
NelleN: a Framework for Literate Data Modelling

Michel L6onard
Ian Prince

Centre Universitaire d'Informatique
Universit4 de Gen6ve

1207 Gen6ve
Switzerland

leonard@cui.unige.ch
prince@cui.unige.ch

Abstract

The literate data modelling paradigm provides a basis for structuring, justi-
fying, and documenting the data modelling process. The paradigm is based on
deliberation schemas consisting of issues, positions, and arguments. Delibera-
tion schemas provide both a default argumentation space for decision-taking
and a structure for recording the rationale once a decision is taken. An extend-
able dass-based implementation framework, NelleN, provides a foundation for
complementing a CASE-tool data dictionary with deliberation schemas. The
framework consists of algorithm, deliberation schema and deliberation trigger-
ing classes. A subclassing mechanism is used for extending the framework. A
small prototype demonstrates the type of CASE-tool that may be implemented
using the framework.

1 I n t r o d u c t i o n

Traditional information system design methodologies such as DATAID-1 [4], Infor-
mation Engineering [11], and Remora [19] have arisen from the need to manage the
development of increasingly larger and more complex applications. These method-
ologies concentrate on the quality of the information system by promoting a strict
sequence of refinement steps and formalisms and imposing validity rules on the spec-
ifications produced. Productivity of the development process is usually provided
for by CASE tools (IEF [11], for example, supports the Information Engineering
methodology).

A number of assumptions prevail behind most of the current information system
design methodologies. One assumption is that systems are designed from scratch.
Methodologies provide an analysis phase that prescribes an objective examination
of the problem domain but most do not, however, provide methods for integrating
the existing system with the new system to be developed. Instead, most methodolo-
gies concentrate only the creation of the new system. Methodologies also frequently
assume that the requirements of the application domain are stable. This assump-
tion fixes the problem statement at the beginning of the development process and
excludes problem statement redefinition during the development process. Fixing the

240

problem statement at the beginning of the development process assumes that the ap-
plication domain's requirements can actually be described completely and correctly
during the analysis phase. This presumes that complete and correct information is
available during the analysis phase. The most important assumption - - and the
one that results from those previously mentioned - - is the assumption that the de-
velopment process is essentially linear. A linear development process, for example,
prohibits the re-analysis of the application domain once the analysis phase has been
completed. This assumption is reflected by methodologies frequently being based
on the waterfall [14] model of development.

The consequence of the assumptions outlined above is that most methodologies
and their supporting CASE-tool's stress what is produced by the method (the design
products) and neglect how the design products are analyzed, refined and documented
(the design process). This bias has lead to the following shortcomings:

�9 maintenance of the design product is rarely considered as an integral part of
the design process because most methodologies only consider constructing a
new system.

�9 design alternatives may not be easily explored because of the linear approach
to the development process.

�9 undocumented assumptions must be made during the design process, severely
hindering maintenance, because the methodology does not provide for the
decision process.

�9 the design process is hindered by excessively pessimistic computer assistance
because completeness and consistency of the design products is stressed.

�9 CASE-tools provide little support besides facilities for consistency checking,
diagrams and documentation in the form of reports [2].

Design is essentially a complex iterative process that can not be determined a
priori. Yet current information system methodologies and tools - - because of the
assumptions they are based upon - - do not support this complex cognitive process.
The most popular - - and controversial - - process model used for information system
design is the waterfall model. The waterfall model, because it prescribes a linear
process, has come under considerable criticism because in real-world design it is not
practical - - even possible - - to anticipate all design issues during the early phases of
the development process. Other models for the design process have been proposed to
overcome the waterfall model's limitations: the spiral model of Boehm and models
based on prototyping are just two. The focus, however, is still on supporting what
is designed and not on how it is designed.

What are the elements of the design process and how may they be supported by
computer-based tools?

Decision Making Any design process involves making decisions. Decisions may
be rationale but can also be irrational. Decision making involves evaluating
arguments for and against a solution to a problem. Tools can support decision
making by providing solutions and justifications for the designer to confirm or
choose between.

241

Decision Record ing Decisions recording is the documentation of the design pro-
cess. It is a separate activity from decision making. When, for example, a
decision is taken but not recorded the decision becomes an assumption. As-
sumptions, of course, are undesirable because implicit design decisions hinder
maintenance. Documenting the design process with explicit decisions taken
provides an essential record for when the design needs to be modified because
design decisions might have to be reviewed in light of the modifications at
hand. In this respect tools should facilitate documenting the decisions at the
~ime they are made and before the rationale behind them is lost.

Exp lora t ion Exploration is the process of examining alternatives to a design prob-
lem. Design problems are often 'solved' with the first satisficing solution found
because of their sheer complexity [13, p. 36]. What must be stressed here is
that the design process should be concerned with the effectiveness of a solution
and not with its efficiency: the designer should not be concerned with find-
ing the solution but analyzing a range of solutions. Design tools should allow
the designer to backtrack in his, or her, design process and therefore permit
the designer to freely explore alternative solutions to a problem without the
cognitive overhead of remembering a found satisficing solution.

Cons t ruc t i on Construction is act of 'doing' design and progressing from specifica-
tions to solutions. Construction is rarely an argumented activity and therefore
is difficult to record. Design tools can provide the 'building blocks' for a given
design domain.

A r g u m e n t a t i o n Argumentation is the counterpart to construction [12]. Argumen-
tation is the act of deliberating about the state of a design and correcting any
perceived undesirable elements. Tools can provide elements of a design to
analyze by applying rules and heuristics to a design and detecting anomalies.

I t e r a t ion Design is an iterative process between construction and argumentation
(Morch [12] proposes the term reflection in action and Simon [21] the term
generator-test cycle). Both construction and argumentation are interleaved
and tool support should reflect this cyclic nature.

2 The Literate Data Modelling Paradigm

Literate programming is an approach to programming proposed by D.E. Knuth [7,1]
that promotes interleaving, in the same document, both the source code of a program
and a full account of the rationale that went into constructing the program. Literate
programs should be as readable, and interesting, as a piece of literature.

Database modelling is not the same activity as programming but both are design
activities and share common characteristics such as choosing between alternatives,
exploration of possible representations and testing whether the result of the design
activity corresponds (or satisfies) the given requirements.

The literate data modelling paradigm which we present here, as with literate
programming, considers the documentation of the design process (using deliberation
schemas) as important as the results of the process (the design products).

242

In this section we will first present some assumptions and limitations of our ap-
proach. We will briefly justify why an algorithmic approach is not always sufficient.
We will then present deliberation schemas as a structure for the design process, first
through an example, then in more detail.

2.1 A s s u m p t i o n s

We will be making certain assumptions about design products and the design process
and limiting our approach to only certain aspects of both.

First, we will be limiting ourselves to examining only the data analysis and data
modelling phases of the design process, t

We will also be assuming that the modelling process is undertaken using the
relational data model.

We will be assuming that the modelling process is punctuated with remarkable
situations (cas remarquables [9,10]). A remarkable situation reflects a specific state of
the evolving design that necessitates the intervention of an analyst and/or designer.
We will be using the term deliberation to describe this intervention.

2.2 W h y n o t a n a l g o r i t h m i c a p p r o a c h ?

Relational data modelling (or logical data modelling) is usually seen as a task that
can be aided with algorithms - - for example by algorithm that decomposes a scheme
into 3NF. However the algorithmic solution to the decomposition problem is not
without its problems as we will show in the next few paragraphs.

The first is that complete and coherent data is necessary for the algorithms to give
meaningful results. If the analysis phase specifies, for example, that the functional
dependencies a ~ c and ab ~ c hold, then any algorithm will arbitrarily reject
ab ~ c as not being elementary. Likewise, if the functional dependencies a ~ b and
b ---* c are specified then any algorithm will generate a --* c. In the first case the
algorithm retracts a dependency, in the second it asserts a dependency. Checking
for incompleteness and incoherence could be tasks within the analysis phase but we
believe that this is rarely possible or even desirable. We believe it is very difficult for
analysts to acquire all the information necessary before the modelling phase starts.
If the analysis phase is undertaken by separate groups then it is preferable not to try
and reduce the viewpoints to a single one, if in fact the 'reality' is viewed differently.
We believe that the study of the dependencies during the modelling phase reveals
such cases of incompleteness and inconsistency. The designer - - or the algorithm - -
should not arbitrarily decide on correcting any incoherence or inconsistency; instead
the designer should consult with the analysts responsible for the analysis phase for
clarification.

Another problem with the algorithmic approach is that, usually, only one result is
given when in fact a number of equivalent results are possible. This is often true for
algorithms that calculate decompositions that may return only one decomposition
when in fact the are a number possible. The choice of decomposition should also be
under the control of the designer and not arbitrarily chosen by an algorithm.

lwe hope to show, however, that the paradigm could be applied to all phases and elements of
design p r o c e s s

243

Algorithms are frequently simple functions and as such can be viewed as 'black-
boxes' that given data for input will return a result as output. The problem here is
that the designer using such an algorithm is not given any feedback or justification
about the algorithm's result.

A final problem we will mention here is that, for some algorithmic problems, there
exists no solution. For example, it is not always possible for a scheme to satisfy a
lossless join and dependency-preserving BCNF, as we will see in Section 2.3.1.

2 .3 D e l i b e r a t i o n s c h e m a s

The literate data modelling paradigm prescribes using deliberation schemas as a
structuring method for decision-taking and documentation.

Deliberation schemas provide a default argumentation structure about some as-
pect of the evolving design. They are based on Toulmin's work on argument patterns
[23] and the IBIS method for structuring the design process as a conversation [8].

The principle elements of deliberation schemas are issues, positions, and argu-
ments.

Issue Issues provide a focus of concern during the design process. Issues can arise
from reviewing design artifacts with respect to certain criteria, rules, norms or
heuristics. Issues can also be raised by the design process itself; for example,
selecting a position to an issue might cause an issue to be raised.

Posi t ion A position is a candidate response to an issue. Positions will often be
mutually exclusive (but is not necessary).

A r g u m e n t Arguments are justifications that support and/or object to positions.
Arguments establish claims [23] for and against positions. A single argument
can support one position yet object to another.

2.3.1 An example del ibera t ion schema

We will see - - through a simple design scenario - - how the structure of issues, posi-
tions and arguments can help structure the decisions a designer might be confronted
with. Take the following database scheme s that has the functional dependency
city, street --* postalCode defined on it:

Addresses(city, streetpostalCode), for all tuples of Addresses (c s p), city c has
a building with street address s and p is the postal code of for that address in that
city.

The single key for the scheme is (city street) and the scheme is in Boyee-Codd
Normal Form (BCNF) because all the elementary functional dependencies are those
in which a key functionally determines one or more of the attributes.

Now imagine that the functional dependency postalCode --+ city also holds
for Addresses. The set of keys for Addresses becomes (street city) and (street
postalCode). The scheme Addresses is no longer in BCNF because the left-hand-
side of postalCode ~ city is not a key of Addresses. Addresses, however is
in 3NF because city is a prime attribute. Decomposing the scheme into BCNF

~adapted from [24]

244

StreetCodes(street,postalCode) and CityCodes(postalCode//clty) 3 does not pre-
serve dependencies because city, street --* postalCode is not implied by the projected
dependencies.

Position
Issue No. Deoompose

Can 3NF anornolles Addresses into two
be tolerated for the relations: CityC_,o~
relation Addresses? (postalCode / city)

Posit ion Y I s l ~ and StreetCodes Yes, Addresses (street, postalCode)
need not be raises Prescribe a program

decomposed, to validate city,
street -> postalCode

cit~ need to be Argument
associated A new relation is

Argument indopendentb, d the noness~uy to store
AU attribute values assoc~bbn belween associations between

for entitles of streets in a c#y and pestalCode and city. <~ty,
Addresses are their postal-codas ? street -> postalC~e is not

known / ~ , ~ implied by projected
po~on po~lion dependencies

Position Position
~. . ,~ ,~ No, post~x~ do Y,6, p=t~d~ }

-by not need to be need to be ~up~,~-~ /
associated associated _ ~ /

independently of independent# of
A d d r ~ e s A ~

Argument Argument
? ?

Figure 1: An initial deliberation schema

Figure 1 represents an initial deliberation schema for the designer and analyst. 4
Issue, positions and arguments are represented as nodes. The nodes in italics are
those concerning the analyst, those in plain concern the designer. We will first
examine the deliberation concerning the designer.

The designer's issue in this situation is whether the anomalies of 3NF can be
tolerated for the relation Addresses. Two positions respond to the issue: the first
tolerates the anomalies of 3NF and proposes to not decompose Addresses; the second
position proposes decomposing Addresses into a non dependency-preserving BCNF
and prescribing ~ validation method for city, street --+ postalCode. The position
to accept 3NF anomalies is justified by the argument that all attribute values for
entities of Addresses are known. The second position is justified by the argument
that a new relation is necessary to store associations between postalCode and city.

Both arguments, however, are supported by positions that respond to an analysis
issue, and as such the designer must suspend deciding on his/her position until s/he
can get a confirmed position from the analyst on the issue of whether postal-codes
need to be associated independently of addresses.

anon prime at t r ibutes , if the relat ion has any are wri t ten to the right of the double-slash (/ /) ,
if the relat ion accepts more than one key then they are separated by a single-slash (/)

4by analyst we refer to a person (or group of people) tha t are responsible for communicat ing
with end-users about application d o m a ~ requirements and by designer as a person (or group of
people) tha t are responsible for developing computer models and systems respecting specifications
produced by analysts. Analyst and designer could be the same person or group of people

245

The analyst's issue is to elicit from end-uses whether or not postal-codes need to
be associated independently of addresses. The two positions responding to this issue
are simply the positive and negative responses. No formal a priori justifications can
be given for either position (as these would concern the application domain) so the
initial deliberation schema does not propose any default arguments.

Position
Yes. Addresses

need not be
decomoosed.

Argument
All attrbute values

for entities of
Address~ are

known

Position
Issue No. De~ompo~

Can 3NF anomolies Addresses into two
be tolerated for the relations: CityCodes

relation Addresses? (pestalCode / city)

(street, postalOode)
raim PresCribe a p~og ram

to valid,~s city,
street -> postalCode

ue ~
Do postal.codes of ~opor
dt/es need to be Argument

essoa'ated A new relati~ is
independent/y of the necessary to store
assoc/at/on between associations between
streets in a cA~/and postalCnde and city. ~ty,
their pesta/-codes? street -> postalCode ~ not

/ ~ implied by projected
Ix~r Ix~lJon dependencies

Posi~on Position
No. Qe~tal-~odes do Yes, postal-oodes]

not need to be need to he - j associated

Ad#resses

~,,,,~.muppoaed-by associated
independently of

Addresses

Argument ~ o ~
The princple

fun~ionatily of the
dat~ase is to store
postal-codes for

addresses and not
postal-codes for

citim

Argument
None

Figure 2: Deliberation in favour of not associating postal-codes and addresses inde-
pendently

We will see how the deliberation, in this simple example, can go one of two ways.
First, let's imagine that the analysts elicit from the end-users that: The principle
functionality of the database is to store postal-codes for addresses and not postal-codes
for cities. This is clearly support for the position that postal-codes do not need to
be associated independently from addresses and is recorded within the deliberation
schema as a supporting argument for this position. The analyst deliberates in favour
of this position. The designers now has support for the argument in favour of not
decomposing the Addresses relation and may deliberate in favour of this position.
Figure 2 resumes this deliberation. Note the end-user argument and the selected
(underlined) positions.

We can easily imagine a different argument the analysts might elicit from the
end-users: The data given by the Post 03~ce concerns only postal-codes and cities.
This argument supports the position for that postal-codes need to be associated
separately from addresses. Imagine that the analysts deliberates in favour of this

246

position. The designer now has support for the argument in favour of decomposing
the Addresses relation. Figure 3 resumes this deliberation. Note the end-user
argument and the selected (underlined) positions.

Position
Yes. Addresses

need not be
decomposed.

Argument
All attribute values

for entities of
Addresses are

known

Position
Issue No. Decornoose

Can 3NF anomolles Addresses into two
be tolerated for the relations: CitvCodas
relation Addresses? (~ostalCode / citv~

tstreet. ~ostalC~l~l
raise= Prescribe a orooram

street -> costalCode
u e

t~c~t~-by DO pos~a/-codes of =up~rt~-~
clt~es nend to be Argument

associated A new relation is
independen#y of the necessary to store
assoc/a/k~n beh, veen associations between
streets in a c~y and postalCode and city. dty,
their postal-oodes ? street -�9 postalCode is not

/ ~ implied by projected
posen po=Uon dependencies

Posi#on position
No, postal<~es do Yes. oostal-codas R o o m y

ted-by not need to be ~/ed to be ~u
associated

independently of indeeendentlv of
Addr~ ,addresses

Argument ~ u p p o r ~ ~ o o ~ - b ~
None

Argument
The data given by
the Post Office

postal-co<~ and
cities

Figure 3: Deliberation in favour of independently associating postal-codes and ad-
dresses

2.4 A m o d e l f o r d e l i b e r a t i o n s c h e m a s

We will now propose a model for deliberation schemas. We will present their static
aspects first, followed by definitions for their dynamic triggering.

2.4.1 Stat ic aspec t s

Figure 4 illustrates the associations permitted between elements of deliberation
schemas. Issues, positions and arguments are nodes and are associated with la-
beled arcs. A deliberation schema is therefore a directed graph consisting of typed
nodes (issue, position or argument).

We will now examine the properties of each node-type:

I ssue An issue has properties concerning its audience, expression, and resolution.
The aud ience property indicates whether the issue is addressed at analysts or
designers. The express ion property indicates the focus of concern in natural
language, usually in the form of a question. The ar t i fac ts property lists the

247

raises ~lssu suggested-by
e I" --1

position

objected-to-by

Position I" .=l Argument I

objeet~l-to-by

Figure 4: A model for deliberation schemas

set of artifacts the issue is concerned with. They provide the 'evidence' for the
issue. The resolved property is initially given the value 'false' but is set to
'true' (by the analyst or designer) when the issue is considered resolved.

Posi t ion A position has three properties: its expression, whether or not it is selected
and its audience. The expression property is the position expressed in natural
language, usually as an assertion. The selected property indicates whether
the position has been selected and is initially set to false but is set to true by
the analyst or designer when the position in chosen. The audience property
indicates whether the issue is addressed at analysts or designers.

A r g u m e n t An argument has two properties: its expression and its audience. The
expression indicates a justification and the audience indicates whether the
argument is addressed at designers or analysts.

2.4.2 Dynamic aspects

Section 2.4.1 described a structure for storing deliberation schema in a CASE-tool
dictionary. It did not, however, describe how, or when, a deliberation schema could
automatically be created.

A deliberation schema need to be created whenever a certain state of evolving
model reflects the need for designer and/or analyst intervention. This state can be
specified as a condition. Let's call this condition the triggering condition. In the
example presented in Section 2.3.1 the triggering condition would be a relation being
in 3NF yet not decomposable into BCNF.

Normally, the triggering condition would have to be tested each time the evolving
model is changed to ensure that the set of deliberation schemas created would be
up-to-date. To reduce this costly operation a triggering range can define a set of
modelling primitives that necessitate testing the triggering condition. We saw in
Section 2.3.1 how adding a functional dependency could cause a triggering condition
to be satisfied. This primitive would be an element of the deliberation schema's
triggering range.

248

2.5 Advantages of deliberation s c h e m a s

Let's examine some of the advantages of using deliberation schemas during the design
process:

1. All positions to an issue are explicit and the designer (or analyst) is encouraged
to explore all the positions before choosing one over the other.

2. Arguments for choosing between positions are explicit and place the designer
on clear ground for decision-making.

3. ttationale for position selection is clear. By choosing a position the designer
(or analyst) is implicitly accepting its supporting arguments and refuting its
objecting arguments. The decision not to choose a position implicitly means
that its supporting arguments (if any) do not play an important enough role
for its selection and/or its arguments objecting to it are important enough for
its rejection.

4. Separation of responsibilities, since issues regarding analysis and design are
separate. In the example the analyst's task is clear: elicit from the end-users
whether city postal-codes need to be associated independently of addresses.
The designer's issue is quite separate: whether or not to tolerate the Addresses
relation in 3NF. Issues addressed to analysts concern aspects and requirements
of the application domain whereas issues addressed to designers are more tech-
nical in nature and refer to properties of the evolving model. The responsi-
bilities of analysts and designers are clearly distinguished. Designers can not
make short-cuts by accepting a position without justification by analysts (if
the deliberation schema requires it; i.e. a designer argument is supported by a
analyst's position). In this case a deliberation schema can be seen as prompts
for the designer to collaborate with analysts and obtain additional information
from them before proceeding with the design.

5. Issue precedence is inherent in the schema. In the example the issue Do postal-
codes of cities need to be associated independently of the association between
streets in a city and their postal codes? needs to be resolved before the issue
can 3NF be tolerated for Addresses ? since the arguments to the second issue
can not be supported before positions have been taken on the first.

6. Documentation becomes an integral part of the design process. The designers
(and analysts) are facilitated and encouraged to structure their design pro-
cess using the deliberation schemas. Documentation of information systems is
rarely undertaken during the design process itself. Documentation is usually
considered at the end of the process once a stable system is obtained. The
problem with documenting 'after-the-fact' is that most of the rationale be-
hind the decisions and trade-offs taken during the design is not available any
more. Yet good documentation is critical to maintaining a system in response
to changing requirements. Deliberation schemas facilitate documenting during
the process of actually taking design decisions. This allows the design to be
reliably associated with the complete rationale that went into its construction.

249

.

.

Design enrichment can be accommodated. In the example it is specified that
a program must be written to ensure a functional dependency not validated
by the decomposition. This information becomes part of the documentation of
the modelling phase and a requirement for the implementation phase. This is
an important because most design dictionaries do not allow this kind of supple-
mentary information during the design phase. Note that the supplementary
requirement will not only specify that such a program is necessary but will
include the juslification for such a program in terms of the application domain
and modelling constraints.

Common documentation format. Deliberations schemas provide a common
structure for recording rationale of decisions taken during the design process.

3 NelleN: an I m p l e m e n t a t i o n F r a m e w o r k

Most CASE-tools implement a data dictionary that stores the results of the de-
velopment process. We propose augmenting the data dictionary with deliberation
schemas that record the process of reaching those results. Ne[]eN is a framework for
implementing CASE-tools with such an augmented dictionary.

3.1 T h e Nel leN F r a m e w o r k

Implementation frameworks are foundation architectures for building computer ap-
plications. They are based on two principles; the first that a class of programs
can share a core set of code that should not be re-written each time a program of
this class is written, the second that most code particular to a specific application
can be written as subclasses of the core code. One such framework is the MacApp
framework [20] for developing Apple Macintosh applications; another is the Model-
View-Controller (MVC)[6] framework for implementing graphical user-interfaces.

Reflecting these two basic principles, the NelleN framework is divided into two
parts. The first, the NelleN kernel, is a core set of abstract classes that supports
deliberation schemas. The second part of the framework consists of a subelassing
mechanism to extend the framework with concrete classes for specific types of de-
liberation schemas.

The NelleN framework has been implemented in Smalltalk. Smalltalk is an
object-oriented programming language and its subclassing mechanism is ideally
suited for implementing a framework. Smalltalk has already proved an ideal ve-
hicle for the MVC framework - - in fact its programming environment is written as
an extension of the MVC framework. Smalltalk also has the advantage of a large
and stable class library. The extensive collections class hierarchy, for example, is
a valuable aid to implementing modelling algorithms that frequently need sets for
their implementation.

3.1.1 The NelleN kernel

The NelleN kernel provides the general functionality for triggering and storing de-
liberation schemas.

250

The NelleN kernel is a set of Smalltalk class hierarchies. These class hierarchies
are divided into three categories: the algorithm kernel, the deliberation schema
kernel, and the deliberation triggering kernel.

Figure 5 represents the current s t ructure and s tatus of the NelleN kernel. I tems
in a typewriter typeface are classes. All links indicate the subclass relation-
ship. The roots of each partial class hierarchy are par t of the s tandard Smalltalk
implementat ion. 5

No I l eN ke rne l

�9 . , ,

algorithm kernel

Object

Array
Relation

Fd

OrderedCollect ion

/ \
FdSet Decomposition

deliberation schema ke rne l

RootedGraph

Del iberat ions chema

"~.i~'r~iio'~'i;~;;i~'~;i

Model

DeliberationMonitor

Figure 5: The NelleN kernel

T h e a l g o r i t h m k e r n e l

The algorithm kernel is a set of classes that implement the da ta structures necessary
to store the da ta model and calculate its properties. Smalltalk classes are used
to represent modelling entities. For example, the class FdSet is a subclass of the
Smalltalk class OrderedCollection that accepts elements of class Fd. Methods
implement algorithms that can be performed on modelling entities. For example,
the class FdSet provides a method named m i n E l e m e n t a r y C l o s u r e that returns the
minimal elementary closure of a set of functional dependencies.

T h e d e l i b e r a t i o n s c h e m a k e r n e l

We saw in Figure 4 tha t deliberation schemas can be represented by directed graphs.
The basic functionality of deliberation schemas is therefore implemented by an ab-
s t ract class, D e l i b e r a t i o n S c h e m a , a subclass of RootedGraph. Being an abst ract
class, D e l i b e r a t i o n S c h e m a does not provide protocols for creating instances. Con-
crete subclasses of D e l i b e r a t i o n S c h e m a handle this task as we will see in Sec-
tion 3.1.2.

5the RootedGraph class are not a standard part of the Smalltalk hierarchy. We have used the
public domain graph classes developed by Mario Wolczko of the University of Manchester

251

The del ibera t ion t r iggering kernel

The deliberation triggering kernel is roughly based on the Model-View-Controller
mechanism (MVC). The MVC-triad allows the model (or application) to be devel-
oped (and maintained) independently of its interface (a common requirement for
highly interactive applications). Views and controllers in MVC are dependent on
their model. The model itself does not 'know' about the views that are dependent
on it but simply broadcasts messages to them if an aspect of it changes. Views are
updated using this mechanism.

The deliberation triggering mechanism is similar because we want the data model
dictionary and the operations that can be performed on it to be separate from the
triggering of deliberation schemas. The benefit of this approach is that deliberation
schema triggering becomes configurable (any number of deliberation schema 'types'
can be 'installed') just as in the MVC paradigm (any number of arbitrary views can
be displayed, independent of the model).

The deliberation triggering mechanism is achieved by the abstract class Del iber-
ationMonitor. The DeliberationMonitor class is responsible for 'registering' the
instances of its subclasses as dependents of a data model. Subclasses of De l ibe ra t -
ionMonitor are 'paired' with a concrete subclass of class DeliberationSchema (the
class of deliberation schema it raises). Using the Smalltalk update mechanism sub-
classes of Deliberat ion~lonitor are responsible for creating instances of issues to
be stored in the dictionary.

3.1.2 Ex tend ing the NelleN framework: concrete subclasses

The NelleN kernel provides only the general functionality for creating and storing de-
liberation schemas. Deliberation schema types (corresponding to a remarkable situa-
tion type) are implemented by writing two concrete subclasses (somewhat like imple-
menting a view-controller pair in the MVC framework): the first a concrete subclass
of DeliberationSchema, the second a concrete subclass of DeliberationMonitor.
Figure 6 shows where in the framework a deliberation schema pair (underlined in
the figure) are placed. The first implements the structure of the issue, the second
the conditions for creating an instance of that deliberation schema type.

Subclassing DeliberationMonitor

Concrete subclasses of DeliberationMonitor implement the triggering and range
conditions for creating instances of a deliberation schema type.

Two methods need be implemented (the dependency methods are inherited from
DeliberationMonitor) . The first is an instance creation class method that creates
an instance of its class and assigns itself as a dependent of a model. This method
must respect the protocol on: aModel and typically contains only a few lines of code.

The second method is responsible for determining whether a certain state holds
true for the data model and (if so) creating an instance of its 'paired' delibera-
tion schema type. This method must have the selector update:anAspect. This is
a typical Smalltalk keyword selector with the keyword update and the argument
anAspect. This method implements the response necessary during the Smalltalk
update mechanism. If, for example, a functional dependency is added to the data

252

NelleN kernel

algorithm kernel deliberation schema kernel

Object

Array k
Relation

Fd

OrderedCollectlon

Root edGraph

Del iberat ions chema
\

AConcreteDS

"iiiiiiiiiJifJi'I'. '$:'I'iiiiiiiii-$'$$I$'-I:_'Ii-_.
i delWoeration triggering kernel

Model

ii OeliberationMonttorl

F Set Oecompositionli ACooeretoO Moo tor
" . ~ i

Figure 6: Extending the NelleN Framework

model, the method implementing this modelling primitive will contain a line of code
s e l f update:#fdAdded. This means that each dependent (in this case instances
of subclasses of Deliberat ionMonitor) will receive the message update:anAspect
'broadcasted' by the data modelling primitive. The dependent receiving this message
can determine whether it is concerned by this message by testing the :anAspect ar-
gument. If for example, the range of the deliberation schema we want to implement
includes the add f u n c t i o n a l dependency primitive then the update:anAspect
method would test if :anAspect equals the symbol:#fdAdded and then test to see
if its condition holds. The condition is tested by asking the model (in this case the
data model) for its elements. If the condition is found to hold true on the data model
then the method creates the deliberation schema by sending an instance creation
method to its 'paired' class and then sending a message to the model asking for the
deliberation schema to be stored.

Subclassing DeliberationSchema

Subclasses of DeliberationSchema receive instance creation messages from its pai-
red monitor class. They are responsible for creating a deliberation schema graphs
similar to the example in Figure 1.

All the methods for actually constructing the deliberation schema graph, testing,
accessing and displaying the graph are part of the Del• class and
do not need to be re-written for each subclass because of the code inheritance mech-
anism. Subclasses must specify the graph that represents its deliberation schema,
according to the model outlined in Section 4.

3.2 A p r o t o t y p e u s i n g NelleN

We will now briefly present a simple example of the type of modelling tool that can
be built with using the NelleN framework. It does not in any way pretend to be a
complete tool but simply to demonstrate the feasibility of the framework.

253

The example we propose here uses only one simplified concrete deliberation
schema class: one that queries whether a pair of functional dependencies are con-
tradictory or not.

Figure 7 illustrates this prototype. 6 The example shown here displays the
deliberation schema graph slightly differently from the one described in Figure 4.
Here we consider the artifacts and selected properties as graph nodes.

The prototype uses both the MVC framework for its interface and the NelleN
framework for its deliberation schema. Two hundred lines of Smalltalk code were
necessary to build this (admittedly small) example, excluding the frameworks.

iE

I 1SSUE
'hFITII=ACT S /JDoe* p~on, date-> age

Per"son'd=te'>itoe FI orpe~on->ageholdln
pemon-> age' I the appicdion dorndn?"

5

oesiQn Pro~ect
t / 'Selected'

'POSITION V I 'ARGUMENT
Or#/pmon, dare->age ~lrhe age of a person r

holds' I Ineedsto be stored~Atha
Ireferenco to a given date'

'POSITION ~ 'Not Selected"

,Only person -> age hold=" I~ 'ARGUMENT'

'POSITION ~ "ARGUMENT
Both FD$ ice vidis J~l 'Not Selected'

i ,

Figure 7: A example modelling tool using the NelleN Framework

The interface chosen for the prototype is one that is often used in Smalltalk
applications: a browser interface. The browsing window consists of a number of
views, or panes, which we will briefly examine in turn:

v i ew 1: the list of functional dependencies

v iew 2: the list of relations forming the decomposition

v iew 3: the list of issues addressed to the analyst. If an item in the list is se-
lected (like in Figure 7) the partial deliberation schema (corresponding to the
subgraph that concerns the designer) is displayed in the larger view (5)

v iew 4: the list of issues addressed to the designer. If an issue in the list is selected
it is displayed in the larger view (5).

6the windows panes have been numbered for demonstration purposes

254

view 5: this view graphically displays the last selected issue of views (3) and (4).
The layout and display are automatic 7.

4 R e l a t e d W o r k

We will briefly review other research work that is related to our approach.
The research closest to our approach is probably the work of Rolland [18,22,3].

Rolland proposes 'representation-triplets' consisting of a situation, a decision and an
action to guide the designer in his, or her, work. The proposed situations are similar
to deliberation schema triggering conditions because they both indicate a significant
state of the evolving design. A 'decision' corresponds to a choice made by the
designer and can easily be compared with the selecting of a position in our approach.
An 'action' consists of the transformations performed resulting from a decision and
resemble the modelling positions we propose, l~olland, however proposes a fully
fledged CASE-tool (ALECSI) based on an expert system approach, while we propose
an extendable framework for implementing CASE-tools.

Conklin and Begeman have demonstrated with gIBIS [5] the feasibility of an
issue-based tool. gIBIS is a hypertext system for capturing the rationale behind
early design decisions and has proved useful in the domain of CSCW (Computer
Supported Cooperative Work).

Potts and Bruns [16,15] have worked on the importance of documenting the
decision process in software engineering by proposing a generic model of deliberation.
Their model is also based on lZittel's IBIS method.

Finally, lZ~itz, Lusti and Glaubauf [17] have designed and implemented an ITS
(Intelligent Tutoring System) that tutors students on the task of data normaliza-
tion. They propose 'psychologically valid' algorithms for data normalization that
are closer to how designers actually reason about normalization. Their diagnos-
tic model, for when errors are made, is similar to our approach of positions and
arguments responding to issues.

5 C o n c l u s i o n s

We have proposed the literate data modelling paradigm that takes into account the
iterative nature of the data modelling design process. We have argued that it can
structure the complex design process by integrating deliberation and documentation.

We have also presented an extendable implementation framework, N elleN, that
implements the abstract functionality of deliberation schemas. We have shown that
the framework can easily be extended by using a subclassing mechanism. A proto-
type has been presented that uses the framework.

The research we have presented here is on-going. Research efforts currently being
pursued are identifying and classifying the types of deliberation schemas that can
be encountered during the modelling process and extending the Ne]]eN framework

7the grapher classes developed by Mario Wolczko of the University of Manchester perform the
automatic layout and displaying of the graph

255

with them. We are also considering implementing a meta-CASE-tool that would
configure the NelleN framework to a given modelling method.

R e f e r e n c e s

[1] BENTLEY, J. Literate programming. Communications of the A CM 29, 5 (May
1986), 364- 369.

[2] BUBENKO, JR, J. A. Information system methodologies - - a research view. In
Information Systems Design Methodologies: Improving the Practice (Amster-
dam, 1986), T. Olle, It. Sol, and A. Verijn-Stuart, Eds., IFIP, North-Holland,
pp. 289 - 318.

[3] CAUVET, C., PROIX, C., AND ROLLAND, C. ALECSI: an expert system
for requirements engineering. In Advanced Information Systems Engineering,
CAiSE'91 (1991), 1%. Anderson, J. Bubenko, and A. SO lvberg, Eds., vol. 498
of Lecture Notes in Computer Science, Springer-Verlag, pp. 31-49.

[4] CERI, S. Methodology and tools for data base design. In Methodology and
Tools for Data Base Design, S. Ceri, Ed. North-Holland, 1983, pp. 1 - 6.

[5] CONKLIN, J., AND BEGEMAN, M. gIBIS: a hypertext tool for exploratory pol-
icy discussion. ACM Transactions on Office Information Systems 6, 4 (1988),
303 - 331.

[6] GOLDBERG, A. Smalltalk-80: the Interactive Programming Environment.
Addison-Wesley, 1984.

[7] KNUTH, D. E. Literate programming. Computer Journal 27, 2 (May 1984),
9 7 - 111.

[8] KUNZ, W., AND RITTEL, H. Issues as elements of information systems. Work-
ing Paper 131, Institute of Urban and Regional Development, University of
California, 1970.

[9] LI~ONARD, M. Structure des Bases de Donndes. Dunod, 1988.

[10] LEONARD, M. Database Structures. Macmillan, 1992. In press.

[11] MACDONALD, I. Automating the information engineering methodology with
the Information Engineering Facility. In Computerized Assistance During
the Information Systems Life Cycle (1988), T. Olle, A. Verrijn-Stuart, and
L. Bhabuta, Eds., North-Holland, pp. 337 - 373.

[12] MORCH, A. JANUS: Basic concepts and sample dialog. In CIII'91, ACM
Conference on Human Factors in Computing Systems -- Reaching Through
Technology (1991), S. Robertson, G. Olson, and J. Olson, Eds., ACM, pp. 457-
458.

[13] NEWELL, A., AND SIMON, H. Human Problem Solving. Prentice-Hall, 1972.

256

[14] PETERS, L. Advanced Structured Analysis and Design. Prentice-Hall, 1988.

I15] POTTS, C. A generic model for representing design methods. In 11th Interna-
tional Conference on Software Engineering (1989), pp. 217 - 226.

[16] POTTS, C., AND BRUNS, G. Recording the reasons for design decisions. In 10th
International Conference on Software Engineering (1988), Computer Society
Press, pp. 418 - 427.

[17] R.~TZ, T., LUSTI, M., AND GLAUBAUF, M. An intelligent tutoring system
for database normalization. WWZ-discussion papers, Universit~t Basel, WWZ,
1991.

[18] ROLLAND, C., AND PROIX, C. Vers une automisation des processus de con-
ception par les outils. In Autour el ~ l'Enlour de Merise. Les Mgthodes de
Conception en Perspective (1991), CERAM, AFCET, pp. 271 - 286.

[19] ROLLAND, C., AND RICHARD, C. The Remora methodology for systems de-
sign and management. In Information Systems Design Methodologies (1982),
T. Olle, H. Sol, and A. Verijn-Stuart, Eds., North-Holland, pp. 369 - 426.

[20] SCHMUCKER, K. Object-Oriented Programming for the Macintosh. Hayden,
1986.

[21] SIMON, H. The Sciences of the Artificial, 2 ed. MIT Press, 1981.

[22] SOUVEYET, C., AND ROLLAND, C. Correction of conceptual schemas. In
Advanced Information Systems Engineering, CAiSE'90 (1990), B. Steinholtz,
A. Solvberg, and L. Bergman, Eds., Lecture Notes in Computer Science,
Springer-Verlag, pp. 152 - 174.

[23] TOULMIN, S. The Uses of Argument. Cambridge University Press, 1958.

[24] ULLMAN, J. Database Systems, 2 ed. Computer Science Press, 1983.

