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Abs t rac t .  A sequential design of multilayer probabilistic neural net- 
works is considered in the framework of statistical decision-making. Pa- 
rameters and interconnection structure are optimized layer-by-layer by 
estimating unknown probability distributions on input space in the form 
of finite distribution mixtures. The components of mixtures correspond 
to neurons which perform an information preserving transform between 
consecutive layers. Simultaneously the entropy of the transformed dis- 
tribution is minimized. It is argued that in multidimensional spaces and 
particularly at higher levgls of mnltilayer feedforward neural networks, 
the output variables of probabilistic neurons tend to be binary. It is 
shown that the information loss caused by the binary approximation of 
neurons can be suppressed by increasing the approximation accuracy. 

1 Introduct ion 

The possibility of a general maximum-likelihood (m.-1.) design of probabilistic 
neurM networks based on distribution mixtures has received increasing attention 
in recent literature (cf. Specht [11], Streit and Luginbuhl [12], Bishop [1], Palm 
[9]). Considering the framework of statistical decision-making (cf. Grim [3] [5] 
[6], Vajda and Grim [13]) we assume that  the components of mixtures may be 
shared by all class-conditional distributions to avoid possible structural limita- 
tions. Numerically the method is based on m.-1. estimation of finite mixtures by 
means of EM algorithm (cf. Dempster et al. [2], Grim [3], Schlesinger [10]). 

The component distributions corresponding to neurons naturally define an 
additional "descriptive" decision problem and simultaneously each neuron can 
be viewed as a coordinate function of a vector transform mapping the input space 
into the space of output  variables. It has been shown (cf. Grim [6], Vajda and 
Grim [13]) that ,  under very general conditions, the descriptive decision problem 
can be transformed without information loss by means of coordinate functions 
based on a posteriori probabilities of components. Simultaneously the transform 
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minimizes entropy of the output space. In this way we can design multilayer 
neural networks by estimating the mixture parameters layer-by-layer. 

A typical feature of multilayer probabilistic neural networks obtained in this 
way is a biologically unnatural complete interconnection between neurons of 
consecutive layers. To avoid this undesirable property we proposed specially 
modified finite mixtures with factorizable components including structural pa- 
rameters (cf. Grim [7]). Again the parameters of incompletely interconnected 
structures and the structure itself can be optimized by means of EM algorithm. 

In the present paper we show that the information preserving minimum- 
entropy transform tends to produce features of low statistical complexity. As 
opposed to standard feature selection methods of pattern recognition our ap- 
proach emphasizes simplicity of features rather than reducing their number. 
We make use of the well known empirical experience that, with increasing di- 
mension, the input space becomes "sparse" and, simultaneously, the multivariate 
componets of finite mixtures become increasingly nonoverlapping. Consequently, 
the a posteriori probabilities of components can be looked upon almost as binary 
variables. 

It is shown that binary approximation of the information preserving trans- 
form essentially simplifies the underlying probabilistic neural network and the 
related optimization problem. The computation of neuron responses amounts to 
competitive evaluation of simple linear expressions. We derive bounds of the in- 
formation loss caused by a binary approximation and show that the information 
loss approaches zero with increasing approximation accuracy. The reliability of 
the proposed scheme can be improved by considering multiply parallel solutions 
for each layer. 

2 Probabi l is t ic  Neural  Networks  

We consider a finite set of classes $2 = {Wl, ";2,. . . ,  ~K} with a priori probabilities 
p(w) and the corresponding class-conditional multivariate probability distribu- 
tions P(~[w) on a discrete space X = X1 x X 2  × . . .  × X N .  The unconditional 
joint probability distribution P(x)  is given by 

P(x)  = y ~  P(xlw)p(w), ~ = (xl,  x2 , . . . ,  xN) e x .  (1) 
wE~2 

All statistical information about the set of classes ~2, given some observation 
E X, is expressed by the a posteriori probabilities 

p ( ~ l ~ ) -  P(~P)P(~)  
p(~)  , ~ • ~  (2) 

which can be used to define the final decision function. 
Further we assume that the conditional distributions P(~ I~) can be approx- 

imated by finite mixtures of the form 

P(~lw) = ~ F(&lm)f(mlw),  w • ~9, ~ • X,  ( ~ f(mlw) = 1) (3) 
rnE.M m~.M 
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where f(mlw ) > 0 are some conditional probabilistic weights. The components 
F(.lm) E J: belong to a common pool of probability distributions on X 

~- = {F(.Im), m E M } ,  M = {1, 2 . . . .  , M}. (4) 

which may be shared by all classes w E/2.  
Making substitution (3) in Eq.(1) we can write 

P(:~) = ~"  F(:~lm)f(m), :~ E Z (5) 
m E M  

whereby 
F(a~lm)/(m) 

f(m) - ~ f(ml~)p@), f(ml:e) - p ( z )  (6) 
wEl2 

Thus the concept of shared components [7], [1] naturally introduces an addi- 
tional "descriptive" decision problem characterized by the component distribu- 
tions F(.[m) E iT and the unconditional a priori weights f(m), m E M .  Note 
that all parameters of the mixture (5) can be estimated from data in unsuper- 
vised way by means of EM algorithm (cf. Schlesinger [10], Depmster et al. [2], 
Grim [3]). 

© © ,,, 

@ @ ,', 

0 
Q ,,' 

N N 

(a) (b) 

Fig. 1. a) Probabilistic neural network b) Hidden layer of neuron network for infor- 
mation preserving transform 

Using this notation we can express the finally desired a posteriori probabilities 
p (~[ . )  as linear combinations of f(m]•) (cf. Grim [7], Bishop [1]): 

f (ml@p@)  
p@l:r) = ~ p (~ lm)f (mlx) ,  p@lm) - f (m)  , ~v E S2, a: E 2". (7) 

raE 2¢1 
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The last Eqs. can be interpreted as a three-layer neural network (cf. Fig. l(a)): 
the first layer of input variables x,~, the second "hidden" layer of components 
computing the normed outputs f (mlx ) (the norming is only symbolically indi- 
cated by an arrow and the letter N), and the third layer of linear units computing 
the aposteriori probabilities p@[x) as a weighted sum of f (mlx ). 

Let us recall that, as the functions F(a~lm ) E .T may be shared by all class- 
conditional distributions P(.lw), the units of the second layer are not "special- 
ized" and therefore the outputs of the second layer are not confined to particular 
classes (cf. Grim [5]). In this sense the structure of the resulting neural network 
is not restricted, in accordance with the basic structural properties of ascending 
neural pathways. 

From a functional point of view each neuron of a given layer realizes a co- 
ordinate function of a vector transform T mapping the input space X into the 
space of output variables iF. We denote 

T : X ~ y ,  y=y~xy2x. . .XYMCR M, 

y = T(a:) = (TI(z), T2(x), . . . ,  TM(X.)) C Y. (8) 

It has been shown (Grim [6], Vajda and Grim [13]) that the transform defined 
by Eqs. 

Ym = Tm(x)= log f (mlx ) ,  x E X ,  m e 3 , t  (9) 

belongs to a class of information preserving transforms minimizing the entropy 
of the output space y (cf. Fig. l(b)). 

If we introduce the following notation for the transformed distributions and 
a posteriori probabilities 

Q(y) = P(T- I (y ) ) ,  Q(yim) = F(w-l (y) [m) ,  y C Y (10) 

T - l ( y )  = {x C X:  T(x) = y}, q(mly ) - Q(Ytm)f(m) Q(u) ,  cz4 (11) 

and for the related uconditional and conditional Shannon entropies 

H(M) = ~ -f(m)logf(m), H(Y) = ~-Q(y)logQ(y),  (12) 
mEAd y EY 

H(A, i IX)=~_P(x)Hz(M ), H z ( M ) =  ~ - f ( r n l x ) I o g f ( r n l x ) ,  (13) 
xEX rnE.M 

H(,M[y) = ~ Q(y)Hy(M), Hy(M) = ~ -q(m[y)logq(mly) (14) 
YEY rnE.Ad 

then we can write 

z( : t ' ,M)  = H ( M ) -  H ( M l X )  = H ( M )  - H ( M l Y )  = I ( y , M ) ,  (15) 

i.e. the transform T preserves the statistical Shannon information about the de- 
scriptive decision problem { X, F (. I rn) f(rn), m E 3d }. Simultaneously, the infor- 
mation preserving transform (8), (9) minimizes the entropy H(Y) of the output 
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distribution Q(y). It has beer/shown [6] that analogous assertions hold for the 
original decision problem {X, P(.[w)p(w),w e f2}, too, 

Obviously, the procedure can be used to design multil~ver neural networks by 
transforming the vector of input variables x = (xl, x2, . . . ,  x~v) to some output 
space y repeatedly. Let us recall that at the highest layer of the probabilistic 
neural network we need labelled data for supervised estimation of the conditional 
weights f(m[~z) (of. Eq. (7), Fig. t(a)). 

3 Maximum-Likelihood Structuring 

A typical feature of the above multilayer feed-forward probabilistic neural net- 
works is a biologically unnatural complete interconnection between units (neu- 
rons) of consecutive layers. In order to avoid this undesirable property we pro- 
posed specially modified components of the approximating mixtures [7]. The 
approach is based on an idea originally applied to multivariate pattern recogni- 
tion [4]. 

Making substitution 

F(*lm) = F ( * lO )G(z~ lm ,¢m) ,  F(wl0) = I I  f,~(,~.lO) (16) 
ne.,V' 

we obtain finite mixture of the form 

P(x) = ~ F(~lO)G(~lm,¢m)f(m) (17) 
rnE2~4 

where the component functions G(xlrn , era) include additional binary structural 
parameters emn E {0, 1}: 

(18) 
a(,lm,¢m)= m [f (x 10)l ' nEAr 

and F(xl0 ) is a nonzero "background" probability distribution usually defined 
as a product of marginals, i.e. f~(xn ]0) = P,~(x, O. 

It can be seen that any component-specific distribution f,~(x,~]m) can be 
substituted by the respective univariate background distribution fn(xn]O) by 
setting emn = 0, i.e. 

r ( x lm)  = I I  ~ (x~ lm)¢~°A(x~l° ) t -¢ ' ° ,  • e x .  (19) 
nex  

As the background distribution F(ml0 ) can be cancelled in the Bayes formula 
(6) 

F(~Ira)f(m) V(.Im, ¢,~)/(m) (20) 
f(m]:~) - P(x) - ~ j c ~  G(x]j, e j ) f ( j )  

the computation of the a posteriori probabilities f(ml:r. ) may be confined only 
to some "relevant" variables without making any approximations or heuristic 
steps. 
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Let us note that using logarithmic coordinate function we can write (of. (20)) 

= T i n ( = )  = logf(ml ) = 

= log[G(xlm, ¢m)f(m)] - log[ ~ G(xlj  , Cj)f(j)], m E A4 (21) 
j e ~  

and further, making substitution (18), we obtain 

Ym = l o g / ( m ) +  Z Cm'~logfn(Xnlm) 1og[~-~ G(~Ij ,¢j)I(j)  ]. (22) 
A(x ,10) jeM 

Thus, in view of the formula (22), the input connections of a single neuron can 
be confined to any subset of variables (input neurons) by means of the binary 
parameters ¢ ,~  - in a statistically correct way. 

The "incomplete interconnection" model (22) can be optimized by using 
maximum-likelihood criterion. The m.-1. estimates of all involved parameters, 
inclusive of the structural parameters emn, can be computed by means of the 
iterative EM algorithm (cf. Grim [7]). 

4 Binary Approximation 

It is a well known practical experience that high-dimensional spaces are rather 
"sparse" and for this reason multivariate component distributions F(xlm) will 
tend to have only small "overlap" with the increasing dirnensionality. For the 
same reason the a posteriori probabilities f (mlx  ) (20) will tend to take only the 
extreme values 0 and 1. 

On the other hand, the "soft-binary" properties of the conditional proba- 
bilities f (mlx  ) have only empirical validity. Obviously, in any high-dimensionM 
space the componnets F(~ tin) may be defined sufficiently "flat" to increase their 
overlap and, consequently, to supress the tendency to binary values of f(mt~ ). 

Nevertheless, in multilayer probabilistic neural networks the statisticM deci- 
sion problem is defined on input space of the first layer and the dimension of 
the transformed spaces at higher levels can be chosen as high as necessary. Thus 
the acuracy of the assumed binary approximation can be influenced by a proper 
choice of parameters. 

Motivated by the above arguments we shall assume in the following that the 
dimension of the input space X (related to the output variables of the imme- 
diately preceeding layer) is very high and the a posteriori probabilities f(rnl~ ) 
computed for the corresponding distribution mixture behave like binary vari- 
ables. In other words we assume only small overlap of the components of the 
mixture P(~) and approximate the coordinate functions (9) by two extreme 
output vMues 

f (ml~) 1_ 
l~]0,/(mlm)--*0+ ' m e X ,  m e M .  (23) 
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Let us recall that the "synaptic weights" in the formula (22) 

. f,~(x,~lm) 
~m ~ ~ era .  log , m ~ M (24) 

. z x  f,~(xnlO) 

depend on the probabilities fn(xn Ira) and not directly on the variables x=. There- 
fore, the input values xn E 2(n themselves cannot directly influence the output 
value ym. For this reason the true values ~/0, ~h approximating the real output 
function Tin(x) are irrelevant and, for the sake of simplicity, we may define e.g. 

1, ~ = ~(~) 
v ~  = T ~ ( ~ )  = 0, m # ~ ( ~ )  ' ~ ~ X ,  m ~ M ,  (25) 

where it(x) identifies the highest aposteriori probability f(mlx ). To avoid pos- 
sible ties, we define 

#(~) = min{argm~{f(m[~)}},  ~ E X (26) 

or more simply (of. (20)) 

,(~e) = min{arg mea~ {log[G(x]m)f(m)]} }. (27) 

Consequently, we may ignore the norming term occurring in the formula (21) or 
(22): 

f~(x,~lra) 
#(x) = min{a rgm~{ l °g f (m)  + Z Crnn tog .f,~(~,~lO) }} (2s) 

nEW 

Note that the last formula corresponds well with the competitive principle (winner- 
takes-all rule) frequently applied to neural networks. 

Binary approximation of the coordinate functions Tm(a~) implies a binary 
output space and, for this reason, we may assume the input space 2" to be 
binary too at higher levels, i.e. X = {0, 1} N. 

The binary input space simplifies the underlying probabilistic model essen- 
tially. Denoting 

O,~ --/r ,( l lm),  n E A/', m E ./el (29) 

we can write 

A ( x . l m )  = e~-(1 - o) 1-~°, x~ e x~  = {0,1} (a0) 

and further 

log f~(x~]m ) = log (1  - 0~ ,~  (0~,~(1 - 0~,~)) (31) 
A(x~lO) \ l - ~ n 0 j + x ~ l ° g \  Ono(10no) " 

Making substitution (31) in (28) and denoting 

( 1 -  (e,,,,,(1 - 02) 
~ n m = l o g \ i - _ ~ ] ,  f~nm=log \  0,~o(1 0n0) J 
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we can write 

#(m) = min{arg m~{logf(rn) + E ¢,nna,~m + E ¢,~nxnfl~m}}. 
nEAr neAT 

(aa) 

Thus, as it can be seen, the functioning of neurons can be reduced to competitive 
evaluation of simple linear expressions. 

Let us recall also that the a posteriori probabilities f (mlx  ) have to be re- 
peatedly evaluated in the iterative EM algorithm [5]. In view of the binary 
assumption (25) the iterative equations of EM algorithm can be simplified, too. 

5 Bounds of Information Loss 

In order to clarify possible consequences of the inaccuracy of the considered 
binary approximation we derive bounds for information loss arising when the 
binary coordinate function (25) is used instead of the original information pre- 
serving transform (21). 

First we define the partition of the input space 32 induced by the function 
# ( , ) ,  (of. (27), (33)): 

s = {& ,  & , . . . ,  SM}, S~ : { *  E x :  ,~(,) : m}. (34) 

In view of the definition (25) we can write 

{ 1 , ~ E S m  
= = = 0 ,  • ' * E 32,  m E M ( a 5 )  

where ¢('[Sm) is the characteristic function of the set Sm C X. Introducing 
notation 

y(m) = (61m, 62rn,..., 5Mm) E Y; Y]vt = {y(1),y(2), . . . ,  y(M)} C 32 (36) 

we can see that  the set 32~a contains all nonzero points of the transformed 
distribution Q, i.e. 

y E (32 - Y.~) ::~ Q(y) = 0 (37) 

and further (cf. (10)) 

T - I ( y  (m)) = Sin, Q(y(m)) = p ( S , 0 ;  Q(y('~)IJ) = F(S,~Ij). (38) 

By using the last substitutions we can rewrite Eq. (11) as follows 

F(Smlj)f( j)  P(x) 
q(JlY(m)) -- P(S,~) = E f(Jl~) P(Sm) = I(jlS'~)' j, rn e M.  (ag) 

~6S~ 

To prove the following Theorem we also use repeatedly the inequality 

M 
7t(p,, P2,... ,PM) = E --PJ logpj ( 7"[(pm, 1 -Pro)+ (1 --Pro)log(M - 1) (40) 

j=I 
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which is true for any m E A4. Here 7t (p l ,p~ , . . . ,PM)  denotes the Shannon 
entropy of the listed probabilities pj . 

T h e o r e m  1. 
Let the information preserving transform (21) of the descriptive decision problem 
{X,  F( . Im) f (m) ,  m E A4} be approximated by the binary coordinate functions 
(25). Further let 5 and e be small positive numbers. If we define 

~m = {* e s . ~ : / ( . q . )  >__ 1 - 8}, ~m = s m  - ~m, 2 = U~Al~m (41) 

and assume that it holds 

P'(S~---~) < ~, ,~ e M (42) 
P(Sm) 

then the information loss caused by the binary approximation (25) is bounded 
by the inequality 

I (X ,  A4) - I ( y ,  A4) < 7-l(e + f; 1 - e - f) + (¢ + 5)log(M - 1). (43) 

P r o o f .  
Note first that it holds (cf. (39)) 

P(:~m) 
f ( j lS .~)  - p (S ,~) f ( j IS ,~)  + Fl, bm) 

Applying the following property of the sets Sm 

eSm ~ f(ml~)_>1-8 ~ f(mlS~)_>l-8.  (45) 

to Eq. (44) and considering the inequality (42) we obtain 

P(S~n) P(S,~) 
f ( m l S m  ) >_ (1 P(Sm))(1 - 5) >_ 1 P(Sm) 8 > 1 - c - 5. (46) 

Further, in view of the inequality (40), we can write 

H s m ( A 4 ) < 7 - l ( e + 8 ; 1 - e - 8 ) + ( c + 8 ) l o g ( M - 1 )  (47) 

and finally 

H ( M I Y )  = P(S,~)Hs.~(A4) < 7-/(e+8; 1 - c - 8 ) + ( c + 8 ) l o g ( M - 1 ) .  (48) 
mEAl 

The last inequality completes the proof since 

I ( X , f l 4 ) -  I ( y , A 4 )  = H(A4[Y) - H(A4[X) < H(A41Y ) < 

< 7-/(e + 5; 1 - c - 5) + (e + 5)log(M - 1). (49) 

It can be seen that,  as it could be expected, for ~ --~ 0 and 8 --~ 0 the information 
loss approaches zero. 
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6 Concluding Remarks 

Let us recall, that  starting with a rather complicated probabilistic approach, we 
obtain finally a simple binary model of neural network. As it follows from the 
Eq. (33), the functioning of neurons can be reduced to competitive evaluation 
of simple linear expressions. This fact alone suggests the possibility to apply 
at each layer multiple solutions which are usually produced by standard use 
of EM algorithm. Repeated application of EM algorithm is desirable to avoid 
possible locally optimal solutions. However, on the other hand, as the considered 
type of mixtures (17) is not identifiable, we may expect many different solutions 
of comparable quality. This circumstance could be particularly useful from the 
point of view of combining multiple solutions. Some experiments concerning 
these aspects of the present paper will be the subject of a forthcoming paper. 
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