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Abstract. SOL is a language for databases with tuples, sets, lists, object-identity and multiple inheritance. 
Other features of SOL are: The existence of a generic type which allows the definition of the schema by step- 
wise refinements, and the use of null values to express incomplete information in objects. A uniform way of 
coding both methods and programs is provided through an algebra for objects. The algebra is used both for 
querying and updating a SOL database. SOL has been defined and implemented as part of the Esprit-lI project 
2443 "Stretch". 

1 INTRODUCTION 

This paper presents an overview of SOL (Stretch Object-Oriented database Language). The main features of SOL 
am summarized as follows: 

�9 The SOL data model is a typical object-oriented data model, with inheritance hierarchies and object sharing. A 
novel feature of the SOL data model is existence of a generic type which allows the definition of a SOL 
schema by step-wise refinements. 

�9 Null values are used to express incomplete information for objects. 

�9 An algebra for objects, called EREMO, is used both for coding methods and programs. EREMO is used both 
for expressing SOL queries and updates. In this way, in contrast to other object-oriented database languages, for 
example the one of O2 [Lecluse et a189], and ORION [Kim89], there is no need to distinguish between the 
language for implementing methods (in most cases an imperative language) and the language for expressing non- 
procedural queries (in most cases an SQL-like set-oriented language). The SOL approach solves the "impedance 
mismatch" problem which still exists, despite all, in many of the proposed object-oriented database languages 
[BCD89], [CDLR89], [Kim89], [OOP88]. The EREMO algebra respects the encapsulation principle and takes 
advantage of inheritance hierarchies and object identifiers. 

SOL has been implemented on top of the ALGRES advanced nested-relational system. ALGRES is a powerful 
rapid prototyping platform which offers an extended nested relational data-model and a language for data 
definition and manipulation based on an extended algebra for nested relations [Ceri et al.88], [CCLLZ90]. 

This paper presents the main features of SOL: The data model in Section 2, and the algebra for objects in 
Section 3. Each of the two sections also includes a comparison with recent similar proposals. The conclusions 
are reported in section 4. In Appendix we show a simplified version of an application implemented in SOL in 
the context of the STRETCIt project. 
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2. T H E  SOL M O D E L  

The SOL data model is similar to that of IQL [Abiteboul90], [Abiteboul Kanellakis 89], LOGRES [Cacace et al 
90], and 0 2 [Lecluse et al. 89], but with some differences as described in subsections 2.2.4 and 2.5. 

2.1 O B J E C T S ,  T Y P E S ,  V A L U E S  a n d  C L A S S E S  

SOL entities are objects  and values as in IQL [Abiteboul 90], LOGRES [Cacace et al. 90], and 0 2 [Lecluse 
et al.89]. A SOL entity has a type.  A type expression is built starting from e l emen ta ry  types,  and using 
one of the following type cons t ruc tors :  tuple, set, multiset (i.e. a set with duplicates) and list. 

Every object is uniquely identified by an object identifier (old in the following). To each oid is associated the 
value of  the objecL 
A function v maps each oid into a value: v: O ~ V 
where O is the set of oids andV the set of all values, which will be defined in Section 2.1.2. 

The function v defines the SOL instance (Section 2.2.2). 

A type in SOL is associated to a class. A class defines the structure of a set of objects with the same type. A 
SOL class declaration contains the class name and its type. These concepts are defined more formally in the rest 
of this section. 

2.1.1 T y p e s  

SOL elementary types, denoted as D, are: 

D = integer I real I string I boolean I text 

Let C be the set of class names, L be the set of labels used to name types, O the set of oids. 
The type constructors are: 

( ): tuple 
{}: set 
[ ]: multiset 

< >: list 

A type  express ion  (or simply type) x is: 

x---> !~ I D I CI  (LI: 'C ...... Lk:X) I {x} I Ix] I < ' ~ >  

where 13 denotes the empty type, D~D,  C ~ C  and Li~L.  A type definit ion is defined as L: x, where L~L.  

Each type expression defines a set of values which are compatible with the defined type as follows: 

comp ( O ) = 13 
comp ( integer ) =I 
comp ( real ) = R 
comp ( string ) = S 
comp (boolean) = { true, false } 
comp (text)  = T 
comp ( C ) = O 
comp ( (Ll:X ...... Lk:X ) ) = { (Vl,...,Vk) I v i ~ comp (xi) } 
c o m p ( { x } ) = {  {v  i } l V i > 0 , v  i ~  comp(x)}  
comp ( Ix] ) = { [ v i ,n i ] I Vi > 0, n i > 0, v i E comp (x) } 
comp ( <x> ) = { w I w is a finite sequence of elements v i, v i comp(x) } 

where I is the set of integers, R the set of reals, O the set of  oids, etc. Note that the value of a multiset 
includes the number n i of occurrences of  each element. 
A tuple (or set, muitiset, list) constructor allows introducing internal labels into the type definitions; for 
instance if we want the tuple (t 1 ,t2) to be labelled N, we write T = N( t 1 ,t2). Such a label is not mandatory 
though. This is explained in the following example, 
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Example: 

The type : ( f i rs tname:  string, 
family_name: string, 
age: integer, 
date of birth: string, 
place_of__birth: string) 

is equivalent to: 

personal_data : ( first_name: string, 
family_name: string, 
age: integer, 
date of birth: string, 
place_of_birth: string ) 

Example.  The following is a class declaration: 

class PERSON is 
struct (first_name: string, 

family_name: string, 
age: integer, 
date_of_birth: string, 
place_of_birth: string) 

end PERSON 

An object is created with an explicit operator, new, which takes a class name as parameter and gives as a result 
an oid of an object which is included in the class. 

Each class has associated the set of oids of the objects of the class. Such a set is called the class extension (a 
more formal definition of a class extension is given in section 2.1.5). 

Example We create an object of class PERSON with the following declaration: 

#p=new(PERSON) 

where #p is a label which contains the oid of the newly created object. 

We now define a subtyping relationship between two types. Subtyping is a feature of the typing discipline 
[Cardelli 84] [Balsters,Fokkinga 89]. 

We speak of subtyping when [Balsters Fokkinga89]: 

�9 a partial order exists on types, and from types c and x, with o~_ x there exists a ("conversion") operation cu o~ 
x that behaves like a function mapping arguments of type o into results of type x .  

�9 an expression e of type o is allowed to occur at a position where something of type x is required, provided that 
o~ x and that the operation c~ o<  x is applied (implicitly) to the value of e. We call x the supertype of o,  and 
o the subtype of x. 

We have extended Cardelli's notion of sybtyping between tuple-types [Cardeili88] to any SOL type, as follows: 

We say that x 1 is a subtype of x 2, denoted x 1 _< x2, if and only if one of the following conditions holds (see 
also [ Leclase et al. 89]): 

1-x  l e  D u C  u 0 a n d x 2 = ' t  1. 
2- x 1, x 2 e C and struct (Xl) _< struet (x2)" 

3-'c I is (I.,i:xi), 1 < i < p , ' c  2 iS(Lk: "Ok) , 1 < k _< q, q _< p, V k 3 [  i: Li=Lk, Xi < x k. 

4 - x  1 is {Xl } ,x2 i s ' {x2}  andxl -<  x2'- 

5- x 1 is Ix 1' ], x 2 is [x2'] and Xl'_< x2'. 
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6- x 1 is <x 1' >, x 2 is <x2'> and Xl'< x2'. 

where struct is a mapping from C to the set of type expressions; struct is induced by v, as explained in the 
following (Section 2.3.2). 

2.1.2 Values 

In classical object-oriented languages such as Smalltalk [Goldberg Robson 83], the value encapsulated in an 
object is always an atom or a tuple of other objects. In object-oriented database systems this value is a tuple or a 
set of objects. Following the approach of 0 2 [Lecluse et al. 89], SOL beside objects provides values. 

Values are recursively built starting from domains of elementary types using type constructors, as follows: 

1- each element of I, R, S, T, O, {true, false} is a value; 
2- O is a value; 
3- if v 1,...,v k are values, k > 0, 

( v 1 ..... v k ), { v 1 ..... v k }, [( vl ,nl) , . . . , (v k ,nk)], < v 1 ..... v k > are values; 

4- unk, dne, open are values. 

The set of all values which can be built in the SOL language is denoted by V. 

Example:  Consider the following two classes: 

class PERSON is 
struct ( first_name: string, 

family_name: string, 
age: integer, 
date_of_birth: string, 
place of  birth: string, 
address: ADDRESS ) 

end PERSON 

class ADDRESS is 
struct ( city: string, 

street: string, 
number: integer ) 

Suppose we have defined two objects of class PERSON and ADDRESS respectively (object identifiers are 
written using a #): 

#1 : ("John", "Smith", 30, "12-04.60", "London", #2) 

#2 : ("Manchester", "Parker", 34) 

If one does not want to model ADDRESS as an object, it is possible in SOL to define the class PERSON in a 
different way, using a so-called complex attribute, as follows: 

class PERSON is 
struct ( first._name: string, 

family_name: string, 
age: integer, 
date_of_birth: string, 
place_of_birth: string, 

address:: (city: string, 
street: string, 
number: integer ) 

end PERSON 

Now we have only one object: 
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#1 : ("John", "Smith", 30, "12-04-60", "London", ("Manchester", "Parker", 34) ) 

A complex attribute, address in the example, has a structured value. Structured values can be used every time 
there is no need to define an independent object. 

Among the values allowed for SOL basic attributes, null values are permitted. We follow the approach proposed 
in [Gottlob Zicari88] and define the following types of null values for attributes of basic type: unknown (unk), 
does not exist (dne), and open. The semantics of such null values is given in [Gottlob Zicari88]. The domain 
of SOL basic types therefore includes null values (section 2.1.2). Null values are used to express incomplete 
information for objects [Zicari 90] as the following example shows. 

Example: Consider the two class declarations: 

class LESSON is 
struct ( name: string, 

sublessons: < sublesson: LESSONTREE >, 
lesson text list: < page: text >, 
question_list: < question: QUESTION > ) 

end LESSON_TREE 

Class QUESTION is 
struct < ( question: text, 

possible_answers: < ( answer: string, score: integer ) >) > 
end QUESTION 

and the following objects: 

#ph  ("User Interface", { },  <"This is a lesson on the user interface....">, <#ql,#q2> ) 

#ql :  < ("How do you invoke the user interface?", < ("By clicking the user icon", u n k ) ,  
("Using shut-down", 0) > ) , ("How do you return to the main menu?", < ("PF1 key", unk) > ) > 

In the example we have : 

- object lesson #pl does not have sublessons (the corresponding value is the empty set); 
- object question #ql has two unknown scores. 

2.1.3 G e n e r i c  type 

SOL allows the definition of a class with a generic type [Zicari 90]associated. A generic type corresponds to the 
empty type O. The value of an object of type generic isnot defined, and is denoted with _L. This corresponds to 
saying that the value function v is a partial function.A generic type is useful in defining a SOL schema by 
step-wise refinements, as the following example shows: 

Example We create a class DEAN with type generic: 

class DEAN is 
struct generic 

end DEAN 

Objects for such class do not have values (we write v (#oid) to denote the value of the objec0: 

#dl = new(DEAN) 
v (#dl) = .1. 

We can refer to a generic class within another class: 
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class UNIVERSITY is 
struct (name: string, 

dean: DEAN ) 
end UNIVERSITY 

#ul = new(UNIVERSITY) 
v (#ul) = CPolitecnico di Milano", #dl) 

Because the generic type does not have value associated, it respects the inclusion semantics for subtyping. In 
particular we have 0 < 13, and 13 < x i , for each type in the system. It does not hold "q< 13, ifxi~ 13. Therefore, 
we can have a generic class in an inheritance hierarchy as a subclass of a class with type non generic, but not 
vice-versa. 

Example: 

class PERSON is 
struct ( first_name: string, 

family_name: string, 
age: integer, 
dateof._birth: string, 
place of birth: string ) 

end PERSON 

class STUDENT inherits PERSON is 
struct generic 

end STUDENT 

When a generic class is updated to a different type x then objects of that class get a default value. 

2.1.4 Object sharing 

Object sharing is used whenever an attribute A in a class C is of type C 1 ,where CliS an element of C. The 
value of the attribute A is the oid of an object of class C 1. An object may be contained into one or more 
objects, as illustrated by the following example. 

Example: 

In the following declaration each object of class SYSTEM refers to objects of other classes, namely 
MATERIAL, CONNECTOR, PROCEDURE and to objects of the same class SYSTEM. 

class SYSTEM is 
struct ( name:string, 

part#: integer, 
serial#: integer, 
date of making: string, 
T_min: real, 
T_max:real, 
made of: { ( material: MATERIAL, quantity: real ) }, 
connected_to: { ( system: SYSTEM, connectors: { link: CONNECTOR } ) }, 
brand: string, 
model: string, 
subsystems: { system: SYSTEM }, 

procedures: { procedure: PROCEDURE } ) 
end SYSTEM 

2.1.5 Inheritance 

The SOL data model is based on the inheritance relationships among classes.The semantics of inheritance is 
given using the subtyping relationship as follows: 
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A class hierarchy is a triple (C, struct, Z), where/] is the finite set of class names, struct is a mapping from 
C to types, and Z is a strict partial ordering on C. 

Inheritance (isa relationship) between two classes C 1 and C 2 is expressed in the language by adding the 
statement C 1 inherits C 2. This means that each object of the class C 1 also belongs to the class C 2. C 1 is 
called a subclass of C 2. Conversely C 2 is called a superclass of C 1 . 

An inheritance hierarchy (C, struct, /)  is consistent if for any two classes C, C' of C, where C' is a subclass of 
C, we have struct (C') _< struct(C). 

For example, a consistent inheritance hierarchy is defined as in the following example. 

Example: 

class PERSON is 
struct ( name: string, 

salary : integer, 
friends: {friend: PERSON } ) 

end PERSON 

class MANAGER inherits PERSON is 
struct ( name: string, 

salary: integer, 
friends : { friend: STUDENT ~ ) 

end MANAGER 

class STUDENT inherits PERSON is 
struct ( company: string, 

role: string, 
lessons_attended : < ( lesson: LESSON, score: integer ) >, 
totalscore: integer, 
additional_info: text ) 

end STUDENT 

Note that inherited attributes from a superclass need not to be repeated in the subclass (unless the associated type 
is different). 

So for example, one could re-write class MANAGER in the following equivalent way: 

class MANAGER inherits PERSON is 
struct ( friends: { friend: STUDENT } ) 

end MANAGER 

At the instance level, we model is-a hierarchies by inserting the oid's of sub-classes within the oid's of the 
superclasses. 

The type associated to the class MANAGER is: 

x: ( name: string, salary: integer, friends: {friend: STUDENT } ) 

The type associated to the class STUDENT is: 
x': ( name:string, 

salary: integer, 
friends:[ friend:PERSON }, 
company: string, 
role: string, 

lessonsattended < ( lesson: LESSON, score: integer ) >, 
total_seore: integer, additional_info: text ) 

To each class is associated the set of oids of the objects of the class, which is called class extension. 
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A class extension can be defined more precisely as foilows[Abiteboul90] : 

We define a function ~ which maps each name in C to a finite set of oid's such that C~C' implies re(C) nrc(C') 
= 13 (where C,C'E C). We call the set n(C) the local extension of the class C. If C is an inheritance hierarchy, 
then we define a class extension as the set 
~in(C) : ~in(C) = u{  r~(C') 1C'E C, C' -<C} (for each C). 

Example: 

Consider the class PERSON, its subclass STUDENT, and objects: 

#pl, #p2, #p3 of class PERSON 
#sl,  #s2, #s3, #s4 of class STUDENT 

we have: 

local extension of PERSON = {#pl, #p2, #p3 } 
extension of PERSON ={ #pl,  #p2, #p3, #sl,  #s2, #s3, #s4 } 
local extension of STUDENT -- { #sl,  #s2, #s3, #s4 } 
extension of STUDENT = { #sl,  #s2, #s3, #s4 } 

We assume that STUDENT does not have subclasses. 

2.1.6 Multiple Inheritance 

In SOL multiple inheritance is allowed, namely, the possibility of declaring a class as a subclass of two or more 
classes.A special class called OBJECT (see 2.2.3) is always a common ancestor class for each class in the 
schema. In the language multiple inheritance between a class C 3 (with type x3) and two direct superclasses C 1 
(with type Xl) and C 2 (with type x2) is expressed as follows: class C 3 inherits C 1, C 2 
The above is a consistent declaration iff (x3< Xl) and (~3 < x2). 

In the definition of multiple inheritance, name conflicts may occur.For solving name conflicts in multiple 
inheritance we use the special keywordfrom to rename the label of an attribute. 

Example: 
class PERSON is 
struct (name: string ...... ) 

class FISH is 
struct (name: string,....) 

Suppose we define a class MERMAID which inherits from PERSON and FISH. We write: 

(i) class MERMAID inherits PERSON, FISH is 
struct (name from PERSON.name) 

or in alternative, the following are other possible legal definitions : 

(ii) class MERMAID inherits PERSON, FISH is 
struct (name from FISH.name) 

(iii) class MERMAID inherits PERSON, FISH is 
struct ( p n a m e  from PERSON.name, 

f_name from FISH.name) 

Note that in declaration (iii) both attributes labelled name in classes Person andFish are inherited in class 
Mermaid by changing their names. 



113 

2 . 2  SOL DATABASE 

A SOL database is composed of a schema and an instance. 

2.2.1 SOL S c h e m a  

A SOL database is fully described by the v function, defined in Section 2.1, which associates a value to each oid. 
Classes are themselves considered as objects, they are defined by the v function as well, as described in Section 
2.2.3. 
Given an oid o, we will indicate its value as v(o); if the value is a tuple, we will use a dot notation v (o).attr 
to denote the value of a particular attribute. Note that each class has its own oid; if o is the old of a class, v(o) 
contains (Section 2.2) the class name (denoted v(o).name), its type (v(o).struc0, its extension (v(o).ext), and 
the associated methods (see Section 2.2.3). 

A SOL schema is a set of classes related to each other by inheritance relationships and object sharing. In order 
to describe a correct SOL database, the v function must satisfy a number of constraints. These constraints can be 
divided into schema constraints and instance constraints.. 

Schema constraints are the following: 

1- the inheritance relationship must be a-cyclic; 
2- types associated by v to each CE C must be correct SOL types, according to the definition of Section 
2.2.1; 
3- class methods must have correct types (see section 2.4); 
4- if Clisa C 2 then it must be xC1 < xC2; 
5- for any pair of oids (ol,o2) corresponding to classes, V(Ol).name g v(o2).name; 
6- for any class C different from OBJECT, its type xC is not x 0 (cfr. Section 2.2.3). 

2 . 2 . 2  S O L  i n s t a n c e  

A SOL instance defines the objects in the system. Objects belongs to classes. There are some constraints on the 
SOL instance. 
In particular, instance constraints for the function v are the following (we write v(C) for v(o), meaning that o is 
the oid of the class C; v(C).ext to denote the extension of the class C, v(C).struct to denote the type of the c l a s s  
C ): 

1- if C 1 isa C 2, then v(C2).ext ~ v(C1).ext; 

2- if v(C1).ext n v(C2).ext. ~ O ,  then ( C 1 isa + C2) or ( C 2 isa + C1), where isa + is the transitive closure 
of the is-a relationship. 
3-type compatibility: if o 1 ~ v(C2).ext, V(Ol) must be in comp(x3), where x3 is a subtype of v(C2).struct; 
4- referential  integrity: if C1 occurs in v(C2).struct, then for any o'E v(C2).ext, pro jec t ionc1 (v(o ' ))e  
v(C1).ext ; where projection is the usual relational projection operator. 

- Condition 1. says that the extension of a subclass is contained in the extension of the superclass; 
- Condition 2. says that subclasses of the same class have disjoint extensions in the SOL model, unless they 
have a common descendant; 
- Condition 3. says that the type of an object in a class extension must be subtype of the type of the class; 
- Condition 4 defines object sharing. 

2 . 2 . 3  M e t a c l a s s e s  

SOL is a reflexive language, i.e. each information describing the database (usually called meta-information, or 
data dictionary) is defined and manipulated within the language. This is obtained with the introduction in the 
language of a particular type of classes called meta-classes. 
Meta-classes have been introduced first in object-oriented languages, such as CLOS[ C1os87], and in the 
Smalltalk system [Goldberg Robson 80]. 

SOL defines eight metaclasses: O B J E C T ,  C L A S S ,  C L A S S  IN  I S A ,  C L A S S _ S H A R E D _ B Y ,  
CONNECTED_CLASS, METtlOD , STR UCTURE, SCHEMA. 
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The top of every SOL schema is the system class OBJECT with associated type x o. The class OBJECT is the 
superclass of each class in the schema. By definition we have x i _< x o , for each type x i defined in the schema. 
The type x o cannot be used to build user-defined types; by definition we have comp( x o )=V, where V is the set 
of all values which can be built in SOL. 

In SOL, a class is considered as an object of the special meta-class Class. The value of an object of the class 
CLASS is the meta-information corresponding to a class instance, i.e. its name, type, methods (see Section 
2.3), the set of classes from which it inherits, its extension (Section 2.3.1). 

In particular, the correspondence between the oid of a class and its name is bijective. This is exploited in the 
EREMO algebra (section 3.) by using class names instead of oids. 

2.2.4 Comparison with related approaches 

The SOL data model is rather similar to the data models provided by other object-oriented database systems such 
as IQL [Abiteboul90],O 2 [Lecluse et al.89], Encore [ShawZdonik89] to name a few, but with some differences. 

In particular, the data model of IQL allows union and intersection of types while in SOL the equivalent to the 
union of types is defined only for the top class OBJECT. No intersection of types is provided. IQL and 
LOGRES both define associations beside classes. SOL does not provide associations. In IQL multiple 
inheritance is not provided. SOL and LOGRES provide multiple inheritance. However, LOGRES does not have 
an OBJECT class and therefore constraints multiple inheritance on the existence of a common ancestor class. In 
SOL no constraints on multiple inheritance are given. Essential features of the SOL data model are the generic 
type and the possibility of expressing null values, both features are missing in IQL, LOGRES, 0 2 and Encore. 

Another distinct feature of SOL is the possibility to express the data dictionary in the model through meta- 
classes. IQL, LOGRES, 02  and Encore do not support meta-classes. 

2.3 METHODS 

In SOL object values are manipulated only by methods. A method is just a function which has some typing 
conslraints. A method has a signature which defines the type of its input parameter and the type of the output 
parameter (if any). In SOL, methods are attached to classes and therefore are part of the schema. The definition of 
a method is done in two steps: first the method signature is given, then its body. The name of the class to which 
the method is associated can be omitted from the method signature.In such a ease, it is implicitly considered 
when the signature of a method is analyzed. 

Example: 

class PERSON is 
stract (....) 

has 
method Get_name 0 "--> string is 

end PERSON 

This is equivalent to the following signature: 

Getname (p:PERSON) ----> string is 

Methods are coded using the EREMO algebra (see section 3.). The body of the method is delimited by begin 
end: 

method body Getname 0 ---> string is 
begin name end 

Method can be associated to generic classes as well. 
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Example: 

class MONUMENT is 
struct generic 

has 
method Number of visitors0 ---) integer 

end MONUMENT 
method body Number..of_visitors0 ---) integer 
{return a default integer} 

A class with a generic type may be used in a method signature: 

Example:  method X (m: MONUMENT) 

2.3.1 Method inheritance. 

Methods are inherited as well. I f a  method is associated to a class p, it is inherited by all classes p', such that p' 
is a (direct or indirect) subclass ofp.  

2.3.2 Name conflicts 

Multiple inheritance may cause name conflicts for methods.We decided to treat method name conflicts in the 
same way as for name of attributes using a from clause (see section 2.2.) as the following example shows: 

E x a m p l e :  

Consider the following classes: 

Class C is struct (...) has method m ( ) 

Class C1 is struct (...) has method m( ) 

Class C3 inherits C, C1 

There are three possible legal ways to inherit a method m in C3: 

(i) C3 has method m 0  from C.m ( ) ; (C inherits method m from C). 

(ii) C3 has method m 0  from Cl .m ( ) ; (C inherits method m from CI)  

(iii) C3 has method m l 0  from Cl .m0 ,  m20 from C.m( ) ; 

(C inherits both methods labelled m from C and C1 by re-defining their names). 

2.3.3 M e t h o d  O v e r l o a d i n g  ( ru les  for  consistency) 

SOL allows method overloading. It is therefore possible to re-define a method (with same name) in an is-a 
hierarchy. The re-definition of the method must respect a compatibility rule with respect to its signature. 

We use the following rule of subtyping among functional types [Cardclli88]: 

a '  and cr are types, if ~'< cr and x<x' then c---> x < a'--> x' 

Example 

The following declarations define a consistent overloading of a method m in an /s -a  hierarchy : 

Class C is struct (...) 
has method m( c: C )-o (p:C')  
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Class C' inherits C is struct(...) 
has method m( x:C')-->( y: C) 

SOL methods (and functions see section 2.4) use late binding. 

Because methods are associated to classes, we have that a class declaration also contains for each class C : 

- the set of methods which can be applied to the objects of the class (this set contains both methods defined 
locally in C and inherited from the superclasses of C). 

2.4 Funct ions  

SOL beside methods allows a set-oriented manipulation of objects by using functions. Functions are not attached 
to classes as methods. They have a signature which defines the domain and codomain of the function; domain and 
codomain are typed. Objects referred to in a function parameter can only be accessed by using appropriate 
methods. 

Functions are polymorphic with respect to the input parameters; polymorphism is based on the notion of weak 
subtypying as defined in Section 3.2.2. 

Functions body are written, as for methods using the EREMO algebra for objects. 

Example These are examples of two function declarations: 

function Get_system_component ( Systems: { system: SYSTEM} ) ---> { name: string } 

function Find material (materials: {MATERIAL}, m_name: string, m_code: string ) --~ boolean 

2.5 Compar ison with related approaches 

IQL and its extension do not have covariance for method overloading and do not attach methods to classes. The 
latter is equivalent to SOL functions. 02  attaches methods to classes. It also imposes a covariance covariance on 
method overloading and specifies only one method when a name conflict in multiple inheritance occurs. 
LOGRES does not have methods. A distinct feature of SOL is the existence both of methods and functions. 
Functions allow the manipulation of class extensions, thus allowing a set-oriented manipulation for objects 
within the language (see section 3). 

3. SOL DATA MANIPULATION LANGUAGE 

3.1 EREMO: An algebra for objects 

In this section we informally introduce the algebra for objects EREMO. EREMO (Extending Relational 
Environment for Manipulating Objects) allows the manipulation of objects using a set-oriented algebraic 
approach. 

The EREMO algebra respects encapsulation. We use EREMO to write SOL methods, functions and programs. 
It is however conceptually possible to use a non-encapsulated version of EREMO to write some special type of 
applications. In the non-encapsulated version of EREMO, attributes of a class structure are seen as particular 
methods which give the value of the corresponding element of the structure. 

In this paper we only consider the algebra which respects the encapsulation. 

In particular, EREMO can be used to: 

- write method bodies; 
- write function bodies; 
- write SOL programs; 
- perform object and schema updates [Zicari 91]; 
- write queries. 
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3.2 E R E M O  o p e r a t o r s  

EREMO consists of a complete set of algebraic operators to handle complex values, grouped as follows: 

- comparison and membership operators 
- set operators 
- projection 
- selection 
- join 
- re-structuring operators 
- aggregate operators 
- conditional operator 
- fixpeint operator 
- assignment 

Algebraic operators consider oids as a particular type of elemenlary values for which special operators are defined 

Operators can be combined to form an algebraic expression, with the usual meaning. 

The use of EREMO algebraic operators makes possible to manipulate set of objects at the time, thus allowing a 
more declarative style of programming than in most conventional object-oriented database systems [Lecluse et 
al89]. 

3.2.1 C o m p a r i s o n  and m e m b e r s h i p  opera tors  

Comparison operators are the following: =, >, _-2, <, <, r  for basic and structured values and in for  
structured values.There is an overloading in the definition of these operators. 

Object identity is obtained as equality of oids. The in operator tests the membership of a value to a collection of 
values of the corresponding type. >,_>,<,<, are used in the case of collection to express set inclusion, with the 
appropriate semantics. 

3.2.2 Set  o p e r a t o r s  

Set operators are the following: UNION, DIFFERENCE, INTERSECTION. Their semantics is different in case 
of sets ,multisets, lists. Set operators exploit a type of polymorphism based on the so called w e a k  sub typ ing  
defined as follows: 
We say that x l is a weak  subtype of x2 (written xl<< x2) if one of the following conditions holds: 

1 -x  1 ~ D u C t~ f~ and x 2 = x 1. 

2- "c 1, x 2 e C , there exists a x 3 such that: x l i s - a  x 3 , and "c 2 is-a x 3 . 

3 -x  1 is (Li: x i ) ,  1 < i < p , x  2 is (Lk: Xk), 1 <k_<q ,  q < p ,  V k 3 I  i: Li=Lk, X i < < x  k. 

4- x 1 is {x 1' }, x 2 is {x2'} and Xl'<< x2'. 
t t ! 

5- "c 1 is ['c 1 ], x 2 is ['C2'] and x 1 << "c 2 . 
i v , 

6- x l i s < x  1 >, x 2 i s < x 2 ' > a n d x  l < < x  2 .  

Note that the definition of weak subtyping is similar to that of subtyping except for condition (2). Condition (2) 
says that in case of a se t ,  the operation can be performed between two classes whose type is compatible with 
that of a common superclass. The result of such operation is a class with the type of the common superclass. 

3.2.3 P r o j e c t i o n  

Projection is the usual operator. The result of a projection is in general a collection having as attributes the 
specified ones. Projection can be done for attributes which arc locally defined in a class, and not indirectly for 
inherited attributes (if any). 

3.2 .4  S e l e c t i o n  
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Selection has the usual meaning.The structure of the result is identical to the structure of the operand.The 
predicate of a selection may contain an EXIST operator which returns a true value iff there exists at least one 
element of the collection which satisfies the predicate. 
It may also contains an ALL operator which returns true iff for each element the predicate is verified. The 
quantification level of the select predicate can be nested in case the operand (a collection) contains complex 
elements. 

Example. "Select those students having L5 as next lesson": 

SELECT [ Next_.lesson0 = L5 ] STUDENT.ext0 

3.2.5 Join opera to r  

Join is a binary operation defined in the usual way on two collections of the same category :set, multiset, list. 

3.2.6 Re-s t ruc tu r ing  operators 

They inlude the usual NEST, UNNEST operators of the nested relations model. 

3.2.7 Aggregate ope ra to r s  

Aggregate operators are applied to collections and return a value corresponding to the specified operation.They 
a r ~ :  

m i n ,  max ,  average,  count. 

The general form of an aggregate operator is: 

operation [ expr ] V 

where operation belongs to one of the above lists, expr is an expression of type compatible with operation and 
V is the operand value (a collection). 

Example. "Find the average age of a set of persons": 

average [ oid.age0 ] PERSON.ext0 

3.2.8 Conditional operator 

The conditional operator returns a value depending on the predicates evaluation inside its specification part. The 
general form is: 

COND [ i f  Pl then cxpr 1 
elsif P2 then cxpr 2 

. . .  

elsif Pn-1 then  exprn_ 1 
o the rwise  expr n ] 

where Pi and expri, i = 1..n, arc respectively a predicate and an expression. The list of predieates is cvaluated and 
if a predicate is true, then the corresponding expression is returned as computed value else if none of the 
predicates is verified, the last expression (corresponding to otherwise) is the result. The otherwise branch can 
be omitted. In this case, the result is the unknown values when all predicates are false. 

3.2.9 Fixpoint operator 

The unary fixpoint operator allows the definition of recursivc algebraic expressions. 
We show the use of this operator to compute the classical "bill of material" problem referred to our ITS 
example. 

Example. "Find all components of a set of systems": 
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FIXPOINT [ subcomponents ~ [UNION [ system.subsystems0 ], 
J O I N  [ system = oid ] 

systems SYSTEM.ext0, 
subcomponents <= systems, 

UNION systems subcomponents ] systems 

3 . 2 . 1 0  A s s i g n m e n t  o p e r a t o r  

The assignment operator associates the result of an expression to a value in the following form: 

V +- expr 

where V is the name of a value while expr is a generic algebraic expression. If the value has been declared with a 
structure definition, the type of expr must be compatible with the one of V, otherwise the structure of V is 
automatically inferred by the one of expr. As a particular case, if expr returns an object of type class C then V 
contains the oid of the object. A value V can be assigned many times. This implies that, in case of oids, the 
association between V and the oid can change. 

3.3 SOL Programs 

A SOL program consists of three separate units: 

- A schema unit: 
- An implementation unit 
- A query]update unit 

The schema unit contains the declarations of the schema, i.e. the definitions of the structure of the classes, and 
the signature of the methods associated to classes and of functions. 

The unit is composed of two subsections: one for classes and one for functions. 

Schema <Schema_name> is 
Class section: 

<class definitions> 

Function section: 
<function definition> 

<class definition> : = <class structure>, { <method signature>} 

<function definition> : = <function signature> 

The implementation unit contains the body (implementation) of all methods and functions in the schema. It is 
composed of two sections:A class section, which indicates for each class its associated methods, and a function 
section. The signature of both methods and functions is also repeated here together with their implementation. 
The body of both methods and functions is written using EREMO algebraic expressions. 

Schema <Schema_name> body is 
Class section: 

<methods body> 
Function section: 

<functions body> 

<method body> := <method signature>, <method code> 

<function body> := <function signature>, <function code> 

The queylupdate unit corresponds to a set of SOL statements. A SOL statement is an invocation of a method or 
!s an EREMO algebraic expression. A method call may contain as a parameter another method call. In SOL there 
is no distinction between the language for the implementation of methods (functions) and the language for 
querying and updating of the database. The unifying language is provided by the EREMO algebra. 
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The following is an example of a query unit. 

Example: 

Query unit is: 

def value SeniorStudent is 
{ (student:STUDENT, 

name: string, 
age: integer ) } 

SeniorStudent <- PROJECT [name(), age( )] self 
IN (Student.older(21)) and (Student.given_exams("Software Engineering") 

DISPLAY [ ] SeniorStudent 

The result of an EREMO expression can be associated to an identifier (section 3.3.10). This creates a temporary 
value. (SeniorStudent in the example). Differently from classes, values are not encapsulated, they are used for 
storing results of SOL computation and relationships between objects. 

Examples of SOL programs are described in [Zic91 b]. 

4. CONCLUSIONS 

We have presented the SOL object-oriented database programming language. The various features of SOL have 
been described by examples. The SOL language has been implemented on top of the Algres system. The 
implementation of SOL on Algres meant as a rapid prototype gave us useful insight into the SOL features and 
provided an important validation to some of the language design decisions. SOL now constitutes one of two 
languages which compose the multi-paradigm language interface [Zicari Ceri Tanca 91] implemented on top of 
ALGRES, being the other one a rule-based database programming language called LOGRES [Caeace et al 90]. 
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APPENDIX SOL ITS Application 

We describe a shnplificd version of an application developed and implemented in SOL within the ESPRIT-H project 
.STRETCtl . 

A.1 Intell igent Training System : description 

We consider a subset of the STRETCtl Intelligent Training System (ITS) application which involves managing data- 
components of the hydraulic system of an helicopter. The goal of the ITS application was to define an "intelligent" 
system which helps a student in learning the various maintenance procedures for specific helicopter components. We 
use here a considerable smaller subset of such an application. 

The schema of the simplified ITS application consists of ten classes, as reported in figure 1. The SOL schema can be 
logically partitioned in two parts: the first one which stores the description of the various components of the hydraulic 
sub-system of the helicopter (called technical database in the rcs0 and the second one which stores the structure of the 
lessons and the student personal data (called didactic database in the rest). The technical database is composed of six 
classcs:SYSTEM, MATERIAL, CONNECTOR, PROCEDURE, TROUBLE-SHOOTING, MAINTENANCE. The didactic 
database is composed of four classes: LESSON_TREE, PERSON, STUDENT, and QUESTION. (We indicate class names 
with capital letters). 

OBJECT 

STUDENT 

MAINTENANCE 
TROUBLE-SHOOTING 

A.2 ITS SOL DEFINITION 

A SOL program is composed of three units: A schema unit, an Implementation unit, and a Query/Update unit [SOLg0]. 
Wc present the SOL schema definition for the ITS. 

SCHEMA UNIT 

We first define the technical database schema. 

A class SYSTEM describes the structure of a generic "component" of the hydraulic sub-system. Its associated type is a 
tuple with twelve attributes. Each attribute is either single-valued or multi-valued. (We recall that types in SOL are 
either basic types, such as integer, real, or complex types built with the type constructors tuple, set, multiset, and list 
denoted (), { }, [ ], < > respectively, and class names). The attributes of the SYSTEM class are: the system name(name), 
a system part number (part#), a serial number (serial#), the date in which the component has been produced 
(date_of_making), rain. and max. running temperatures of the system (t_min, t_max ), the materials which constitute 
the system together with their quantity (made_of), the set of other subsystems (subsystems) which are connected to 
the one described through some type of connectors (connectedto), the set of procedures which are associated with the 
described system, the brand (brand) and model of the system (model). The attribute made of is a set of tuple of two 
attributes: material of class MATERIAL and quantity. The attribute connected to is a set of mples of two attributes: 
system of class SYSTEM, and connectors which is a set of link, where link is-of class CONNECTOR. The attribute 
subsystem is a set of tuples of one attribute: system of class SYSTEM (this is a recursive definition), and the attribute 
procedures which is a set of tuplc of procedure of class PROCEDURE. Classes MATERIAL, CONNECTOR and 
PROCEDURE are in part_of relationships with the class SYSTEM. 

The corresponding SOL declaration is as follows: 
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Class SYSTEM is 
struet ( name: string, 

part#: integer, 
serial#: integer, 
date of making: string, 

T_min: real, 
T_max: real, 
made_of: { (material: MATERIAL, quantity: real) }, 
cenneeted_te: { ( system:SYSTEM, connectors: { link: CONNECTOR } ) }, 
brand: string, 
model: string, 
subsystems: { system: SYSTEM}, 

proceduras: {procedure: PROCEDURE] ) 

end SYSTEM 

Two functions Ge t_sys tem_componen ts  and Se lec t_bymater la l  are defined: 

function Get_system_components (systems: { system: SYSTEM })--~{ name: string } 

The function, given a set of systems, computes all its subsystem components. 

function Select_by_material (systems: { system: SYSTEM }, name_of_material: string ) --->{name: string} 

The function, given the set of systems and the name of a specific material, finds the name of the systems which are 
made of the indicated material. 

A class MATERIAL contains all the different materials which constitute the hydraulic system. It has a tuple type with 
three attributes: 

Class MATERIAL is 
struct ( name: string, 

code: string, 
manufacter: string) 

end MATERIAL 

Another function is definedi 

function Find_material  (materials: [MATERIAL}, name: string, code: string ) --~ boolean 

This function, given a set of materials and the name and code of a specific material, verifies if the given material is 
listed. It returns a boolean. 

A class CONNECTOR contains all different types of connectors used to link together the subsystems composing the 
hydraulic system, It has a tuple type with three attributes. The type of one of the attributes is text, as it is used to store 
text. 
The various part of the system are associated to procedures for their ordinary maintenance or when a fault is detected. 
The class PROCEDURE factors out the common characteristics of a procedure. Classes TROUBLESHOOTING and 
MAINTENANCE both describes special procedures, one invoked when a fault is detected and the other one used for 
normal maintenance. TROUBLE_SHOOTING and MAINTENANCE arc subclasses of the superdass PROCEDURE and 
inherit the attributes and methods of class PROCEDURE. 

class CONNECTOR is 
struct ( connector.cede: string, 

brand : string, 
properties: text ) 

Class PROCEDURE is 
struct ( name: string, 

tools: {tool: string}, 
time_required: real, 
tel_manual: text ) 

has 
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method Procedure_t imeO --~ real (This method returns the time required to perform a procedure). 

end PROCEDURE 

Class TROUBLESHOOTING inherits PROCEDURE is 
struct ( cause: text, 

description: text ,  
remedy: text ) 

Class MAINTENANCE inherits PROCEDURE is 
struct (case of_application: text, 

description: text ) 

The didactic database schema is composed of the following classes: Class PERSON factors out the common 
characteristics of a person: it has a tuple type with five attributes, all of which are simple. Class STUDENT is a subclass 
of PERSON and describes the information associated to an ITS student. It has a tuple type of five attributes. In particular 
the attribute " lessonsat tended"  is a list of tuples, where each tuple contains two attributes: lesson of type class 
LESSON_TREE and score obtained in that lesson. The part_of relationships here is cyclic. Class LESSON_TREE 
defines the set of lessons for the application with a tree-structure. Class LESSONTREE has four attributes, the name of 
the lesson, the set of sublessons composing the lesson, the list of pages containing the text of the lesson, and a 
question_list. Each element of the question list is of class QUESTION. Class QUESTION is a list of tuples, each of 
which has two attributes: a question formulated to the student, and a list of possible answers each one with an 
associated score. The SOL declarations are as follows: 

Class PERSON is 
struct ( f i r s tname:  string, 

family_name: string, 
age: integer, 
dato_of__birth: string, 
place_of_birth: string ) 

end PERSON 

Class STUDENT inherits PERSON is 
struct ( company: string, 

role: string, 
course: LESSONTREE, 

lessons_attended : < (lesson: LESSON_TREE, score: integer) >, 
total_score: integer, 
additional info: text ) 

has 

method Asslgn_tota l_score  (score: integer) (This method assigns a given score to the 
attribute total_score) 

method Last_lesson 0 --> lesson name: string (This method returns the name of the last 
lesson attended by the student ) 

method Next_lesson 0 --> string (This is a method which, given a student and the name 
of its last lesson attended, computes the next lesson 
file student should attend.) 

end STUDENT 

Class LESSON_TREE is 
struct ( name: string; 

sublessons: < sublesson: LESSON_TREE >, 
lesson_text_list: < page: text >, 

question_list: < question: QUESTION > ) 

has 

Method Lesson_name  0 --> string (This method returns the name of the lesson ). 

end LESSON_TREE 
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Class QUESTION is 
struct < (question: text, 

possible_answers: < (answer: string, score: integer) >) > 

has 

Method Average_score  ( ) 

(This is an aggregate method which computes the average of the answers given by the student for each question, and 
stores the result in the attribute total score of the object of class STUDENT) . 

end QUESTION 

We now define the body of methods and functions defined in the schema. EREMO is used to code both bodies of 
methods and of functions.The same algebra is also used to code SOL programs, as described later. 

A.2.2 IMPLEMENTATION UNIT 

function body Get_system_components (systems: {system: SYSTEM})~{name: string} 
begin 

PROJECT [ system.name() ] 
FIXPOINT [ subsys := AGGREGATE [ UNION I system.subsystemsO ] 

JOIN [ system= oid ] 
systems SYSTEM.ext0, 

subsys <= systems, 
UNION systems subsys ] systems 

end 

This function computes file classical bill-of-material problem. It uses a fixpoint operator. 

function body 
Select_by_materlal (systems: {system: SYSTEM}, name_of_material: string ) 

{name: string} 
begin 
PROJECT[ system.nameO ] 
SELECT [ EXIST [ material.name0 = name_of_material ] made_of ] systems 

end 

function body 
Find_material  (materials: {MATERIAL} , m_name: string, m code: string ) 
--~ boolean 
begin EXIST [ m_name = name AND mcode = code ] materials end 

method body Procedure_time 0 ~ real 
begin timerequired end 

method body Assign_total_score (score: integer) 
begin total_score <- score end 

method body Last  lesson 0 --~ string 
begin LAST (le~sons_attonded).lesson.Lesson_nameO end 

method body Next_lesson 0 -> string 
begin 
COND [ if total_score < DISCRIMINATOR then 

COND [ if Last_lesson0.Child_lesson0 = dne then 
COND [ if Last_lesson0.Father_lesson0.LefLbrother0 = dne then 

"failure" 
otherwise 

Last_lessonO.Fathcr_lessonO.LefLbrotherO 
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otherwiso 
Last_lessonO.Child_IcssonO ] 

otherwise 
COND [ if Last lessonO.Right_brother0 = dne then 

COND [ if Fathcr..lesson0.Right_brotherO = dne then 
"end of lesson tree" 

otherwise 
Fathcr_lcsson0.Righ t_brother0 ] 

othcrwisc 
Last_lesson().Right brother0 ] ] 

end 

method body Lesson_name 0 --~ string 
begin name end 

method body Average_score  ( ) 
begin Assign_total_score( AGGREGATE [ average / score ] lessons_attended ) end 

SOL PROGRAMS 

We report now two examples of SOL programs working on the ITS schema. 

Program 1 

The following program "check if a given material (name and code) is used in the helicopter. It then find all systems 
which use such a material and display them". The program does the following: 

- Declare a tuple value corresponding to name and code of a material 
- Read the material instance 
- ConU'ol if material is included into the extension of class MATERIAL and assign the boolean result to the variable 

is material (whose structure is defined implicitly by the right part of the assignment ) .  
- Tl~ result of the COND factor depends on the specified predicate. If true (not a material) then the result is the empty 

set, else it is the returned value of the Select_by_material method. 
- Declare a string value corresponding to the name of a system 
- Read the instance of the value 
- Select the systems corresponding to the system_name 
- Display all the system subcomponents for the found systems 

SOL Program 1 

value material is ( name: string, code: string ) 

READ [ material ] 

is_material <- Find_material (MATERIAL.ext0, material.name, material.code) 

user_systems <- COND [ if not is_material then {} 
otherwise 

Select_by_material (SYSTEM.ext0, comp.name, comp.code) ] 

DISPLAY user_systems 

value system_name is string 

R E A D  [ system_name ] 

systems <- Find_systems_by_name(SYSTEM.ext(), system_name) 

DISPLAY Get_system_components ( systems ) 

E N D  SOL Program 1 

SOL PROGRAM 2 

The following program reads the name of a student, then selects all students with the given name. For each of such 
students, it computes the next lesson the student must attend and display it. 
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** Declare a string value corresponding to a student name ** 

va lue  student_name is string 

** Read the instance of the value ** 

READ [ s t uden tname  ] 

** Select all students with the specified name and assign the result to a new value ** 

students <- Find_students_by name(STUDENT.ext0, student_name) 

** Display the last and next lesson for each found student ** 

D I S P L A Y  P R O J E C T  [ Last_lesson(), Next_Lesson0 ] student 


