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Abstrac t .  Relational database systems are currently the most dominant in 
both centralised and distributed database environments inspite of the many 
limitations of these systems. A fundamental weakness of these systems is that 
the logical structure of the data of their DBs which must be exploited by their 
users is usually buried in the DB schemas, application programs and in the minds 
of designers and programmers. The vast number of casual and inexperienced users 
currently employing these DBs for their day to day applications makes it 
imperative for their logical structure to be made explicit and readily available in 
some easily assimilated form. 

A number of algorithms have been proposed for this reverse modelling activity 
which essentially generate a conceptual model from a given relational DB 
schema. In this paper we make a comparative study of three representative 
previous algorithms and then present a new improved and more general 
algorithm based on these previous attempts. 

1 Introduction 

The current dominance of the relational model in the commercial scene coupled with its 
lack of facilities by which users can easily display and understand the semantics of its 
databases has led to research into ways of converting the schemas (intension) of these 
databases into conceptual schemas using one of the semantic data models, usually the 
Entity-Relationship (ER) model or a semantically richer variant of it. The result of this 
research has been a number of algorithms, each prescribing a set of rules by which the 
implied semantics of a relational schema can be extracted and re-expressed using a semantic 
data model (SDM) where such semantics are made explicit, [DAV88, JOH89, KAL91, 
NAV88]. The input to these algorithms is the relational schema of a database possibly 
enhanced with extra information. The ER-models are heavily used as conceptual models 
since one of their attractive features is their ability to express the contents of a DB in a 
form quite close to a user's perception. Conceptual models such as the ER-model, 
explicitly maintain the relationships of the database and some of these models make 
provisions for querying such relationships in much the same way as one would query the 
data. 
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There are four main sources of the semantics of a given relational DB, namely; the 
database schema; the application programs written for specialised purposes; the explicit 
integrity constraints and users of the designer and application programmer categories. All 
four sources may be relevant for producing the conceptual schema of a relational DB that 
captures its complete semantics. This paper is concerned with the inherent or structural 
semantics of a relational DB and as such only those explicit integrity constraints that are 
also structural constraints will be considered. Our own work, like previous works in this 
area does not make use of the semantics embedded in application programs. 

Logical Model 

key attributes 

1 Conceptual Model 

Fig. 1. Reverse Modelling of A Relational Schema into a Conceptual Model 

A notable problem of relational systems is that they represent relationships only 
implicitly through matching field values in relations and the majority of systems make no 
provision for allowing users to discover such relationships. The vast range and number of 
users now currently employing relational DBs justifies then the need for a reverse 
modelling process whereby the intension of the database can be mapped into a conceptual 
schema which shows its relationships and structure explicitly. This process of reverse 
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modelling is graphically illustrated in Fig. 1, where the logical model shows the tables of a 
relational schema being mapped into a more powerful pictorial representation. The need for 
such reverse modelling or reverse engineering is even greater in a Multidatabase System 
(MBS) [LIT88] environment where users do not only have access to their own local DBs 
but can also access remote independent DBs in a network of interconnected databases. 
Without such a tool in these environments, most users would find it practically 
impossible to exploit the wealth of data available to them. 

Many algorithms have been proposed in the literature for converting relational database 
schemas into conceptual schemas under the ER model or some variant of the ER model 
[DAV88,JOH89,KAL91,NAV88]. While most of these algorithms share a number of 
features in common, we have found three distinct algorithms that together embody the 
essential features of all the previous algorithms but which each adopts a significantly 
different approach from any other algorithm. Each of these algorithms suggests some 
significant concepts to be embodied in a more generic translation algorithm. These are 
Davis and Arora's algorithm [DAV88] which translates both the structure and the explicit 
behaviour of the model, Navathe and Awong's algorithm [NAV88] which classifies the 
relations and attributes and incorporates a preprocessing step for renaming or changing the 
roles of attributes of relations, and Kalman and Johanneson's algorithm [JOH89] which 
also classifies the relations and attributes of the schema but only uses inclusion 
dependencies. 

Most of the previous algorithms acknowledge the tight interaction needed with an 
experienced user (i.e. a user who understands the intended semantics of the DB) to alleviate 
certain semantic ambiquities about the data. Such an experienced user is typically assumed 
to be a specialist in DB design who possesses the relevant knowledge about the present 
DB and has the skills needed to use the algorithm in developing a conceptual model. A 
paramount objective of these algorithms is to automate the process as far as possible. The 
major limitation of these algorithms, however, is their lack of generality which means 
that for certain DB schemas they will miss out some very vital semantics that need to be 
made explicit in the conceptual model. From a detailed study of these algorithms, we have 
identified a number of their limitations, some of which have been studied by Kalman in 
[KAL91]. Then by extracting the important concepts from each of these algorithms and 
introducing some new concepts a new more general and highly automated algorithm has 
been built that alleviates many of these limitations. Our implementation produces a 
graphical output of the conceptual model which shows the relationship between the 
conceptual model obtained and the underlying relational model, thus enabling the user to 
direcOy frame DB queries from knowledge of the conceptual model alone. This linkage is 
an innovation of this algorithm which assists users by improving their perception of the 
DB semantics and its realisation in the relational model. 

In the next section of this paper, we make a detailed comparison of the three main 
algorithms mentioned above highlighting their relevant contributions as well as their 
major limitations. This comparison is based on a number of criteria which we considered 
relevant for such translation algorithms. In Section 3, we briefly introduce the Entity- 
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Category-Relationship(ECR) model which we use to represent the semantic data model at 
the conceptual level. Section 4 considers modelling within the relational context. Sections 
3 and 4 serve to give the reader a better understanding of the reasoning behind the new 
algorithm. Section 5 presents our new algorithm, first through examining the general 
rules that have been extracted from the previous algorithms, then by presenting new 
relevant rules. Section 6 is concerned with its implementation and explores the types of 
interactions needed with the user to extract further semantics.We also discuss the graphical 
output that represents the conceptual model produced by the new algorithm and then 
illustrate the technique adopted in this graphical output to assist the user gain an 
understanding of the connection between this conceptual model and the underlying 
relational schema. In the conclusions, Section 7, we examine the generality of our new 
algorithm, its contribution and present some directions for future work. 

2 A C o m p a r a t i v e  S t u d y  o f  E x i s t i n g  A l g o r i t h m s  

Six main criteria have been used as a basis for our comparison. These are briefly 
introduced in this section. In this comparison process we will denote by Algorithm 1 
Davis and Arora's algorithm, by Algorithm 2 Navathe and Awong's algorithm and by 
Algorithm 3 Kalman and Johanneson's algorithm. 

a).  the equivalence of the models - to what extent is the conceptual model a 
reflection of its relational model? As pointed out in Tsichristis and Lochovsky [TSI82], 
this equivalence can be shown if an inverse mapping can be found for converting the 
conceptual model back to the original relational model. The authors of Algorithm 1 
actually showed in their work, [DAV88], how an inverse mapping could be found for 
mapping from the conceptual model back to the original relational model. An inverse 
mapping can also be easily found for Algorithms 2 and 3. In fact, this equivalence derives 
from the easy mapping of ER models to relational models, thus once a good ER model 
has been derived then the equivalence of these models is ensured[ELM89]. 

b). the inclusion and handling of subtype/supertype semantics-Onemain 
weakness of the relational model is its lack of an explicit means to model semantics of the 
generalisation/specialisation type. There is no generally agreed way of modelling such 
semantics implicitly in relational systems; some designers may choose to simply create 
separate base relations sharing common key attributes for the subtype and supertype, while 
others may employ views to model these semantics. The view approach [RAM89, 
RAM91] seems more attractive since to some albeit, limited extent, it incorporates the 
concept of inheritance which is the essence of subtype/supenype and it limits the degree of 
redundancy. The view approach also helps prevent the familiar 'update anomaly' problems 
[DAT84] which arise when the DB contains duplicates. Algorithm 1 simply ignores the 
possibility of this type of semantics existing in the relational model while algorithms 2 
and 3 introduce steps to extract such semantics from the user. However, they only handle 
the case where such relationships are modelled by having separate base relations with 
common key attributes. 
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c). attribute naming - this is one of the most problematic areas in the translation 
process; the same attribute may be named differently in different relations (synonyms). 
However, a common name may be used to denote entirely different properties(homonyms). 
This is particularly relevant when the attributes are identifiers such as keys (primary, 
candidate or foreign keys). Algorithm 1 assumes unique naming of the attributes as no 
step is introduced to handle synonyms and homonyms. Algorithms 2 introduces a pre- 
processing step for renaming of attributes through querying the user. This can however, be 
a very tedious process. Algorithm 3, by assuming that all inclusion dependencies of the 
schema are given automatically rids itself of any attribute naming problems since 
inclusion dependencies clearly identify the synonyms. This incidentally also caters for 
problems with homonyms since we can simply assume that attributes in different relations 
are different, even if they have the same name, unless explicitly linked through inclusion 
dependencies. The extraction of inclusion dependencies could however, be a very tedious 
task requiring a lot of expertise on the part of the user. 

d). the role of candidate keys - apart from the fact that there can be more than one 
candidate key for a single relation whereas only a single primary key is allowed, candidate 
keys can be, and often are, employed in place of primary keys. Vital schema semantics can 
be borne through candidate keys which could easily be ignored if the translation algorithm 
only used primary keys. Only Algorithms 2 and 3 consider the role of candidate keys but 
as will be shown later, their approach of simply swapping candidate keys with primary 
keys wherever they are used to denote relationdships normally represented with primary 
keys can lead to serious semantic difficulties and to some relationships not being shown. 
Such candidate keys ought to be treated independently of primary keys. 

e). the linkage between the conceptual model and the underlying rela- 
tional model - Where the conceptual model is merely used as an aid to understanding 
the semantics of the underlying relational model, it is important to show this connection 
as users still need to understand the structure of the latter before they can frame relevant 
queries of the DB using its query language. No algorithm to date has considered this 
linkage. Through this linkage, much information can be passed to the users about the 
semantics and the behaviour of the DB model. 

f). the extent to which the behaviour of the relational model is captured 
and made explicit at the conceptual level - this criterion is cited in Davis and 
Arom's algorithm and is concerned with the insertion and update semantics of the 
conceptual model. This is a very significant contribution of Algorithm 1 which attempts 
to turn certain implicit constraints in the logical structure into explicit ones at the 
conceptual level, thus offering the designer, as the authors put it, "an ability to modify its 
behaviour". Their algorithm however, ignores cardinality semantics which constitute a 
significant part of that behaviour. Algorithms 2 and 3 introduce steps to capture cardinality 
constraints from the user but do not attempt to turn implicit constraints into explicit ones 
at the conceptual level. 
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3 T h e  E n t i t y  C a t e g o r y  r e l a t i o n s h i p  m o d e l  ( E C R )  

The Entity-Relationship (ER) model is usually the favoured model for use at the 
conceptual level for the following reasons :- 

- as a semantic data model, it supports rich semantics; 
it is easy to describe and understand the conceptual schema of a DB 
expressed as an ER-model. 

- it allows for both structnral and behavioural semantics to be described; 
- it provides for easy mapping to traditional models; 
- it embodies very few concepts, thus it is easy for the user to leam; 
- it is widely employed for conceptual design being the basis of many CASE tools. 

However, the original ER-model of Chen [CHE76] does not support abstractions of the 
generalisation/specialisation type and as such a variant of it supporting these additional 
semantics is usually adopted. One variant of this model supporting such additional 
semantics is the Entity-Category-Relationship (ECR) model [ELM85]. A category in the 
ECR model is defined as a subset of the union of one or more defining entity sets. If it is 
the subset of one defining entity set then it is a subclass category otherwise it is a 
superclass category. 

Fig. 2 is a picturial representation of an Entity-Category-Relationship model. The ECR 
model like the ER model shows the maximum cardinality (degree) of each relationship; the 
one on the DEPARTMENT entity side of the Employs relationship means that an 
employee can belong to at most one department while the N on the EMPLOYEE entity 
side of the relationship means that a department can have any number of employees up to 
the maximum of N. Existence Dependency constraints are shown by enclosing the weak 
entity set (as it is called) in a double-rectangle on the Entity-Relationship Diagram (ERD), 
with an arrow pointing to this weak entity and a label of either E or ID in the associated 
relationship (which also becomes a weak relationship). An E is placed in the relationship 
box if the weak entity can be identified by the value (s) of its own attributes while an ID 
is used if the weak entity can only be identified by its relationship with the entity on 
which it is dependent. An ID dependency is automatically an existence constraint but an 
existence constraint is not necessarily an ID dependency. It is through existence 
dependencies and cardinality information that the ER and ECR models capture some of the 
behaviour of the DB. 

4 Modelling in Relational Systems 

The single modelling concept of the relational model is the relation which is defined as a 
subset of  the cartesian product of its underlying domains. The relation is used to model 
both entities and relationships, though some relationships may also be modelled using 
foreign keys. The choice of whether to use a separate relation for a relationship (known as 
a relationship relation) or to introduce a foreign key in the related relation is usually 
dependent on the degree (cardinality) of the relationship; one-to-many relationships are 
usually supported by foreign keys while many-to-many relationships are supported 
through relationslu'p relations. Thus to a limited extent, cardinality constraints are captured 
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in the relational model. No generally agreed approach seems to exist for modelling 
subtypes and generalisation hierarchies in a relational model. Separate relations with 
common key attributes may simply be created for both the generic and subtype entities, or 
views could be adopted. The view approach [RAM89,RAM91 ] seems more intuitive since 
it encourages some amount of inheritance and also adheres to one modelling goal of the 
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relational model, namely that of removing redundancies. To ascertain that each relation 
describes either a single entity or a single relationship rather than multiple entities or 
mixtures of entities and relationships, and to remove redundancies, the relations of the 
relational model are usually modelled as third normal form (3NF) relations. 

5 A N e w  C o m p o s i t e  A l g o r i t h m  F o r  M a p p i n g  ex i s t i ng  

R e l a t i o n a l  S c h e m a s  to  E C R  M o d e l s  

No classification of the relations and attributes of the relational schema is needed in our 
algorithm. Consideration of each relation's role is automated. Like previous approaches it 
is assumed that the relational schema is normalised up to 3NF. We will use the sample 
relational schema, in Fig.3, to illustrate the different steps of this algorithm. In this 
schema, relation keys are shown underlined, candidate keys are shown in italics and 
subtype/super-type relationships are represented by using common key attributes. 

Fig. 3. 

pe rso n (ss n, name ,add ress) 
student(stud id,ssn,sname,address) 
undergrad(underarad id.ssn, year of study, sname,address). 
course(number.name,hour) 
Enrollment(cou_nu mber, under_arad id,date) 
Employee(number, ssn,name,salary, building_num,room) 
Employee_project(em[)num.oro ! num.hours_spent) 
Department_project(deotnum.pro!num,buget). 
Job(!ob#,description,salary_range) 
Employee_job(emDnum,jobnum) 
Location(building#.room, Description,Capacity) 
Sample Relational Schema 

Steps of the Algorithm 

Step 1. The Preprocessing Step Renaming of attributes-identifying 
attributes such as keys and candidate keys must be uniquely named throughout the 
relational schema. To achieve this uniqueness of naming all synonyms must be identified 
and changeA to a common name while all homonyms are given new names. Attribute 
names carry some limited semantics which however, is at too high a level to be 
interprctted by a computer. Knowledge of synonyms and homonyms must be supplied by 
the user. Relation names are used to achieve uniqueness in attribute naming throughout the 
schema by prefixing attribute names with relation names. If a relation does not exist for 
the particular attributes in question, as for relations only sharing common parts of their 
key attributes (not the whole key), then the user must be queried to supply a name; for 
example, the relations Employee_project and Department_project of Fig.3, share a 
common attribute represented by the synonyms proj_num in Employe~_project and 
projnum in Department_project. After this step the schema of Fig. 3 is converted to Fig. 
3.1 below. 
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person(ssn,name,address) 
student(student stud id,ssn,sname,address) 
undergrad(student stud id,ssn,year of study, sname,address). 
course(course number, name,hour) 
Enrollment(course number.student stud id,date) 
Employee(employee number.ssn, name,address,salary, 

location_building#, location_room) 
Employee_project(~mDIoyee nu mber.pro!ect#,hours_spent) 
Department_project(deDt#.pro!ect#.bugel). 
Job(!ob#,de scription,salary_range) 
Employee_job(employee number.iob#) 
Location(location buildino#,location room,Description,Capacity) 

Fig. 3.1. Sample Relational Schema After Step 1. 

Step 2. Subtype/Supertype relationship establishment. 
This step is necessary at this early stage of the algorithm so that inferrable relationships 
need not be computed and represented. Where views are employed to capture semantics of 
the subtype/supertype nature, the establishment of the subtype/supertype relationship is 
trivial as this is implicit in the view definitions. An example will make the process more 
apparent. Consider a portion of a DB schema described by the following Prolog facts: 

R1 : student(stud_id,sname,address) 
R2 : undergrad(undergrad id,year_of_study) 
V : undergradview([[undergrad_id,undergrad],[year_of_study, undergrad] 

[shame,st udent],[add ress,stud ent]],[[underg rad_id,stud_id]]) 

Where the Rs stand for relation schemes and theV represents a view with each attribute of 
the view shown together with the relation from which it is derived and the 'where' part of 
the view definition shown as the second argument. We assume suitable routines exist to 
extract the view definitions for subtype to supertype relationships and present them in the 
above format. Our algorithm simply stores information about the subtype/supertype 
relationship from R2 to R 1. The process of identifying subtype/supertype relationships is 
more demanding when these relationships are simply captured through common keys and 
duplicated attributes. In this case, any two or more relations having the same key 
attribute(s) or where the primary key of one matches the candidate key of the other are 
presented to the user for confirmation of any subtypes/supertype relationships. Those 
attributes of the subtype relation that can be inherited from the supertype are deleted. 
During this step the relations Person, Student, Undergrad and Employee of Fig. 3.1 will 
be isolated and presented to the user. These relations will be modified as described above 
and subtype/supertype information stored as shown in Fig 3.2. Notice that candidate key 
attributes are maintained in the subtype entity since the relationship can be represented 
using candidate keys. 



472 

Fig. 

person(ssn,name,address) 
student(student stud i~l,ssn) 
undergrad(student stud id,ssn,year of study) 
Employee(employee number, ssn,salary, location_building#, 

location_room) 
subtype(person ,student) 
subtype(person,employee) 
subtype(student,unde rgrad) 

3.2. Schema after Step 2 showing subtype/supertype relationships and modified 
relations 

Step 3 Isolation of regular entities 
Algorithm 1 gives two rules for isolating regular entities out of relations of the schema. 
No user interaction is needed in this case. The rules are: 

a). relations with a single attribute as their primary key are converted into entities. 
b). relations with more than one attribute making up their key are examined and if 

this key is always used as a whole in other relations, and never used as disjoint 
parts separately in the keys of other relations, or if its attributes are never used 
again (i.e. as a whole or partially) then the corresponding relations are also 
converted to entities. During this step, the relations Person, Student, Undergrad, 
Course, Employee, Job and Location are converted into entities having the same 
attributes and keys as the converted relation. 

In the following steps of the Algorithm we make reference to relation ID to stand for 
either the primary key of a relation or its candidate key. Relationships between entities can 
be represented using primary keys or candidate keys. Apart from the subtype/supertype 
relationship already described above, three other cases exist when candidate keys could play 
the normal role of a primary key : 

i) the candidate key of some relation R1 can occur as part of the primary key of 
another relation R2, where R2 is either a weak entity (see Step 4 below) or a 
relationship relation (step 5). 

ii) the candidate key of a relation, if formed by concatenation of primary keys of 
other relations, would denote a relationship relation between these entities. 

iii) the candidate key of a relation can also occur as a non-key attribute of another 
relation to denote the one-to-many relationship between the former entity 
relation and the latter. 

Algorithms 2 and 3 while ignoring case iii) above suggest that for case i) above, the 
primary key of R1 replaces its candidate key in R2 while for case ii) the candidate key 
should become the new primary key of its relationship. The general problem with both 
suggestions is that the resulting conceptual model could mislead the user into making 
incorrect logical level joins. The specific problem with the second suggestion is that 
making the candidate key the new primary key can lead to certain relationships, represented 
through the old primary key not being found by the algorithm. For example, consider the 
sample of part of a typical relational schema given in Fig.4. 
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Fig 

person(ssn,name). 
employee(ssn,salary). 
student(collegeno,ssn). 
course(courseno,coursename). 
enrollment(collegeno.coursenQ,date) 

4. Part of a typical relational schema 

Following the suggestion of algorithms 2 and 3, the primary key of student becomes 
'ssn' since a subtype/supertype relationship would naturally be confirmed by the user 
between the student and person entity relations. This change will mean that the 
relationship relation 'enrollment' will be wrongly treated as a weak entity dependent on the 
course entity rather than a many-to-many relationship between students and courses. In our 
algorithm, candidate keys are considered independently but in much the same way as keys 
for possible hidden relationships. This means that in the ECRD diagram, the relationship 
key is not restricted to being a concatenation of the Primary keys of its entities but rather 
to being a concatenation of identifiers of its participating entities. We will consequently 
use the name ID to refer to either the Primary key or the Candidate key of a relation. 

Step 4 Isolation of Weak Entities 
This step also derives from algorithm 1 but with some modification to take the subtype/ 
supertype relationships created so far and candidate keys into consideration. The approach 
is to compare the ID of the remaining relations of the relational schema with the ID of the 
entities derived so far. If one or more attributes of a non-relationship relation ID are left 
over, then this relation becomes a weak entity. The attribute(s) left over when the 
relation ID is compared to the entity ID is known as a dangling key and forms the only 
attribute(s) of the weak entity. A relationship is created between the new weak entity and 
the regular entity. The key of this relationship is made up of all the attributes of the 
original relation from which the weak entity derives. Where the entity used for comparison 
is involved in a generalisation hierarchy, then the user must be queried to see at which 
level of the hierarchy the relationship should be introduced and any other entities in the 
hierarchy could be ignored in this comparison. Information about the type of dependence of 
the weak entity on the regular entity as well as on the cardinality of the relationship has to 
be extracted from the user. In Algorithm 1, the cardinality of the relationship is simply 
made to be many-to-many. We argue that this may be too general to convey the specific 
semantics of the relationship. 

From the remaining relations after Step 3 above, the Employee-project relation becomes a 
weak entity since the key of the Employee entity-set is employeenumber and the key of 
the Employee poject relation is (employee_number,project#). The project# is the dangling 
key attribute. A new entity-set Project will be created (after consulation with the user for 
its name) with its only attribute also forming its key. A relationship is created between the 
new weak entity and the entity on which it is dependent. The new Project entity-set will 
give rise to another weak entity from the Department_project relation, named Department 
with its only attributes being the dangling key (dept#,budget). This weak entity will be 
treated in like manner to the previous weak entity-set. 
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Step 5: The Many-to-Many Relationships 
As explained in Section 4 above, many-to-many relations are normally modelled in 
relational systems by creating new relations and concatenating the IDs of the involved 
entities to form the ID of the new relation. Thus in the reverse process, any relation whose 
ID is made up of a concatenation of the IDs of entities that have been derived so far is 
turned into a many-to-many relationship between the involved entities. Again 
subtype/supertype relationships of the entities must be taken into consideration and the 
user queried if necessary to see at which level of the hierarchy the relationship should be 
introduced. The Employee_job relation and the Enrollment relation meet these criteria. 
Thus a many-to-many relationship will be created between their participant entities. In the 
case of the Enrollment relation, the user will need to say whether the relationship is 
between the Entity-sets Student and Course or Undergrad and Course. Owing to the 
possibility of a many-to-one relationship (see step 6) being modelled using a relationship 
relation, the user would have to be queried as to the exact cardinality of the relationship; 
i.e. whether the cardinality is many-to-many or many-to-one. 

Step 6: The Many-to-one Relationships 
By this stage, all the relations of the relational schema would have either been converted 
into regular entities, weak entities and their relationships, or many-to-many relationships. 
Many-to-One relationships are usually modelled in the relational model by including the 
ID of the entity on the One side of the relationship in the set of attributes of the entity on 
the Many side of the relationship. Thus if the ID of an entity that has been derived occurs 
as a non-key attribute in another entity, then a one-to-many relationship is created from the 
former entity to the latter. The exact cardinality of the relationship (i.e. one-to-one or one- 
to-many) can be found by querying the user. Entities involved in a generalisation hierarchy 
must be treated in like manner to the previous two steps. The user must also be queried 
to provide a suitable name for the relationship as well as any possible existence 
dependencies between the entities. A many-to-one relationship will be created, using this 
step, between the entity-sets, Employee and Location. This step completes the algorithm. 
The ECR Diagram derived in this way from the relational schema of Fig 3 is shown in 
Fig. 5. 

6 I m p l e m e n t a t i o n  o f  the  A l g o r i t h m  

All 6 steps of the algorithm described above have been implemented in the Arity/Prolog 
implementation of Prolog on an IBM PC machine [MAR86,ARI87]. This implemen- 
tation of Prolog extends the standard Prolog version with very useful extralogical features 
to improve its performance and to cater for more algorithmic tasks. Amongst these 
features are virtual memory management capabilities and text screen management 
functions useful for implementing graphics. The graphics function was very useful in 
implementing the Entity-Category-Relationship Diagram (ECRD) of the conceptual 
model. 

Step 1 of the algorithm described above requires that knowledge of synonyms and 
homonyms be supplied by theuser. To facilitate this process, the system displays pairs of 
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relations from the relational schema at a time and then asks the user to identify any 
possible synonyms and homonyms. As relation names are unique within a single database 
schema, uniqueness in attribute names is achieved by prefixing the individual attributes 
with the name of the parent relation. This approach appears more practical and easier to 
apply than previous ones which either require unique naming (Algorithm 1) or that all 
inclusion dependencies be stated and the relations and attributes classified. Algorithm 2, 
while recommending such renaming does not show how this can be achieved. 

I 
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Whenever input is required to test if a certain rule can 'fire', the system gives the user the 
choice of asking 'why' such input is needed; in which case the system would display the 
rule for which input is sought and then repeat the question. The rules have been structured 
in an easy-to-read manner and should assist the user gain a better understanding of the 
algorithm's reasoning process as well as the semantics of the DB. Example rules of this 
nature that may require input from the user include : 

- rules that capture cardinality constraints of relationships; 
- rules for capturing dependency constraints of weak entities; 
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- rules for determining at what level of a generalisation hierarchy a 
relationship should be introduced. 

- rules that capture new relationship names. 
The last set of rules involve relationships represented by foreign keys (i.e. keys, or more 
appropriately IDs, of some relations occuring as non-keys of other relations). Queries for 
rules, such as the last set, that capture relationship names, normally present the user with 
some conclusion that the system has drawn, for example, that a many-to-one relationship 
exists between some two entities. The user is given the option in this case to ask for an 
explanation of how this conclusion was arrived at; in which case the domain knowledge 
embodied in the rule for establishing many-to-one relationships from foreign keys is 
shown. The condition parts of this rule would have been instantiated. The system thus, 
exhibits some expert system capabilities. However, as some steps of the algorithm are 
fully automated and do not require input from the user, complete knowledge of how all 
steps of the algorithm are carried out cannot and need not be shown to the u s e r .  

A sub-module of our system is concerned with the graphical output. An Entity- Category 
Relationship Diagram (ECRD) of the model is automatically generated from the structures 
generated by the various steps, of the algorithm. These structures represent entities, 
relationships and relationship constraints. Some labels have been introduced in this ECRD 
to show the user how certain relationships of the conceptual model are represented at the 
logical level, thus assisting the user to make extensional database queries from a 
knowledge of this conceptual model. Where the relationship is represented by a foreign key 
in the relational schema, the label '~" is placed on the line connecting the relationship 
diamond and the entity rectangle (or hexagon) in which the foreign key is placed; otherwise 
it is to be understood that the relationship and its participating entities are modelled at the 
logical level in the same way as at the conceptual level, i.e. by separate relations with the 
same attributes and the same keys. For subtype/supertypes captured at the logical level 
through views, a label V is placed on the line connecting the supertype entity to its 
subtype. 

7 Conclusions 

In this paper, we examined three existing representative algorithms for converting 
relational schemas to conceptual models. Through this comparative study, we identified the 
important contributions of each algorithm as well as its limitations. It became apparent 
that some of the limitations of one algorithm were addressed by another algorithm while 
some still remained to be solved. Thus a new algorithm was developed that integrated the 
important concepts of  these algorithms and introduced new concepts to rectify their 
limitations. This new algorithm is more general and easier to apply than any of its 
predecessors. Its implementation also shows a high degree of automation. While certain 
steps of the algorithm are made transparent to the user in the implementation, users are 
given the choice to see some of the rules that implement other steps in an attempt to give 
them a better understanding of that part of the algorithm and as such make it easier for 
them to provide the algorithm with the correct input. Thus our approach adopts some 
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Expert System techniques useful in explaining parts of the algorithm to the user 
employing it. This should make the algorithm easier to use and available to a wider group 
of DB users. 

Due to designer decisions, the exact al3proach used for modelling particular relationships at 
the logical level can be different. At the conceptual level however, relationships are 
modelled in the same fashion. Thus we found it necessary to augment the conceptual 
model represented by the ERD with new features (labels on arcs) that show how such 
relationships are modelled at the logical level. These new features should make the 
correspondence between the conceptual model and the underlying logical model more 
apparent. Thus, users querying the data of the database are assisted by the conceptual model 
which helps them see relationships and how they are modelled in the relational model. 

One major contribution of our algorithm is in its treatment of subtype/supertype relation- 
ships and candidate keys. Subtype/supertype relationships are created at an early stage in 
the algorithm and any generalisation hierarchies built and maintained for use in later 
stages. As the entities in a subtype/supertype hierarchy have common IDs, when this ID 
is found as an attribute of some other relation(s) (i.e. as a foreign key), the system first 
presents the most generic entity in the hierarchy together with the other entity (the one 
with the foreign key) and asks the user if the relationship exists. If the response to this is 
'yes' ,  then no further entities in the hierarchy will be considered. If the answer is 'no', 
then the entities at the next level of the hierarchy will be considered. In this way redundant 
relationships are not be created. By treating candidate keys in the same way as primary 
keys when creating the relationships of the conceptual model, it became possible to 
identify the relationships embodied by these candidate keys without compromising those 
embodied by primary keys. This leads to a semantically richer conceptual model and one 
from which the logical model can be easily understood by its users; which should lead to 
correct utilisation of its semantics. 

In [KAL91], an implementation followed by a critique of Algorithm 2 was carried out. 
One criticism pointed out in this work is that the algorithm cannot handle multi-level 
dependencies properly, e.g. if a weak entity A depends on another weak entity B which 
depends on a regular entity C, then the algorithm does not show the dependency of A on B 
since an entity can only be ID dependent on a regular entity. As pointed out in Step 4 of 
our algorithm, multilevel dependencies are automatically catered for. However, in the 
current implementation the concept of inheritance is not used; thus for the example above, 
A and B will be shown dependent on C as well as A being dependent on B. The fact that A 
is dependent on C is implicit in its being dependent on B which in turn is dependent on C. 
The modification needed for this is however, not difficult to implement. A's dependency on 
C could simply be deleted. 

A useful future extension of this system would be to investigate how the semantics of the 
DB that are coded in its application programs can be used to aid the mapping process. The 
semantics captured in application programs are typically of two types; namely state 
constraints, e.g. to enforce a subrange constraint on an attribute of a relation defined in the 
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schema as one of the basic types of the DBMS, and transition (behavioural) constraints 
which monitor changes made on the database. Another extension would be to introduce 
steps that can be used to first derive a global schema for a Multidatabase System(MBS) in 
relational form, and then employ the algorithm described in this paper to produce a global 
conceptual schema of the entire information of interest to the user. 

A fundamental limitation of the whole approach to eliciting the semantics of a relational 
database as presented in this paper and previous similar works, is a general lack of 
consideration of the explicit constraints of the database, examples of which are cardinality 
constraints and dependency constraints. Explicit constraints are those constraints that are 
tangential to the data model and serve to augment the structure specification of the 
database. Constraints captured with the structure of the data model are called inherent 
constraints. The relational model is well known for being weak on capturing inherent 
constraints and as such a great deal of the semantics of the database is captured through the 
explicit constraints. No known diagrammatic approach exists for completely capturing all 
types of these explicit constraints. Thus, some other way must be found for making their 
semantics apparent to users. Some of these constraints actually refer to particular instances 
of the database. A simple approach may be to simply output the logic specification of 
these constraints together with the conceptual model and leave it to the user to interpret 
the output. The problem with this is that a significant part of the logical schema (up to 80 
percent) could be made up of the explicit constraints, [DAT84]. 

A further extension of our work is to investigate how these explicit constraints can be 
employed in the Multidatabase environment, (where most difficulties arise regarding the 
semantics of a database; usually the semantics of remote databases), to enhance the user's 
knowledge of the semantics of these databases. These explicit constraints could be used to 
provide intensional answers to certain data related queries whenever the system, from 
knowledge of the explicit constraints, deems that such semantics need to be made clear to 
the user. This idea borrows from the recent research interest in intensional query processing 
in deductive databases [CHO87,IMI87,PIR30,SON90]. Thus a complete conceptual model 
of a database must embody its inherent and explicit constraints as well as other structural 
aspects. 
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