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Abstract. SOL is a language for databases with tuples, scts, lists, object-identity and multiple inheritance.
Other features of SOL are: The existence of a generic type which allows the definition of the schema by step-
wisc refinements, and the use of null values to express incomplete information in objects. A uniform way of
coding both mecthods and programs is provided through an algebra for objects . The algebra is uscd both for
querying and updating a SOL database. SOL has been defined and implemented as part of the Esprit-II project
2443 "Stretch”.

1 INTRODUCTION

This paper presents an overview of SOL (Stretch Object-Oriented database Language). The main features of SOL
arc summarized as [ollows:

* The SOL data modcl is a typical object-oricnted data model, with inheritance hicrarchies and object sharing. A
novel feature of the SOL data model is cxistence of a generic type which allows the definition of a SOL
schema by step-wise refinements.

* Null values arc used to express incomplete information {or objects.

* An algebra for objects, called EREMO, is uscd both for coding methods and programs. EREMQ is used both
for expressing SOL queries and updates. In this way, in contrast to other object-oriented database languages, for
example the onc of O2 [Lecluse ct al89], and ORION [Kim89], there is no need to distinguish between the
language for implementing methods (in most cases an imperative language) and the language for expressing non-
procedural queries (in most cases an SQL-like sct-oricnted language). The SOL approach solves the "impedance
mismatch” problem which still exists, despitc all, in many of the proposcd object-oriented database languages
[BCD89], [CDLR89], [Kim89], {OOP88]. The EREMO algcbra respects the encapsulation principle and takes
advantage of inheritance hicrarchics and object identificrs.

SOL has been implemented on top of the ALGRES advanced nested-relational system. ALGRES is a powerful
rapid prototyping platform which offers an  extended nested relational data-model and a language for data
definition and manipulation bascd on an extended algebra for nested relations [Ceri ct al.88], [CCLLZ90].

This paper presents the main features of SOL: The data model in Section 2, and the algebra for objects in
Section 3. Each of the two scctions also includcs a comparison with recent similar proposals. The conclusions
arc reported in scction 4. In Appendix we show a simplified version of an application implemented in SOL in
the context of the STRETCH project.
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2. THE SOL MODEL

The SOL data model is similar to that of IQL [Abitecboul90], [Abitcboul Kancllakis 891, LOGRES [Cacace et al
90], and O [Leclusc ct al. 89], but with some diffcrences as described in subsections 2.2.4 and 2.5.

2.1 OBJECTS, TYPES, VALUES and CLASSES

SOL entitics arc objects and values as in IQL [Abitcboul 90], LOGRES [Cacace et al. 90], and Oy [Lecluse

et al.89]. A SOL cntity has a type. A type cxpression is built starting from elementary types, and using
one of the following type constructors: tuple, scl, multisct (i.c. a sct with duplicales) and list.

Every object is uniquely identificd by an object identificr (oid in the following). To cach oid is associated the
value of the object.
A function v maps cach oid into a value: v:0 -V
where @ is the set of oids andV the sct of all valucs, which will be defined in Section 2.1.2.
The function v dcfines the SOL instance (Scction 2.2.2).
A type in SOL is associated to a class . A class defines the structure of a set of objects with the same type. A
SOL class declaration contains the class name and its type. These concepis arc defined more formally in the rest
of this scction.
2.1.1 Types
SOL clcmentary types, denoted as D, arc:
D = intcger | rcal | string | boolean | text

Let C be the sct of class names, L be the sct of labels uscd to name types, O the sct of oids.
The type constructlors arc:

() tuple
{}: sect

[J: multisct
<> list

A type expression {or simply type) 7T is:
1> @IDICI(Lym,.JLt) it} itd i<t >
where @ denotes the empty type, De D, Ce C and Lie L. A type definition is defincd as L: 7, where Le L.

Each type expression defines a set of values which arc compatible with the defined type as follows:

comp(9D)=0

comp ( integer ) =I

comp (real )=R

comp ( string ) = §

comp (boolean ) = { true, falsc }

comp (text) =T

comp(C)=0

comp ( (L1:%,.....Lgi®) ) = { (V15e..,vg) | vj € comp (37) }
comp ({t})={{vj}IVi>0,vje comp (1)}

comp ([t])={[vi.nj]1IVi>0,n;>0,vje comp (7) }
comp ( <t>) = { wlw is a finitc sequence of clements v;, v; comp(t) }

where I is the sct of integers, R the sct of reals, O the sct of oids, ctc. Note that the value of a multiset
includes the number n; of occurrences of each clement.

A tuple (or sct, multisct, list) constructor allows introducing internal labels into the type definitions; for
instance if we want the wple (t1,17) to be labelled N, we write T = N( t9,12). Such a label is not mandatory
though. This is cxplaincd in the following cxample.
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Example:

The type : (first_name: string,
family_name: string,
age: integer,
date_of_birth: string,
place_of_birth: string)

is cquivalent to:

personal_data : ( first_name: string,
family_name: string,
age: integer,
datc_of_birth: string,
place_of_birth: string )

Example. The following is a class declaration:

class PERSON is
struct (first_namc: string,
family_name: string,
age: integer,
date_of_birth: string,
place_of_birth: string)
end PERSON

An object is created with an explicit operator, new, which takes a class name as parameter and gives as a result
an oid of an object which is included in the class.

Each class has associated the sct of oids of the objects of the class. Such a set is called the class extension (a
morc formal definition of a class extcnsion is given in scction 2.1.5).

Example Wc create an object of class PERSON with the following declaration:
#p=ncw(PERSON)
wherc #p is a label which contains the oid of the newly created object.

We now dcfine a subtyping relationship beiween two types. Subtyping is a feature of the typing discipline
[Cardelli 84] [Balsters,Fokkinga 89].

We speak of subtyping when [Balsters Fokkinga89):

« a partial order exisis on types, and from types ¢ and 7, with 6< T there exists a ("conversion") operation cv g<
¢ that behaves like a function mapping arguments of type ¢ into results of type T .

= an expression ¢ of type o is allowed to occur at a position where somcthing of type 1 is required, provided that
o<t and that the opcration ¢V < ¢ is applied (implicitly) to the valuc of e. We call T the supertype of G, and
o the subtype of 1.

We have extended Cardelli's notion of sybtyping between tuple-types [Cardelli88] to any SOL type, as follows:

We say that 11 is a subtype of 15, denoted 11 < T2, if and only if one of the following conditions holds (sec
also [ Lecluse ct al. 89]):

l-tje D C UPand g =15.

2-71,% € C and struct (1) < struct (t9).

3-tpis (Lt 7y) 1<i<p, 1o is (Lg: T ), 1Sk <q, q<p, Vk I it Li=Ly, T € 1.
4-1yis [1:1' }, Ty is {12'] and tl's 1.

5-tpisfry Lrpis[tg]and 1< 15
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6- 1y is <1:1' >, 19 is <1:2'> and tl's 1:2'.

where struct is a mapping from C to the sct of type cxpressions; struct is induced by v, as explained in the
following (Section 2.3.2).

2.1.2 Values

In classical object-oricnted languages such as Smallialk [Goldberg Robson 831, the value encapsulated in an
object is always an atom or a tuple of other objects. In object-oricnted databasc systems this value is a tuple or a
sct of objects. Following the approach of O [Lecluse ct al. 891, SOL beside objects provides values.

Values arc recursively built starting from domains of clementary types using type constructors, as follows:

1- cach clement of I R, S, T, O, {iruc, falsc} is a value;
2- @ is a value;
3-if vy,...,v are values, k 2 0,

(V1reVie D { V1oV 1 IOVERDsenn(Vg R, < VY,V > are values;
4- unk, dne, open are values.

The sct of all values which can be built in the SOL language is denoted by V.

Example:  Consider the following two classes:

class PERSON is

struct ( first_name: string,
family_name: string,
age: integer,
date_of_birth: string,
place_of_birth: string,
address: ADDRESS )

end PERSON

class ADDRESS is

struct ( city: string,
street: string,
numbcr: integer )

Suppose we have defined two objects of class PERSON and ADDRESS respectively (object identifiers are
written using a #):

#1 : ("John", "Smith", 30, "12-04-60", "London", #2)
#2 : ("Manchester”, "Parker”, 34)

If one does not want lo model ADDRESS as an object, it is possible in SOL to define the class PERSON in a
different way, using a so-called complex attribute, as follows:

class PERSON is
struct ( first_name: string,
family_name: string,
age: integer,
date_of_birth: string,
place_of_birth: string,
address:: (city: string,
Streel: string,
number: integer )
cnd PERSON

Now we have only one object:
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#1: ("John", "Smith", 30, "12-04-60", "London", ("Manchcster”, "Parker”, 34) )

A complex attributc , address in the cxample, has a structured value. Structured values can be used every time
there is no need to define an independent object.

Among the valucs allowed for SOL basic attributes, null valucs arc permitied. We follow the approach proposed
in [Gottlob Zicari88] and define the following types of null values for attributes of basic type: unknown (unk ),
docs not exist (dne ), and open . The semantics of such null values is given in [Gotllob Zicari88]. The domain
of SOL basic types therefore includes null values (scction 2.1.2). Null values are uscd to express incomplete
information for objects [Zicari 90] as the following cxample shows.

Example:  Consider the two class declarations:

class LESSON is

struct ( name: string,
sublessons: < sublesson: LESSON_TREE >,
lesson_text_list: < page: text >,
question_list: < question: QUESTION > )

end LESSON_TREE

Class QUESTION is
struct < ( question: text ,

possiblc_answers: < ( answer: string, score: intcger ) >) >
end QUESTION

and the following objects:

#pl: ("Uscr Interface”, {} , <"This is a lesson on the user interface....">, <#ql#q2> )

#ql: < ("How do you invoke the user interface?”, < ("By clicking the user icon”, unk),
("Using shut-down", 0) > ) , ("How do you rcturn to the main menu?", < ("PF1 key”, unk)>) >

In the example we have :

- object lesson #p1 does not have sublessons (the corresponding value is the empty sct);
- object question #q1 has two unknown scorcs.

2.1.3 Generic type

SOL allows the definition of a class with a generic type [Zicari 90]associated. A generic type corresponds to the
empty type @. The value of an object of Lype generic isnot defined, and is denoted with L. This corresponds to
saying that the value function v is a partial function.A gencric type is useful in defining a SOL schema by
step-wise relincments, as the following cxample shows:

Example We create a class DEAN with type generic:
class DEAN is

struct generic
end DEAN

Objects for such class do not have values (we write v (#oid) 1o denote the value of the object):

#d1 = new(DEAN)
v(@#dl) =L

We can refer to a generic class within another class:
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class UNIVERSITY is
struct (name: string,
dean: DEAN )
end UNIVERSITY

#ul = new(UNIVERSITY)
v (#ul) = ("Polilecnico di Milano", #d1)

Because the generic type docs not have value associated, it respects the inclusion semantics for subtyping. In
particular we have @ <@, and @ <7; [or cach typc in the system. It does not hold ;< @, if 7j @. Therefore,

we can have a gencric class in an inheritance hicrarchy as a subclass of a class with type non generic, but not
vice-versa.

Example:

class PERSON is

struct ( first_name: string,
family_namc: string,
age: integer,
date_of_birth: string,
place_of_birth: string )

end PERSON

class STUDENT inherits PERSON is
struct generic
end STUDENT

When a generic class is updated to a differcnt type T then objects of that class get a default value,
2.1.4 Object sharing

Object sharing is used whenever an attribute A in a class C is of type C; where Cyis an element of C. The
value of the atiribute A is the oid of an object of class Cj. An object may be contained into one or more
objects, as illustrated by the following example.

Example:

In the following declaration each object of class SYSTEM refers to objects of other classes, namely
MATERIAL, CONNECTOR, PROCEDURE and to objccts of the same class SYSTEM.

class SYSTEM is
struct ( name:string,
parté#: intcger,
scrial#: intcger,
date_of_making: string,
T_min: real,
T_max:real,
made_of: { ( material: MATERIAL, quantity: rcal ) },
connccted_to: { ( system: SYSTEM, conncctors: { link: CONNECTOR }) },
brand: string,
modcl: string,
subsystems: { system: SYSTEM },
procedures: { procedure: PROCEDURE ) )
end SYSTEM

2.1.5 Inheritance

The SOL data model is based on the inheritance relationships among classes.The semantics of inheritance is
given using the subtyping rclationship as follows:
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A class hierarchy is a triple (C, struct, £), whereC is the finite sct of class names, struct is a mapping from
C 1o types, and £ is a strict partial ordering on C.

Inheritance (isa relationship) between two classes Cy and Cyp is expressed in the language by adding the
statement Cy inherits Cy. This mcans that cach object of the class Cy also belongs (o the class Cy. Cy is
called a subclass of C;. Converscly Cy is called a superclass of Cy.

An inheritance hicrarchy (C, struct, £) is consistent if for any two classcs C, C' of C, where C' is a subclass of
C, we have struct (C') < struct(C).

For cxample, a consistent inheritance hicrarchy is defined as in the following cxample.
Example:

class PERSON is
struct ( name: string,

salary : integer,

fricnds: {fricnd: PERSON })
end PERSON

class MANAGER inherits PERSON is
struct ( name: string,
salary: integer,
fricnds : { friend: STUDENT })
end MANAGER

class STUDENT inherits PERSON is
struct ( company: string,
role: string,
lessons_attended : < ( Iesson: LESSON, score: integer ) >,
total_score: integer,
additional_info: text )
end STUDENT

Note that inherited attributes from a superclass nced not to be repeated in the subclass (unless the associated type
is differcnt).

So for example, onc could re-write class MANAGER in the following equivalent way:

class MANAGER inherits PERSON is
struct ( fricnds: { {ricnd: STUDENT } )
end MANAGER

At the instance level, we model is-a hicrarchics by inserting the oid's of sub-classes within the oid's of the
superclasses.

The type associated to the class MANAGER is:

1: ( name: slring, salary: integer, friends: {friend: STUDENT })

The type associated 1o the class STUDENT is:

7" ( name:string,
salary: intcger,
friends: { fricnd:PERSON ]},
company: string,
role: string,
lessons_attended < ( lesson: LESSON, score: inicger ) >,
total_score: intcger, additional_info: text )

To each class is associatcd the set of oids of the objects of the class, which is called class extension.
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A class extension can be defined more preciscly as follows[Abiteboul90] :

We definc a function & which maps cach name in C 1o a finite sct of oid's such that C£C' implics n(C) nr(C")
=@ (where C,C'e C). We call the sct t(C) the local extension of the class C. If C is an inheritance hierarchy,
then we define a class extension as the sct

7in(C) : 7ip(O) = V[ R(C) I C'e C, C' <C} (for cach C).

Example:
Consider the class PERSON , its subclass STUDENT, and objects:

#pl, #p2, #p3 of class PERSON
#s1, #s2, #s3, #s4 of class STUDENT

we have:

local extension of PERSON ={i#p1, #p2, #p3 }

cxtension of PERSON ={ #p1, #p2, #p3, #s1, #s2, #53, #s4 )
local extension of STUDENT = { #s1, #s2, #s3, #s4 )
extcnsion of STUDENT = { #s1, #s2, #s3, #s4 }

We assume that STUDENT docs not have subclasses.
2.1.6 Multiple Inheritance

In SOL multiplc inhcritance is allowed, namcly, the possibility of declaring a class as a subclass of two or more
classcs.A special class called OBJECT (sce 2.2.3) is always a common ancestor class for cach class in the
schema. In the language multiple inheritance between a class Cy (with type t3) and two direct superclasses Cq

(with type t1) and Cy (with type 19) is cxpressed as follows: class C3 inherits Cp, Cp
The above is a consistent declaration iff (t3<11) and (13< 19).

In the dcfinition of multiplc inheritance, name conflicts may occur.For solving name conflicts in multiple
inheritance we usc the special keyword from to rename the label of an attribute.

Example:
class PERSON is
struct (name: string,.....)

class FISH is
struct {namec: string,....)

Suppose we define a class MERMAID which inherits from PERSON and FISH. We write:

(i) class MERMAID inherits PERSON, FISH is
struct (name from PERSON.name)

or in alternative, the following are other possible legal definitions :

(ii) class MERMAID inherits PERSON, FISH is
struct (name from FISH.name)

(iii)  class MERMAID inhcrits PERSON, FISH is
struct (p_name from PERSON.name,
{_name from FISH.namc)

Note that in declaration (iii) both attributes labclled name in classes Person andFish are inherited in class
Mermaid by changing their names.
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2.2 SOL DATABASE
A SOL database is composed of a schema and an instance.
2.2.1 SOL Schema

A SOL database is fully described by the v function, defined in Section 2.1, which associates a value to each oid.
Classes are themselves considered as objects, they are defined by the v function as well, as described in Section
2.2.3.

Given an oid o, we will indicatc its valuc as v(o); if the valuc is a tuple, we will use a dot notation v (0).attr
1o denote the valuc of a particular attribute. Note that cach class has its own oid; if o is the oid of a class, v(o)
contains (Scction 2.2) the class name (denoted v(o).namc), its type (v(o).struct), its extension (v(o).ext), and
the associated methods (see Scction 2.2.3).

A SOL schema is a sct of classes related 10 cach other by inheritance rclationships and object sharing. In order
to describe a correct SOL database, the v function must satisfy 2 number of constraints. These constraints can be
divided into schema constraints and instance constraints..

Schema constraints are the following:

1- the inheritance relationship must be a-cyclic;

2- types associated by v to cach Ce C must be correct SOL types, according (o the deflinition of  Section
2.2.1;

3- class methods must have correct types (sec section 2.4);

4-if Cyisa Cy then it must be 10 < 109

5- for any pair of oids (01,02) corresponding to classes, v(0).name # v(op).name;

6- for any class C diffcrent from OBJECT , its type Tc is not T (cfr. Scction 2.2.3).

2.2,2 SOL instance

A SOL instance defines the objects in the sysiem. Objects belongs to classes. There are some constraints on the
SOL instance,

In particular, instance constraints for the function v are the following (we write V(C) for v(0), meaning that o is
the oid of the class C; v(C).cxt to denote the extension of the class C, v(C).struct to denotc the type of the class
Ch

1-if Cy isa Cg, then v(Cq).ext 2 W(Cy).ext;

2-if v(Cyp).ext N v(Colext. # @ , then (Cy isa™ Cg) or (Cyisat Cyp), where isa* is the transitive closure
of the is-a relationship.

3-type compatibility: if 0] € v(Cg).cxt, v(o1) must be in comp(t3), where T3 is a subtype of v(Cp).struct;
4- referential integrity: if C1 occurs in v(Cp).struct, then for any o'e v(Cq).ext, projectioncy (v(0) )e
v(Cq).ext; where projection is the usual rclational projection operator.

- Condition 1. says that the cxtension of a subclass is contained in the cxtension of the supcrclass;

- Condition 2, says that subclasscs of the same class have disjoint extcnsions in the SOL model, unless they
have a common descendant;

- Condition 3. says that the type of an object in a class extension must be subtype of the type of the class;

- Condition 4 defincs object sharing.

2.2.3 Metaclasses

SOL is a reflexive language, i.c. cach information describing the database (usually called meta-information, or
data dictionary) is defined and manipulated within the language. This is obtained with the introduction in the
language of a particular type of classes called meta-classes.

Meta-classcs have been introduced first in object-oricnted languages, such as CLOS[ Clos87], and in the
Smalltatk system [Goldberg Robson 80].

SOL defines eight mctaclasses: OBJECT, CLASS, CLASS_IN _ISA,CLASS SHARED BY,
CONNECTED _CLASS, METHOD, STRUCTURE, SCHEMA. . - -
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The top of every SOL schema is the system class OBJECT with associated type Tq. The class OBJECT s the
superclass of each class in the schema. By definition we have 1; £ T4 , for each type t; defined in the schema.
The type T, cannot be used to build user-defined types; by definition we have comp( T )=V, where V is the set
of all values which can be built in SOL.

In SOL, a class is considered as an object of the special meta-class Class. The value of an object of the class
CLASS is the meta-information corresponding to a class instance , i.c. its name, type, methods (see Section
2.3), the set of classes from which it inherits, its cxtension (Section 2.3.1).

In particular, the correspondence between the oid of a class and its name is bijective. This is exploited in the
EREMO algebra (scction 3.) by using class names instead of oids.

2.2.4 Comparison with related approaches

The SOL data model is rather similar to the data models provided by other object-oricnted database systems such
as IQL [Abiteboul90],09 [Leclusc ct al.89], Encore [ShawZdonik89] to name a few, but with some differcnces.

In particular, the data modcl of IQL allows union and intersection of types while in SOL the equivalent to the
union of types is defined only for the top class OBJECT. No interscction of types is provided. IQL and
LOGRES both dcfine associations beside classes. SOL does not provide associations. In IQL multiple
inheritance is not provided. SOL and LOGRES provide multiple inhcritance. However, LOGRES does not have
an OBJECT class and thercfore constraints multiple inheritance on the existence of a common ancestor class. In
SOL no constraints on multiple inhcritance arc given. Esscntial features of the SOL data model are the gencric
type and the possibility of cxpressing null valucs, both fcatures arc missing in IQL, LOGRES , O and Encore.

Another distinct feature of SOL is the possibility to express the data dictionary in the model through meta-
classes. IQL, LOGRES, O and Encore do not support meta-classes.

2.3 METHODS

In SOL object values arc manipulated only by methods. A method is just a function which has some typing
constraints. A method has a signature which defines the type of its input parameter and the type of the output
paramcter (if any). In SOL, methods are attached to classes and thercfore are part of the schema. The definition of
a method is done in two steps: first the method signature is given, then its body. The name of the class to which
the method is associated can be omitied from the method signature.In such a case, it is implicitly considered
when the signaturc of a method is analyzed.

Example:
class PERSON is

struct (....)
has

method Get_name () — string is
end PERSON
This is equivalcnt to the following signaturc:
Get_name (p:PERSON) — string is

Mcthods arc coded using the EREMO algebra (sce scction 3.). The body of the method is delimited by begin
end:

method body Ger_name () — string is
begin name end

Method can be associated to generic classes as well,
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Example:
class MONUMENT is
struct generic
has
method Number_of_visitors() — intcger
end MONUMENT
method body Number_of_visitors() — integer
{return a default integer)
A class with a generic type may be used in a method signaturc:

Example: mecthod X (m: MONUMENT)

2.3.1 Method inheritance.

Methods arc inherited as well. If a method is associated to a class p, it is inherited by all classes p', such that p’
is a (direct or indircct) subclass of p.

2.3.2 Name conflicts

Multiple inheritance may cause name conflicts for methods.We decided to treat method name conflicts in the
same way as for name of attributes using a from clause (sce scction 2.2.) as the following example shows:

Example:

Consider the following classcs:

Class C is struct (...) has mcthod m ()

Class C1 is struct (...) has method m( )

Class C3 inherits C, C1

There are three possible legal ways to inherit a method m in C3:
(i) C3 has method m() from C.m () ; (C inherits  method m from C).
(ii) C3 has method m() from Cl.m () ; (C inherits method m from CI)
(ii1) C3 has method m1() from C1.m(), m2() from C.m( ) ;

(C inhcrits both methods labelled m from C and C1 by re-defining their names).

2.3.3 Method Overloading (rules for consistency)

SOL allows method overloading. It is therefore possible to re-define a method (with same name) in an is-a
hicrarchy. The re-definition of the method must respect a compatibility rule with respect to its signature.

We use the following rule of subtyping among functional types [Cardclli88]:

¢’ and © are types, ifo’<c and 1<7'then 01 < 6'> 7

Example

The following declarations define a consistent overloading of a method m in an is-a hierarchy :

Class C is struct (...)
has method m(c: C)— (p:C')
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Class C' inherits C is struct( ...)
has mecthod m{ x:C)—(y: C)

SOL methods (and functions sce scction 2.4) use late binding.
Because methods are associated o classes, we have that a class declaration also contains for each class C :

- the sct of methods which can be applicd 1o the objects of the class (this sct contains both mcthods defined
locally in C and inhcrited from the superclasses of C).

2.4 Functions

SOL beside methods allows a set-orientcd manipulation of objects by using functions. Functions are not attached
to classes as methods. They have a signaturc which defines the domain and codomain of the function; domain and
codomain are typed. Objects referred to in a function paramcter can only be accessed by using appropriate
mcthods.

Functions arc polymorphic with respect (o the input parameters; polymorphism is bascd on the notion of weak
subtypying as defined in Scction 3.2.2.

Functions body are written, as for methods using the EREMO algcebra for objects.
Example These are examples of two function declarations:
function Get_system_component ( Systcms: { system: SYSTEM} ) — [ name: string }

function Find_material (materials: {MATERIAL], m_name: string, m_code: siring ) — boolean

2.5 Comparison with related approaches

IQL and its extension do not have covariance for method overloading and do not attach methods to classes. The
latter is equivalent to SOL functions. O attaches methods to classcs. It also imposcs a covariance covariance on
method overloading and specifics only one mcthod when a name conflict in mulliple inheritance occurs.
LOGRES does not have methods. A distinct feature of SOL is the cxistence both of mcthods and functions.
Functions allow thc manipulation of class cxtcnsions, thus allowing a sct-oricnicd manipulation for objects
within the language (sce scction 3).

3. SOL DATA MANIPULATION LANGUAGE

3.1 EREMO: An algebra for objects

In this section we informally introduce the algebra for objects EREMO. EREMO (Extending Relational
Environment for Manipulating Objects) allows the manipulation of objects using a set-oriented algcbraic
approach.

The EREMO algebra respects encapsulation. We use EREMO to write SOL methods, functions and programs.
It is however conceptually possible to usc a non-cncapsulated version of EREMO o write some special type of
applications. In the non-encapsulated version of EREMO, attributes of a class structurc arc secn as particular
mcthods which give the value of the corresponding clement of the structure.

In this paper we only consider the algebra which respects the encapsulation.
In particular, EREMO can be used to:

- write method bodies;

- write function bodics;

- write SOL programs;

- perform object and schema updates [Zicari 91];
- writc querics .



117

3.2 EREMO operators
EREMO consists of a complete set of algebraic operators to handle complex valucs, grouped as follows:

- comparison and membership opcrators
- sct opcrators

- projection

- sclection

- join

- re~structuring operalors

- aggregate operators

- conditional operator

- fixpoint operator

- assignment

Algebraic operators consider oids as a particular type of elementary values for which special operators are defined

Operators can be combined to form an algebraic expression, with the usual meaning.

The use of EREMO algebraic operators makes possiblc to manipulate sct of objects at the time, thus allowing a
more declarative style of programming than in most conventional objcct-oricnicd database systems [Lecluse et
alg89].

3.2.1 Comparison and membership operators

Comparison operators are the following: =, >, 2, <, <, #, for basic and structured values and in for
structured values.There is an overloading in the definition of thesc operators.

Object identity is obtained as equality of oids. The in operator tests the membership of a value to a collection of
values of the corresponding type. >,2,<,<, are used in the case of collection to express set inclusion, with the
appropriate semantics.

3.2.2 Set operators

Sct operators are the following: UNION, DIFFERENCE, INTERSECTION. Their semantics is different in case
of sets ,multiscts, lists. Sct operators exploit a type of polymorphism bascd on the so called weak subtyping
defined as follows:

We say that 11 is a weak subtype of 12 (written T1<< 12) if one of the following conditions holds:

Iyye DuC u@andiy=1.

2-71,77 € C , there exists a T3 such that: Tyis-a 13 ,and 19 is-a 73.

J-tpisLiti) 1sisp,tpis(Lgi 1k ). 1£k<q, q<p, Vk A it Li=Lg, 7§ << 1%.

4-1y is [1:1' L is [':2'] and 11'« 1:2'.

5-11is ['cl' L 1pis [12'] and 1:1'<< 12'.

6- 11 is <11 >, Ty is <1y > and 1y'<< 15

Note that the definition of weak subtyping is similar to that of subtyping except for condition (2). Condition (2)
says that in case of a sct , the operation can be performed between two classes whose type is compatible with
that of a common superclass. The result of such operation is a class with the type of the common superclass.

3.2,3 Projection

Projection is the usual operator. The result of a projection is in general a collection having as attributes the
specified oncs. Projection can be done for attributes which are locally defined in a class, and not indirectly for
inherited attributes (if any).

3.2.4 Selection
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Sclection has the usual meaning.The structure of the result is identical to the structure of the operand.The
predicate of a selection may contain an EXIST operator which returns a true value iff there exists at least one
clement of the collection which satisfics the predicate.

It may also contains an ALL opcrator which returns true iff for each element the predicate is verificd. The
quantification level of the sclect predicate can be nested in case the operand (a collection) contains complex
clements.

Example. "Sclect those students having L5 as next lesson™;

SELECT [ Next_lesson() = L5 ] STUDENT.cxt()

3.2.5 Join operator

Join is a binary operation defined in the usual way on two collections of the same category :set, multiset, list.
3.2.6 Re-structuring operators

They inlude the usual NEST, UNNEST opcrators of the nested relations model.

3.2.7 Aggregate operators

Aggregate operators are applicd to collections and return a value corresponding Lo the specified operation. They
are:

min, max, average, count.
The gencral form of an aggregate operator is:
operation [cxpr]V
where operation belongs to one of the above lists, cxpr is an expression of typc compatible with operation and
V is the operand valuc (a collection).
Example. “Find the average age of a set of persons™

average [ oid.age() ] PERSON.cxt()

3.2.8 Conditional operator

The conditional operator returns a value depending on the predicates evaluation inside its specification part. The
general form is:

COND [if p; then cxpry
elsif py then expry

elsif p,_q them expry_q
otherwise expry ]

where p; and exprj, i = 1..n, are respectively a predicate and an expression. The list of predicates is evaluaied and

if a predicate is true, then the corresponding expression is returncd as computed value else if none of the
predicates is verificd, the last expression (corresponding 1o otherwise) is the result. The otherwise branch can
be omiticd. In this case, the result is the unknown values when all predicates are false.

3.2.9 Fixpoint operator
The unary fixpoint operator allows the definition of recursive algebraic cxpressions.
We show the usc of this opcrator o compuic the classical "bill_of_maicrial” problem referred to our ITS

cxample.

Example. "Find all components of a sct of systems™:
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FIXPOINT [ subcomponents «—[UNION [ system.subsystems() ],
JOIN [ systcm = oid ]
systcms SYSTEM.ext(),
subcomponents <= systems,
UNION systems subcomponents ] systems

3.2.10 Assignment operator
The assignment opcrator associates the result of an expression to a value in the following form:
V ¢ expr

where V is the name of a value while expr is a generic algebraic expression. If the value has been declared with a
structure definition, the type of expr must be compatible with the onc of V, otherwise the structure of V is
automatically inlerred by the one of expr. As a particular case, if expr returns an object of type class C then V
contains the oid of the object. A value V can be assigned many times. This implics that, in case of oids, the
association between V and the oid can change.

3.3 SOL Programs
A SOL program consists of three separate units:

- A schema unit:
- An implcmentation unit
- A query/updalc unit

The schema unit contains the declarations of the schema, i.c. the definitions of the structure of the classes, and
the signature of the methods associated to classes and of functions.

The unit is composed of two subsections: onc for classes and one for functions.

Schema <Schema_name> is
Class scction:
<class definitions>

Function section:
<function definition>

<class definition> : = <class structure>, { <method signaturc>)

<function definition> : = <[unction signaturc>

The implementation unit coumtains the body (implemcntation) of all methods and functions in the schema. It is
composed of two scctions:A class section, which indicatcs for each class its associated methods, and a function
scction. The signature of both methods and functions is also repeated here together with their implementation,
The body of both methods and functions is written using EREMO algebraic expressions.

Schema <Schema_name> body is
Class section:

<methods body>
Function section:

<functions body>

<method body> := <method signature>, <method code>

<function body> := <function signature> , <function code>

The queylupdate unit corresponds to a set of SOL statements. A SOL statement is an invocation of a method or
is an EREMO algcbraic expression. A method call may contain as a parameter another method call. In SOL there

is no .distinction between the language for the implementation of methods (functions) and the language for
querying and updating of the databasc . The unilying language is provided by the EREMO algcbra,
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The following is an example of a query unit .
Example:
Query unit is:

def value ScniorStudent is
{ (student:STUDENT,
name: string,
age: integer )}

ScniorStudent <- PROJECT [name( ), age( )] sclf
IN (Student.older(21)) and (Student.given_cxams("Soltware Engincering™)

DISPLAY [] SeniorStudent

The result of an EREMO cxpression can be associated to an identifier (section 3.3.10). This creates a temporary
value. (ScniorStudent in the example). Differently from classes, valucs are not encapsulated, they arc used for
storing results of SOL computation and relationships between objects.

Examples of SOL programs are described in [Zic91b].
4. CONCLUSIONS

We have presented the SOL object-oriented database programming language. The various features of SOL have
been described by cxamples. The SOL language has been implemented on top of the Algres system. The
implementation of SOL on Algres mcant as a rapid prototype gave us uscful insight into the SOL features and
provided an important validation to some of the language design decisions. SOL now constitutes one of two
languages which compose the multi-paradigm language interface [Zicari Ceri Tanca 91] implemented on top of
ALGRES, being the other onc a rule-based databasc programming language called LOGRES [Cacace ct al 90].
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APPENDIX SOL ITS Application

We describe a simplified version of an application developed and implemented in SOL within the ESPRIT-II project
STRETCH .

A.l Intelligent Training System : description

We consider a subset of the STRETCH Intelligent Training System (ITS) application which involves managing data-
components of the hydraulic system of an helicopter. The goal of the ITS application was to define an “intelligent”
system which helps a student in learning the various maintenance procedures for specific helicopter components. We
use here a considerable smaller subset of such an application.

The schema of the simplified ITS application consists of ten classes, as reported in figure 1. The SOL schema can be
logically partitioned in two parts: the first one which stores the description of the various components of the hydraulic
sub-system of the helicopter (called technical database in the rest) and the sccond one which stores the structure of the
lessons and the student personal data (called didactic database in the rest). The technical database is composed of six
classes:SYSTEM, MATERIAL, CONNECTOR, PROCEDURE, TROUBLE-SHOOTING, MAINTENANCE. The didactic
database is composed of four classes: LESSON_TREE, PERSON, STUDENT, and QUESTION. (We indicate class names
with capital letters).

OBJECT

SYSTEM MATERI CONNECTOR PERSO LESSON-TREE

PROCEDURE QUESTION

////"\\\\\\\ STUDENT

TROUBLE-SHOOTING ENANCE

Fig. 1 ITB Schema

A.2 ITS SOL DEFINITION

A SOL program is composed of threc units: A schema unit, an Implementation unit, and a Query/Update unit [SOL90].
We present the SOL schema definition for the ITS.

SCHEMA UNIT
We first define the technical database schema.

A class SYSTEM describes the structure of a generic "component” of the hydraulic sub-system. Its associated type is a
tuple with twelve atributes. Each attribute is cither single-valued or multi-valued. (We recall that types in SOL are
either basic types, such as integer, real, or complex types built with the type constructors tuple, set, multiset, and list
denoted (), { }, [ ], < > respectively, and class names). The atiributes of the SYSTEM class are: the system name( name),
a system part number (part# ), a scrial number (serial# ), the date in which the component has been produced
(date_of making ), min. and max. running tcmperatures of the system (¢_min, ¢_max ), the materials which constitute
the system together with their quantity (made_of ), the set of other subsystems (subsystems) which are connected to
the one described through some type of connectors (connected_to), the set of procedures which are associated with the
described system, the brand (brand) and model of the system (model). The attribute made_of is a set of tuple of two
attributes: material of class MATERIAL and quantity. The attribute connected_lo is a set of tuples of two atiributes:
system of class SYSTEM, and connectors which is a set of link, where link is of class CONNECTOR. The attribute
subsysiem is a set of tuples of one attribute: system of class SYSTEM (this is a recursive definition) , and the aitribute
procedures which is a set of tuple of procedure of class PROCEDURE. Classcs MATERIAL, CONNECTOR and
PROCEDURE are in part_of relationships with the class SYSTEM.

The corresponding SOL declaration is as follows:
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Class SYSTEM is
struct ( name: string,
part#: integer,
serial#: integer,
date_of_making: string,
T_min;: real,
T_max: real,
made_of: { (material: MATERIAL, quantity: real) },
connected_to: { ( system:SYSTEM, connectors: { link: CONNECTOR } ) },
brand: string,
model: string,
subsystems: {system: SYSTEM),
procedures: {procedurc: PROCEDURE) )

end SYSTEM

Two functions Get_system_components and Select_by_material arc defined:
function Get_system_components (systems: { system: SYSTEM }) — { name: string }

The function, given a set of systems, computes all its subsystem components .

function Select_by material (systems: { system: SYSTEM )}, name_of_material: swing )  ~>{name: string}

The function, given the set of systems and the name of a specific material, finds the name of the systems which are
made of the indicated material .

A class MATERIAL contains all the different materials which constitute the hydraulic system. It has a tuple type with
three attributes:

Class MATERIAL is

struct ( name: string,
code: string,
manufacter: string)

end MATERIAL

Another function is defined:

function Find_material (materials: (MATERIAL}, name: string, code: siring ) — boolean

This function, given a set of materials and the name and code of a specific material , verifies if the given material is
listed. It returns a boolean.

A class CONNECTOR contains all different types of connectors used 1o link together the subsystems composing the
hydraulic system. It has a tuple type with three attributes. The type of one of the attributes is text, as il is used to store
text.

The various part of the system are associated 1o procedures for their ordinary maintcnance or when a fault is detected.
The class PROCEDURE factors out the common characteristics of a procedure. Classes TROUBLE_SHOOTING and
MAINTENANCE both describes special procedurcs, one invoked when a fault is detected and the other one used for
normal maintenance. TROUBLE_SHOOTING and MAINTENANCE are subclasses of the superclass PROCEDURE and
inherit the attributes and methods of class PROCEDURE.

class CONNECTOR is

struct ( conncclor_code: string,
brand : string,
properties: text)

Class PROCEDURE is
struct ( name: string,
tools: {tool: string},
time_required: real,
ref_manual: text)
has
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method Procedure_time() — real (This method returns the time required to perform a procedure) .
end PROCEDURE

Class TROUBLE_SHOOTING inherits PROCEDURE is
struct { cause: text,

description: text ,

remedy: text)

Class MAINTENANCE inherits PROCEDURE is
struct (case_of_application: text,
description: text )

The didactic database schema is composed of the following classes: Class PERSON factors out the common
characteristics of a person: it has a tuple type with five attributes, all of which are simple. Class STUDENT is a subclass
of PERSON and describes the information associated to an ITS student. It has a tuple type of five attributes. In particular
the attribute “lessons_attended” is a list of tuples, where each tuple contains two attributes: Iesson of type class
LESSON_TREE and score obtained in that lesson. The part_of relationships here is cyclic. Class LESSON_TREE
delines the sel of lessons for the application with a tree-structure. Class LESSON_TREE has four attributes, the name of
the lesson, the set of sublessons composing the lesson, the list of pages containing the text of the lesson, and a
question_list. Each clement of the question_list is of class QUESTION. Class QUESTION is a list of tuples, each of
which has two attributes: a question formulated to the student, and a list of possible answers each one with an
associated score. The SOL declarations are as follows:

Class PERSON is

struct ( first_name: string,
family_name: string,
age: integer,
date_of_birth: string,
place_of _birth: string )

end PERSON

Class STUDENT inherits PERSON is
struct ( company: string,
role: string,
course: LESSON_TREE,
lessons_attended : < (lesson: LESSON_TREE, score: integer) >,
total_score: integer,
additional_info: text )
has

method Assign_total_score (score: integer) (This method assigns a given score to the
attribute fotal_score )

method Last_lesson () --> lesson_name: string (This method returns the name of the last
Iesson attended by the student )

method Next_lesson () --> suring (This is a method which, given a student and the name
of its last lesson attended, computes the next lesson
the student should atiend.)
end STUDENT

Class LESSON_TREE is
struct ( name: string;
sublessons: < sublesson: LESSON_TREE >,
lesson_text_list: < page: text >,
question_list: < question: QUESTION > )

has
Method Lesson_name () --> string (This method returns the name of the lesson ).

end LESSON_TREE
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Class QUESTION is
struct < (question: text,
possible_answers: < (answer: siring, score; integer) >) >

has
Method Average_score ()

(This is an aggregate method which computes the average of the answers given by the student for each question, and
stores the result in the attribute total score of the object of class STUDENT) .

end QUESTION

We now define the body of methods and functions defined in the schema. EREMO s used to code both bodies of
methods and of functions.The same algcbra is also used to code SOL programs, as described later.

A.2.2 IMPLEMENTATION UNIT

function body Get_system_components (systems: {sysiem: SYSTEM})->{name: string}
begin
PROJECT [ system.name() ]
FIXPOINT [ subsys := AGGREGATE [ UNION / system.subsystems() ]
JOIN [ system= oid ]
systems SYSTEM.exu(),
subsys <= systems,
UNION systems subsys ] systems
end

This function computes the classical biil-of-material problem. It uscs a fixpoint operator.

function body
Select_by_material (systems: {system: SYSTEM), name_of_material: string )
— {name: string}

begin

PROJECT | system.name() ]

SELECT [ EXIST [ material.name() = name_of_material ] made_of ] systems
end

function body
Find_materlal (materials: (MATERIAL} , m_name: string, m_code: string )
— boolean

begin EXIST [ m_name = name AND mcode = code ] materials end

method body Procedure_time () — real
begin time_required end

method body Assign_total_score (score: intcger)
begin total_score <- score end

method body Last_lesson () — string
begin LAST (lessons_attended).lesson.Lesson_name() end

method body Next_lesson () — string

begin

COND { if total_score < DISCRIMINATOR then

COND [ if Last_lesson().Child_lesson() = dne then
COND [ if Last_lesson().Father_lesson().Lefi_brother() = dne then
"failure”
otherwise
Last_lesson().Father_lesson().Lefi_brother()
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otherwise
Last_lJesson().Child_lesson() ]
otherwise
COND [ if Last_lesson().Right_brother() = dne then
COND [ if Father_lesson().Right_brother() = dne then
"end of lesson trec”
otherwise
Father_lcsson().Right_brother() ]
otherwise
Last_lesson().Right_brother() ] ]
end

method body Lesson_name () = string
begin name end

method body Average_score ()

begin  Assign_total_score({ AGGREGATE [ average / score ] lessons_attended )} end
SOL PROGRAMS
We report now two examples of SOL programs working on the ITS schema.

Program 1

The following program “check if a given material (name and code) is used in the helicopter. It then find all systems
which use such a material and display them”. The program does the following:

- Declare a tuple value corresponding to name and code of a material

- Read the material instance

- Control if material is included into the extension of class MATERIAL and assign the boolean result to the variable
is_material (whose structure is defined implicitly by the right part of the assignment ) .

- The result of the COND factor depends on the specified predicate. If true (not a material) then the result is the empty
set, else it is the returned value of the Sclect_by_material method.

- Declare a string value corresponding to the name of a system

- Read the instance of the valuc

- Sclect the systems corresponding to the system_name

- Display all the system subcomponents for the found systems

SOL Program 1
value material is ( name: string, code: string )
READ [ material ]
is_material <- Find_material (MATERIAL.cxt(), matcrial.name, material.code)
user_systems <- COND [ if not is_matcrial then ()

otherwise

Sclect_by_material (SYSTEM.ext(), comp.name, comp.code) ]

DISPLAY user_systems
value system_name is string
READ [ systcm_name ]
systems <- Find_systems_by_name(SYSTEM.ext(), system_name)
DISPLAY Get_system_components ( systems )
END SOL Program 1

SOL PROGRAM 2

The following program reads the name of a student, then selects all students with the given name. For each of such
students, it computes the next lesson the student must attend and display it.
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** Declare a string value corresponding to a student name **

value student_name is string

** Read (he instance of the value **

READ [ student_name ]

** Select all students with the specified name and assign the result to a new value **
students <- Find_students_by_name(STUDENT.ext(), student_name)

** Display the last and next lesson for each found student **

DISPLAY PROJECT [ Last_lesson(), Next_Lesson() ] student



