an identifying attribute, in the sense that entity or relationship
instances that have the same value for the key are indeed the same instance,
regardless of the class to which such instances belong. In the current prototype,
entity instances cannot have compound keys, i.e. keys consisting of more than one
attribute. The key of a relationship instance, on the contrary, is in general com-
pound, since it consists of the keys of the participating entity instances; an excep-
tion is the case of binary one-to-n relationship instances, whose key is that of the
determining participant (i.e. the participating entity depicted on the "n side" in the
ER diagram).

A database for a conceptual schema is a set of facts. The syntax for facts is:

591

<entity cl ass>r
<entity cl ass>r bute>(<val ue>)
<rel ati onshi p cl ass>#<parti ci pants I i st>
<rel ati onshi p cl ass>#<parti ci pants I i st>\<attri bute> (<value>)

where <parti ci pants I i st> is a list of pairs of the form <entity cl ass>r

To refer to more than one attribute of an entity or relationship instance, a frame
construct can be used:

<entity class>r has <attribute frame>
<rel ati onshi p cl ass>#<parti ci pants I i st> has <attribute frame>

where <attri bute frame> is a list of <attribute>:<val ue> pairs. If <attribute> is
multivalued, then <value> will unify with one of the values the attribute currently
has, and with the other values upon backtracking.

If this is not the appropriate behavior, a different construct can be used:

<entity cl ass>r has_gr <attribute frame>
<relationship class>#<participants l ist> has gr <attribute frame>

where <attribute frame> contains a pair, <attribute>:<val ue>, if the attribute is
single valued, or a pair <attribute>:<list of values>, if the attribute is multi-
valued. In the latter case, <l i st of val ues> naturally is the list of values <attri -
bute> currently has.

2.2. Classes of Facts

The conceptual schema of a database at the ER/ADT level is specified through
clauses that defme the entity and relationship classes that exist and the structure of
the is_a hierarchy. Relationships of arbitrary arity are allowed and binary
one-to-n relationships are singled out. The syntax of the clauses to declare the
conceptual schema is:

enti ty(<enti ty cl ass>,<key>)
is_a(<entity class>,<entity class>)
relationship(<relationship class>,<participant classes>)
one_to_n(<relationship class>,<determining participant class>)
attribute (<entity cl ass>,<attri bute>)
attribute (<rel ati onshi p cl ass>,<attri bute>)
domain (<attri bute>,<val ue vari abl e>,<val i di ty check>,<cardi nal i ty>)

where <participant classes> is a list of <entity class> elements, <validity
check> is an expression involving <value vari able> to defme the possible values
that can be associated with <attribute>, and <cardinality> is either #single" or
"multi", to distinguish between single and multivalued attributes.

Attributes and participation in relationships are inherited along the is_a hierarchy.
The current prototype does not provide mechanisms to avoid ambiguities in case
of inheritance from more than one parent class, or when a class inherits an attri-
bute also defined in the class.

592

2.3. Data Structure Declaration and Mapping

Facts are stored in relational data structures, which can take the form of ground
unit clauses of Prolog predicates or tuples of SQL tables. In both cases, the rela-
tional schema is declared by clauses of the form:

structure(<structure name>, <attribute list>)

where <structure name> is either a predicate symbol or the name of an SQL table.
The names of the structures to be handled as SQL tables should be indicated in a
clause:

sq l_s t ruc tures(<l i s t of structure names>)

To ease the mapping between ER/ADT and relational schemas, the current pro-
totype requires that the names of the columns of SQL tables be the same as the
names of the corresponding attributes. On the other hand, the names of the data
structures (predicates or tables) are arbitrary. The mapping between the two
schemas is established by clauses with the following format:

ent_structure(<entity class>, <name of data structure>)
rep_ent structure(<entity class>, <name of data structure>)
rel_structure(<relationship class>, <name of data structure>)
rep_rel structure(<relationship class>, <name of data structure>)
ext_ent_structure (<entity cl ass>, <rel ationshi ps>, <name of data structure>)

where <rel ati onshi ps> is a list of <rel ationshi p cl ass>.

The motivation for these different clauses comes from the way we design rela-
tional structures to accommodate the entity-relationship facts. Exactly one data
structure, designated respectively by an "ent_structure" or "rel_structure" clause,
must correspond to each entity or relationship class, storing the key attributes
together with all the single-valued attributes. For each multivalued attribute, there
must be a data structure, indicated in a "rep_ent_structure" or "reprel_structure",
containing only the key and the attribute involved. Finally, whenever an entity
class E participates in one or more one-to-n relationship classes, the data structure
of E is extended to also represent the relationships. In such cases, an
"extent structure" clause (instead of an "ent_structure" clause) is used to desig-
nate the data structure. A detailed description of the design method is found in
[TCF].

2.4. Operations over Facts

In the spirit of abstract data types, the only way to update facts is through pre-
defined application-oriented operations. Following a convenient STRIPS-like
scheme [FN,LA], each operation 0 is specified by a set of clauses, which indicate
the facts that are added and deleted by 0 (i.e., the effects of 0) and the precon-
ditions for the execution of 0, in terms of logical expressions involving facts that
should or should not hold. The syntax of the clauses to specify operations is:

593

<operation>(<name of operation>, <parameter l is t>)
added(<fact>,<operation>) <- <antecedent>
deleted(<fact>,<operation>) <- <antecedent>
precond(<operation>,<expression involving facts>) <- <antecedent>

where <parameter 1 i st> consists of the names of the domains to which the
parameter values must belong. An "operation" clause provides the signature of an
operation, and the designer must ensure its consistency with the other clauses
referring to the operation. In the "added", "deleted" and "precond" clauses, the
<antecedent>, which is a Prolog expression, is often omitted. When present, it
provides additional criteria to check whether the clause is applicable and contrib-
utes to the instantiation of variables appearing in the head of the clause. Notice
that the Prolog expression may in particular refer to other such clauses and to
database facts. Of special interest is the case of the antecedent expression of a
"precond" clause of an operation 0 referring to "added" and "deleted" clauses of 0;
in such cases, the "precond" clause may indeed express a post-condition rather
than a precondition, since it is allowed to look at the effects that the execution of
0 would have.

Preconditions are used to enforce integrity constraints dynamically, in the sense
that they restrict the application of the defined operations to guarantee that they
can only lead to valid states.

In adherence to the original ADT principles, operations do not "belong" to
classes, as happens with strict object-oriented systems. Instances of several classes
may be affected by an operation that refers to them through its parameters. As a
consequence, inheritance of operations along the is_a hierarchy is provided in a
trivial way. To see why this is true, assume the existence of an instance i of an
entity class E, such that E i s a F. Assume further that an operation 0 includes as
one of its parameters a reference to an instance of class F. Then, since we require
that instances of an entity class must also exist as instances of all classes located
above it in the is_a hierarchy, we conclude that 0 is applicable to i simply because
i is also an instance of F.

As a related point that can be illustrated by further elaborating the above example,
consider the specification of an operation 0' this time referring to instances of E.
Suppose that we want the effects of 0' to subsume the effects of 0, in the sense
that 0' has all the effects of 0 plus some others. The indication of subsumed
effects can be succinctly done by including either or both of the following clauses
in the definition of 0 ':

added(F, 0') <- added(F, O)
deleted(F, 0') <-deleted(F, O)

the same provision being possible for preconditions, through the inclusion of
"precond" clauses of an analogous format.

In addition to the precond, added and deleted clauses belonging to a specific
application, there may be present a number of general (i.e. application-

594

independent) clauses of these types distinguished by the prefix "sys". The current
version of the prototype contains "sys:precond" clauses establishing that:

PI . an instance of an entity-class E such that E is_a F can be added only if the
instance exists in class F

P2. a value of an attribute of an entity or relationship instance can only be
added if the instance exists

P3. a relationship instance can be added only if all participating entity instances
exist

Clauses of type "sys:deleted " are also included, establishing that:

DI. if an instance of an entity-class E is deleted, then it is also deleted from all
entity-classes F such that F is_a_ E (letting "is_a" be the transitive closure of
"is a")

D2. if an instance of an entity or relationship class is deleted then all its attri-
butes are also deleted

D3. if an instance of an entity-class is deleted then all relationship instances
where it participates are deleted

These general clauses are based on assumptions that are often adopted with the
entity-relationship model. Broadly speaking, they preserve integrity constraints
inherent in the model. The "sys:precond" clauses restrict additions, whereas the
"sys:deleted" clauses propagate deletions. The presence of these "sys" clauses
reduces the number of clauses that an application designer has to introduce for
each operation. On the other hand, the designer can make a "sys:precond" clause
vacuous for a specific operation 0 by simply providing an appropriate "precond",
"added" or "deleted" clause in the deflrtition of 0. For example, pre-condition P2
becomes vacuous, if an operatio n 0 that is allowed to add a value for an attribute
of an instance, also adds the instance itself. Similarly, the propagation of deletions
can be changed into blocking for an operation 0 by attaching a "precond" clause
to 0 that enforces the blocking of the operation. For example, the designer may
include a "precond" clause preventing the deletion of an entity instance, if a certain
attribute of the entity is still defined, or if the instance still participates in some
instance of a specified relationship class.

A few "sys:added" and "sys:deleted" clauses were included to handle certain situ-
ations where null values are involved. Although these clauses are meaningful at
the conceptual level, since nulls are used here to express undefined values, we
must point out that their presence is mainly justified to ensure the correct
mapping of the ER facts into the relational structures. In our STRIPS-based
method to define operations, a "deleted" clause is the way to indicate that an oper-
ation 0 causes, as one of its effects, a single-valued attribute A of an entity or
relationship instance to become undefined. A "sys:added" clause complements the
deletion of the current value of A, by assigning to it the null value. Conversely,
the addition of a value to a currently undefined attribute is complemented by the
removal of its null value, through a "sys:deleted" clause. Note that, in the present
prototype, to replace a non-null value of a single-valued attribute by another non-
null value, both a "deleted" and an "added" clause must be provided. One-tom

595

relationships are treated in about the same way as single-valued attributes. The
removal of an one-to-n relationship instance, which of course entails the removal
of all its attributes, is complemented through "sys:added" clauses to indicate (by
inserting nulls) that the participant on the "one side" and the single-valued
relationship attributes have become undefined. Notice that, if this participant is
replaced by another one, rather than removed, the current relationship attributes
are equally removed. Finally, a "sys:deleted" clause provides the deletion of a null
denoting an undefined participant when a valid participant is added.

We have still two more "sys:precond" clauses to mention. They implement our
strategy (proposed in [VF]) to handle operations in case some of its effects already
hold. These clauses prevent the execution if one or more facts that the operation
should add are already present in the database or if facts to be deleted are absent.
We fmd that this "all or nothing" strategy is compatible with the notion of data-
base transactions, where several commands are involved and there is no commit-
ment with respect to database updates if any failure occurs.

2.5. Query and Update Requests

Over an ER/ADT database, a user can formulate query requests and update
requests as Prolog goals. For queries, a goal would consist of a Prolog expression
involving one or more facts with the syntax described in section 2.1.

If a query refers to an attribute of an entity or relationship instance and, although
the instance exists, the value of the attribute is currently undefined, the query fails
as would be expected. However, we decided that the prototype should allow
queries on undefmed attributes declared as single-valued to succeed in the special
case where the query mentions the "null" value explicitly.

The frame construct is convenient in the formulation of queries if more than one
attribute is mentioned in connection to the same entity or relationship instance.
Frames can be used in flexible ways. If a term corresponding to a frame is indi-
cated by a variable, the execution of the goal will instantiate the variable to a list
involving all attributes of the given entity or relationship instance which have non-
null values in the database. If the user is only haterested in a few specific attri-
butes, he may indicate the frame explicitly as a list containing the desired
attributes in any order he chooses, paired with variables to be instantiated with
the corresponding values; in this case, for attributes whose value is not defined the
respective variables will remain uninstantiated. Powerful operations have been
introduced for frames, especially unification and generalization [Full. Moreover,
a query with frames has a better performance than a conceptually equivalent
query where attributes of the same instance are indicated separately, since by
working on entire frames the prototype is able to collapse database accesses so
that each access retrieves all values requested that happen to be kept in the same
underlying data structure.

596

Query requests can also involve schema information. All types of declarative
clauses described in sections 2.2 and 2.4 (and even section 2.3, if one needs to
reach a lower level) can appear in goal expressions.

Update requests are effected by goal expressions containing calls to the defined
operations. Although, syntactically, these calls are direct, they are actually inter-
cepted by a meta-predicate "exec_op" which checks the values of the parameters
that are not variables or "null"s, tests the preconditions and, in case of success,
applies additions and deletions to the appropriate data structures to reflect what
the added and deleted clauses specify.

At the beginning of a session, where query and update requests will be posed, two
preparatory goals must be executed:

<- enabl e_structures 0 -
<- enabl e_operati ons () .

the effect of the former being that the "sql_fact" predicate of the PSQL tool is
applied (as described in [Fu21) to all structures in the "sqlstructures" clause,
whereas the effect of the latter is to add to the workspace clauses of the form:

<operation templ ate> <- exec op (<operati on templ ate>)

where <operati on templ ate> consists of the operation name followed by a paren-
thesized sequence of variables denoting the formal parameters of the operation.
The ability to enter calls to operations directly, that we mentioned earlier in this
section, results from the presence of these clauses.

3. An Example of Direct Utilization of the Workbench

This section briefly describes an application and illustrates the power of the query
language. Appendix A contains the complete description of the example as it runs
under the Prolog prototype.

3.1. Conceptual Level Specification of the Application

The conceptual level specification defines entity classes that correspond to
employees, trainees, departments, projects and clients, where trainees are a sub-
class of employees. It also defines relationship classes capturing that employees
work in departments and participate in projects, and that clients sponsor depart-
ments in view of specific projects. Furthermore, the specification contains integ-
rity constraints requiring that an employee can work in only one department and
that he can only participate in sponsored projects of his department.

The mapping between the conceptual level specification and the relational data
structure level specification has the following properties: it keeps the data on
employees and on departments in SQL tables; it embeds the "works" one-to-n
relationship in the "emp" table, together with the attributes of employees; and it

597

maintains the attribute "task" of relationship "participates", which is multivalued,
in a separate table.

The application has operations to install a department indicating the city where its
headquarters will be, to hire employees to work in a department, to hire trainees,
to separately designate the job that an employee will have in his department, to
raise an employee's salary, to fire an employee, to propose a project, to associate
in a sponsorship contract a client and a department with respect to a project, to
assign employees to projects, to add more tasks to assigned employees, to give
final approval to a project, and a few others.

Some features in the definition of operations deserve comments (we refer the
reader to Appendix A). The assign operation has a precondition saying that an
employee E can be assigned to a project P only if E works in a department that
sponsors P. The salary raise operation affects only the salary of an employee, by
adding the indicated amount (to reflect this update, only one field of the appro-
priate "emp" tuple is changed). When a project is initially proposed, it is marked
as pending, a condition that can be later removed by an execution of the approve
operation issued by the Projects Control Department, say (this removal is imple-
mented by setting to "null" the second field of the corresponding "pr" clause. The
definition of operation to hire trainees includes an "added" clause concisely
declaring that the operation adds all facts added by the operation that hires
employees.

3.2. Sample Executions of the Operations

Suppose that thedatabase is initiaUy empty and that thefoUowing operations are
executed:

G1. <- i n s t a l l (' D l ' , ' N Y ') .
G2. <- h i r e (' M c C o y ' , 1 8 8 , ' D l ') .
G3. <- des igna te ('McCoy ' , ' cha i r ') .
G4. <- p ropose('A lpha ') .
G5. <- associate('Spock L t d . ' , ' D 1 ' , ' A l p h a ' , 1 g g 1 , ' c 1 2 3 ') .
G6. <- h i r e _ t r (' S a v i k ' , 8 8 , ' D l ' , ' g r a d u a t e ') .
G7. <- a s s i g n (' S a v i k ' , ' A l p h a ' , ' r e c o r d - k e e p i n g ') .
G8. <- add_ task('Sav ik ' , 'A lpha ' , ' commun ica t ions ') .

From the definition of the operations in Appendix A, the reader may fred what
facts will start to hold or cease to hold when these goals are executed, and how
the data structures will be updated. In particular, the reader may appreciate the
consequences of the application-independent clauses (prefixed with "sys") that
establish general preconditions and effects of operations. For instance, if the goal
"<-fi re (' S avi k ')" is executed, the direct effect is that Savik ceases to exist as an
employee, but the "sys" clauses will also make her cease to exist as a trainee, and
all facts related to attributes of this entity instance in both entity classes, as well as
of its participation in relationships, will be also removed.

598

By wayofanexample , wefoUowthe execution of G6. RecaUfromAppendixA
the defmition of'2fire"and "q-fire-tr":

HI. operation(hire, [name,sal,dname]).
H2. added(empCN, hire(N,S,D)).
H3. added(empCN\sal (S), hire(N,S,D)).
H4. added(works#[empCN,deptCD], hire(N,S,D)).

Hr. operation(hire_tr,[name,sal,dname,level]).
H6. added(F, hire_tr(N,S,D,L)) <- added(F, hire(N,S,D)).
H7. added(traineeCN, hire_tr(N,S,D,L)).
H8. added(traineeCN\level (L), hire_tr(N,S,D,L)).

The execution of goal G6, "<- hire_tr('Savik',80,'D1','graduate')", d~ectly
creates the foUowing new facts, via H7 and H8:

FI. added(traineeg'Savik', hire_tr('Savik',80,'Dl','graduate')).
F2. added(traineer

hire_tr('Savik',BO,'Dl','graduate')).

and, ind~ectly, the foUowing new facts, v i aH6andH2 , H3andH4:

F3. added(empr hire('Savik',80,'D1')).
F4. added(empr hire('Savik',BO,'D1')).
F5. added(works#[empr162 hire('Savik',8O,'D1')).

The conceptual information expressed by F1 through F5 is in fact stored, via the
mapping clauses, as the foUowing two ground unit clauses (but recall that k is in
part physically ~ored as SQL tuples):

R1. emp('Savik',80,'Dl ' ,null).
R2. t r('Savik ' , 'graduate') .

The complete database at the end of the execution of the operations in G1
through G8also contains the clauses:

R3.
R4.
R5.
R6.
R7.
R8.
Rg.
RIO.

dept('D1','NY').
emp('McCoy',lOO,'Dl','chair').
pr('Alpha',true).
cln('Spock Ltd. ' , 'new').
spon('Spock Ltd.','D1','Alpha',lg91,'c123').
part('Sav~k','Alpha').
tsk('Savik','Alpha','record-keeping').
tsk('Savik','Alpha','communications').

3.3. Sample Queries

Considering the database state reached through the executions of operations given
in the preceding section, it is easy to see that the sample queries below will
produce the result indicated (notice that queries (3) and (5) use the frame con-
struct):

(I) query: who works in department DI?

599

in Prolog: <- forall(works#[empr162 wri te(N)).
answer: 'McCoy', 'Savik'

(2) query: to what en t i t y classes does Savik belong?
in Prolog: <- fo ra l l (E : 'Sav ik ' , wr i te(E)) .
answer: emp, trainee

(3) query: give al l at t r ibutes available on Savik, as trainee.
in Prolog: <- traineer has F & wri te(F).
answer: [level:graduate, sal:8@]

(4) query: is there some employee whose job is s t i l l undefined?
in Prolog: <- works#[empr162 & write(N-D).
answer: 'Savik' - 'DI '

(5) query: which tasks have been assigned to Savik in project Alpha?
in Prolog: <- part icipates#[empr162 has_gr F

& wri te(F).
answer: [task: ['communications', 'record-keeping']]

(6) query: is i t true that project Alpha is sponsored for 1991?
in Prolog: <- sponsorsr162162162

& wri te(yes).
answer: yes

(7) query: has project Alpha been approved already?
in Prolog: <- (~ projr & write(yes)

[p r s t (' s t i l l pending') & nl) .
answer: s t i l l pending

3.4. Adding a Knowledge Base Rule

Until now we have only considered a factual database in the present example.
Knowledge bases would, in addition, include rules. To provide an example, to be
further explored in connection with the expert level features of the next section,
we introduce a rule establishing that a project is "ongoing", in the sense that its
execution is under way, if it is being sponsored for the current year and it is no
longer pending. Besides the rule, we assume some way to indicate the current
year, which could be an access to the system's internal clock or a unit clause. The
Prolog declarations follow. As a step towards a pseudo-natural language notation,
"ongoing" is introduced as a prefix operator, obviating the need for the special
symbols used at the ER/ADT level:

op("ongoing",prefix,5@).

current (1991).

600

ongoing P <-
current(Y) &
sponsors#[clientr162162 &
~projr

Given the state of the database captured in clauses R1 through R10, the query
request

<- ongoing 'Alpha'.

will fail, since the project is indeed currently sponsored but it is still pending.

4. An Example of Expert Level Features: Avoiding Misconstruals

In this section we illustrate how the user interface provided by the workbench can
be enhanced by the superimposition of expert level features.

The purpose of the features to be presented is to intercept query requests and
provide more than literal answers to what is asked. More specifically, answers will
in some situations be expanded in order to avoid invalid user inferences, or mis-
construals [We], as explained in section 4.1. To detect that an answer can lead a
particular user to a misconstrual, one must have available models of the individual
users (or classes of users).

In [HCF] we have outlined a formal approach to user modelling that is fully com-
patible with the logic programming paradigm. Based on this approach, we
propose an algorithm to prevent a broad class of misconstruals, in the context of
queries only, described in section 4.2. Section 4.3 traces two queries that may
induce misconstruals, over the example introduced in section 3.4.

4.1. Misconstruals and User Modelling

When interacting with a database, a user is typically tempted to infer further infor-
mation from that explicitly obtained from previous queries. However, his infer-
ences are not necessarily valid, because his model of the world is often incomplete
or even faulty. For example, after consulting the database, an auditor may fred
that a project, P, has gained the support of a client for the current year, and
unadvisedly infer that its execution will start at once, when the actual beginning of
the activities still depends on the approval of the Projects Control Department. A
more cooperative database system would have informed the auditor that the cli-
ent's sponsorship has indeed been granted, assumed as the original question, and
would have added that the beginning of activities has been delayed. To achieve
cooperativeness, the system would naturally have some model of typical auditors.

To address the problem of invalid user .inferences, we consider a cooperative inter-
face that passes additional information to the user when it discovers that he has
gathered enough data to infer information that contradicts the database. The

601

interface essentially simulates user's inferences and compares the result with what
can be derived from the database.

We assume that, in the context of a given session, the user remembers his past
interactions with the deductive database and that he can use the information thus
obtained in his (real world) inferences. The results of past interactions in the
current session are kept in a log, which will indicate that certain facts hold and
that certain other facts do not hold in the database.

For simplicity, we consider that the interface knows exactly the class of users
accessing the database at a given time, which isolates our problem from that of
classifying users. Thus, from now on, when we refer to the user, we mean any
user in this class. The user model is a theory, designed together with the database,
that abstracts out the rules that the user adopts to reason about the domain of
discourse in question. We stress that we use the term "user model" to mean a
model of how the user reasons, which is somewhat different from the use of the
term in the literature.

We model the user's inferences during a session by the deductions from the user
model and the positive facts that the current log indicates to hold. In particular,
we assume that the user reasons about negated facts only through negation as
finite failure [L1]. This intuitively means that, in a given session, we model the
inference of a negated fact --1 A, by the failure, in a finite number of steps, to fmd a
proof for A from the user model and the facts that the log indicates to hold.

For a detailed discussion of the theoretical aspects involved, see [HCF].

4.2. Algorithm to Avoid Misconstruals

The cooperative interface we propose uses an algorithm to process users" queries
so as to avoid misconstruals. It does not take into account update operations,
however. This section informally outlines the algorithm for the propositional case
only, whereas Appendix B contains the Prolog implementation for the full first-
order case.

The algorithm consists of two mutually recursive parts, that we call "query" and
"propagate". In the "query" part, given a query request A formulated by a user tl,
the algorithm first checks if A follows from what the user already knows, i.e. from
the model of O extended with the knowledge placed in the user log during the
process. If this fails, query A is posed to the database (provided that the authori-
zation requirements are fulfilled). If this also fails, the process stops. If A follows
from the database, A is added to the log, and the "propagate" part is entered to
look at possible misconstruals induced by A.

More specifically, "propagate" takes in turn each conditional clause V <- [3 in the
model of U such that A is one of the facts conjoined in B and processes the clause
as follows. If V follows from what the user already knows and also from the data-
base, then Y is not by itself a misconstrual, but it may indirectly cause one, which

602

is checked by calling "propagate" recursively to examine the consequences of u If
u follows from what the user already knows, but it does not follow from the data-
base, then Y is a misconstrual. To avoid that the user infer u the algorithm first
looks for some negated fact Z in the body B of the clause in question such that 7
follows from the database. To check Z against the database, "query" is called
recursively. If one such negated fact is found, it is added to the log, effectively
inhibiting henceforward the erroneous deduction of Y. Otherwise, on returning ~o
the execution of "propagate", a clause is added to the log to explicitly block the
deduction of u

If the algorithm is executed again for the same query A, the query will be answered
from the user's model plus log and no further action is needed. Also, queries
involving the misconstruals thus identified will correctly end in failure.

The Prolog implementation of the algorithm was designed for the full first-order
case and it is prepared to handle the propagation of variable bindings, as suggested
in [HCF]. It also distinguishes the clauses belonging to the user's model (and to
his log) from the system's clauses by adding to the former a prefix which is typi-
cally the user's identification (userid).

4.3. Informal Description of two Examples

We give in this section two examples, both related to the rule introduced in
section 3.4, to indicate how the interface operates. The examples axe introduced
informally, with the pertinent Prolog expressions shown in figures 1, 2 and 3. The
first example illustrates how to avoid misconstruals that arise when the user incor-
rectly invokes negation as fmite failure for the lack of information, whereas the
second example has to do with a type of misconstrual that arises when the user
has inadequate rules.

Consider that the deductive database has a rule saying that a project is ongoing if
duly sponsored by a client and if it is not pending. Suppose that project alpha is
sponsored for the current year and that it is still pending (i.e. the Projects Control
Department has not yet issued its approval). That is, let D be the following
deductive database (see Figure 1 for the formal definition):

13.1. Project p is ongoing, if p is sponsored and it is not pending
[3.2. Project Alpha is sponsored
D.3. Project Alpha is pending

603

/* rules */

op("ongoing",prefix,50).

ongoing P <-
current(Y) &
sponsors#[clientr162162 &
~projr

/* facts */

current(ig91).

dept('Dl','NY').
pr('Alpha',true).
cln('Spock Ltd.', 'new').
spon('Spock Ltd.','D1','Alpha',I991,'c123').

Figure 1: Deductive Database

Suppose that the user believes in the same rule as the database, that is, that a
project is ongoing if duly sponsored, by a client and if it is not pending. This is
equivalent to assuming a user model U that contains only one rule (see Figure 2
for the formal definitions):

U. 1. Project p is ongoing, if p is sponsored and it is not pending

Suppose now that the user starts the dialog with the query:

Q. Is project Alpha sponsored?

The answer to Q therefore is YES. That is, at this point the user knows:

A 1 . Project Alpha is sponsored

If no extra information is passed to the user in the log, after the first query he will
know fact A1, from which he would wrongly infer fact A2:

A 2. Project Alpha is ongoing

However, the interface will anticipate and avoid this misconstrual as follows. By
applying the algorithm of the preceding section to simulate a deduction R of A 2
from the user model U and A 1 , it will detect that R cannot be accepted because it
is possible to infer the negation of fact A3:

A 3. Project p is pending

from U and A 1 , by negation as finite failure, whereas it is not possible to infer the
negation of A 3 from the database (since the database in fact includes A3). Hence,
the interface will include A 3 in the log to avoid the user's misconstrual. Indeed,
the user can no longer infer A 2 using the complete information he obtained from
the database (that is, A 1 and A3).

604

The answer combined with the extra information in the log is roughly equivalent
to the following English sentence:

Project Alpha is sponsored, but it is not ongoing because it is pending

/ * knowledge when session starts * /

u: (ongoing P) <-
current(Y) &
u: (sponsors#[clientr162162 &

u: (projr

/ * query posed * /

<- query(sponsors#[clientr162162 a).

/ * knowledge added to log * /

u:(sponsors#[clientr L td . ' , deptr projr
u:(projr

Figure 2: User U

We stress that the rnisconstrual we just illustrated was caused by an incorrect use
of negation as finite failure and that it could be blocked by including an additional
fact in the log. Our next example illustrates a second type of misconstrual that
arises when the user has inadequate rules.

Suppose now that the user believes that a project is always ongoing, if it is spon-
sored. That is, let the user model now be V (see Figure 3 for the formal deft-
nitions):

V. 1. Project p is ongoing, if p is sponsored

Assume the same deductive database D (including rule D.1 exactly as before).
Then, the answer to Q remains unchanged, from which the user can again
wrongly infer fact A 2. The interface will again detect that A 2 does not follow
from the database. The interface cannot block this misconstrual, however, by
inserting additional facts in the log because the user's perception of the domain of
discourse differs from that captured by the rules of the database. The interface
will then act differently and include in the log an indication that A 2 is not deduct-
ible from the database.

The user can still infer A 2 from the answer to his query. However, his inference
will not be consistent with the current log, since the log indicates that A 2 does not
hold.

The final answer will then be equivalent to the sentence:

605

Project Alpha is sponsored but it is not ongoing.

/* knowledge when session starts */

v: (ongoing P) <-
current(Y) &
v: (sponsors#[clientr162

/* query posed */

<- query(sponsors#[clientr162162 b).

/* knowledge added to log */

v:(sponsors#[clientr Ltd.', deptr projr
v:failed(ongoing 'Alpha').

Figure 3: User V

5. Conclusion

We described a declarative conceptual modelling language that is an integral part
of a workbench that provides rapid prototyping at the conceptual level and that
supports expert level features. We also provided simple examples to illustrate the
direct use of the workbench over a database / knowledge base application, as well
as the exploration of its use in connection with expert level features aiming at pro-
riding cooperative interfaces to information systems.

The prototype of the workbench is at an early stage of development, but it already
implements all features of the language here described. It can be extended in
several ways, either as a consequence of enriching the ER/ADT model, or to
focus on the optimization of the algorithms and their implementation, among
other points.

References

[AP]

[BJI

[CCL]

J. F. Allen and C. R. Perrault, "Analyzing intentions in utterances", Arti-
ficial Intelligence 15:3 (1980), 143-178.
L. Bolc and M. Jarke (eds.), Cooperative Interfaces to Information
Systems, Springer-Verlag (1986).
W. Chu, Q. Chen and R-C. Lee, "Cooperative Query Answering via
Type Abstraction Hierarchy", Proc. Int. Working Conference on Coop-
erating Knowledge based Systems, Univ. Keele, UK (1990).

606

[CDI

[CFI

[FNI

[Full

[Fu2]

[HCF]

[Ka]

[KWl

[LAI

[Lll
[Mo]

[Qul

[TCF1

[VFI

[Wel

F. Cuppens and R. Demolombe, "Cooperative answering: a method-
ology to provide intelligent access to databases", Proc. of the Second
International Conference on Expert Database Systems, L. Kerschberg
(ed.), Benjamin/Cummings (1989), 621-643.
M. A. Casanova and A. L. Furtado, "An Information System Environ-
ment based on Plan Generation", Proc. Int. Working Conference on
Cooperating Knowledge based Systems, Keele, UK (1990).
R. E. Fikes and N. J. Nilsson - "STRIPS: a new approach to the appli-
cation of theorem proving to problem solving" - Artificial Intelligence 2
(1971) 189-208.
A. L. Furtado - "Exploring the extensibility of IBM Prolog" - technical
report CCR-124 - Rio Scientific Center of IBM Brasil (1991).
A. L. Furtado - "Two integrated tools for IBM Prolog: query-the-user
& transparent use of SQL" - technical report CCR-126 - Rio Scientific
Center of IBM Brasil (1991).
A. S. Hemerly, M. A. Casanova and A. L. Furtado, "Cooperative
behaviour through request modification", Proc. 10th Intq. Conf. on the
Entity-Relationship Approach, San Mateo, CA, USA (1991) 607-621.
S. J. Kaplan, "Cooperative Responses from a Portable Natural Language
Query System", Artificial Intelligence 19:2 (1982), 165-187.
A. Kobsa and W. Walalster (eds.), User Models in Dialog Systems,
Springer-Verlag (1989).
D. J. Litman and J. F. Allen - "A plan recognition model for subdi-
alogues in conversations" - Cognitive Science 11 (1987) 163-200.
J.W. Lloyd, Foundations of Logic Programming, Springer-Verlag (1987).
A. Motro, "Query generalization: a technique for handling query failure",
Proc. First International Workshop on Expert Database Systems (1984),
314-325.
A. Quilici, "Detecting and Responding to Plan-Oriented Miscon-
ceptions", in User Models in Dialog Systems, A. Kobsa and W. Wahlster
(eds.), Springer-Verlag (1989).
L. Tucherman, M. A. Casanova and A. L. Furtado - "The CHRIS con-
sultant - a tool for database design and rapid prototyping" - Information
Systems 15:2 (1990).
P. A. S. Veloso and A. L. Furtado - "Fowards simpler and yet complete
formal specifications" - in "Information systems: theoretical and formal
aspects" - A. Semadas, J. Bubenko and A. Olive (eds.) - North-Holland
Pub. Co. (1985) 175-189.
B. L. Webber, "Questions, answers and responses: interacting with
knowledge base systems", in On knowledge base management systems,
M.L. Brodie and J. Mylopoulos (eds.) - Springer (1986).

607

APPENDIX A

EXAMPLE DATABASE / KNOWLEDGE BASE

declaring entity classes and attributes

entity(emp,name).
entity(trainee,name).
entity(dept,dname).
entity(proj,pname).
entity(client,cname).

trainee is a emp.

attribute(emp,sal).
attribute(trainee,level).
attribute(dept,city).
attribute(proj,pending)o
attribute(client,status).

relationship(works, [emp,dept]).
relationship(participates, [emp,proj]).
relationship(sponsors, [client,dept,proj]).

one_to_n (works, emp).

attribute(works,job).
attribute(sponsors,contract).
attribute(sponsors,year).
attribute(participates,task).

domain(name,V,is_string(V),single).
domain(dname,V,is_string(V),single).
domain(pname,V,is_string(V),single).
domain (cname, V, i s_stri ng (V) ,si ngl e).
domain (sal ,V, i s_numb (V) ,single).
domain(level ,V,

V == 'graduate' I V == 'undergraduate',single).
domain(city,V,is_string(V),single).
domain(pending,V,V == true,single).
domain(status,V,is_string(V),single).
domain(job,V,is_string(ll),single).
domain(contract,V,

stconc('c',N,V) & st to at(N,M) & is_int(M),single).
domain(year,V,in_range(V,1988,2888),single).
domain(task,V,is_string(V),multi).

608

declaring data structures

structure(emp, [name,sal,dname,job]).
structure(dept, [dname,city]).
structure(pr, [pname,pending]).
structure(tr, [name,level]).
structure(acc, [name,account]).
structure(part, [name,pname]).
structure(tsk, [name,pname,task]).
structure(cln, [cname,status]).
structure(spon, [cname,dname,pname,year,contract]).

sql_structures([emp,dept]).

mapping between classes and data structures

ext_ent_structure(emp, [works], emp).
ent_structure(trainee, tr).
ent_structure(dept, dept).
ent_structure(proj, pr).
ent_structure(client, cln).

rel_structure(participates, part).
rel_structure(sponsors, spon).

rep_rel_structure(participates, tsk).

defining operations

operation(install, [dname,city]).
added(deptCD, install (D,C)).
added (deptCD\ci ty(C), instal I (D,C)).

operation (propose, [pname]).
added (projCP, propose (P)).
added (projCP\pendi ng (true), propose (P)).

operation(approve, [pname]).
deleted(projr approve(P)).

operation(hire, [name,sal,dname]).
added(empr hire(N,S,D)).
added(empCN\sal(S), hire(N,S,D)).
added(works#[empr hire(N,S,D)).

609

operati on (hi re_t r, [name, sal, dname, 1 evel]).
added(F, hire_tr(N,S,D,L)) <- added(F, hire(N,S,D)).
added (trai neer hire_tr(N,S,D,L)).
added(traineer (L), hire_tr(N,S,D,L)).

operation(raise,[name,increment]).
added(empr raise(N,l)) <-

empr & S := $8 + I .
deleted(empr raise(N,I)) <-

empr

operation(designate, [name,job]).
added(works#[empr162 designate(N,J)).
deleted(works#[empr162 designate(N,K)) <-

works#[empr162

operation(fire, [name]).
deleted (empr fi re (X)).

operation(assign, [name,pname,task]).
precond(assign(N,P,T),

works#[empr162 &
sponsors#[clientr162162

added(participates#[empr162 assign(N,P,T)).
added(participates#[empr162 assign(N,P,T)).

operation(add_task, [name,pname,task]).
added(participates#[empr162 add_task(N,P,T)).

operation(associate, [cname,dname,pname,year,contract]).
added(clientr <- ~clientr
added(clientr <-

~clientr
added(sponsors#[clientr162162

associate(C,D,P,Y,Cn)).
added(sponsors#[clientr162162

associate(C,D,P,Y,Cn)).
added(sponsors#[clientr162162

associate(C,D,P,Y,Cn)).

example of a knowledge-base rule

op('ongoing",prefix,5@).

current(Ig91).

610

ongoing P <-
current(Y) &
sponsors#[clientr162162 &
~projr

APPENDIX B

/* ALGORITHM TO AVOID MISCONSTRUALS * /

query(X, U) <-
U : X & / .

query(X,U) <-
authorized(X) &
X&
nl &
write(sys : X - succeeds) &
log(U : X) &
propagate(X,U).

propagate(X,U) <-
fora11(conditional_clause(U : Y <- B) &

in_conjunction(U : X,B) &
(delax(gb(*)) I true) & addax(gb(nil)) & U : Y,
(gb(C) & inv(C,Cl) & certU(CI,U) &

(certD(Cl,Z) -> (write(sys : Z - fai ls) &
log mis(Z,U));

propagate(Y,U)) & fai l)).

/* cert i f ication test for the deductive database * /

certD([] ,X) <- / & f a i l .
certD([~V!C],X) <- ~V-> (/ & certD(C,X)); X=~V .
certD([V!C],X) <- V-> (/ & certD(C,X)); X*V .

/ * cert i f ication test for the log - an optimization * /

certU([] ,U) <- / .
certU([~V!C],U) <- / & certU(C,U).
certU([V!C],U) <- / & (U:fai led(V)-> (/ & f a i l) ; certU(C,U)).

log_mis(~X,U) <- addax(U:X,log,l) & write (~X - blocked).
log_mis(X,U) <- addax(U:failed(X),log,1) & write (X - blocked).

log(X) <- addax(X,log) & write (X - added).

611

y_(X) <- gb(C) & delax(gb(C)) & addax(gb([X!C])).
n_(X) <- gb(C) & delax(gb(C)) & addax(gb([~X!C])).

authorized (X).

/ * u t i l i t i e s * /

condi t i onal_cl ause (X) <-
ax(*,X).

in_conjunction(X,X) <- ~X : . . ["& ' ! *] & / () .
in_conjunction(X,X & *).
in_conjunction(X,* & R) <- in_conjunction(X,R).

i nv (k, LI) <-i nv (L, [] , L I) .
inv([] ,L ,L)<-cut () .
inv([H!k] ,kL,k l)<- cut() & inv(k, [H!kk] ,L l) .

