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A b s t r a c t .  This paper proposes new ideas for the classification of images 
with the presence of mixels, or mixed pixels. Based on the internal struc- 
ture of mixels, we first propose a stochastic model called area proportion 
density, and we demonstrate that Beta distribution is an appropriate 
model for this density. Next, based on the linear model of a mixeL we 
derive another stochastic model called mixel density. This model is then 
incorporated into the mixture density model of the image histogram, and 
we show the peculiar flat shape of this model works particularly effec- 
tive for image histograms with long tail. Finally we present experiments 
on satellite imagery, and the goodness-of-fit of the proposed model is 
evaluated from the viewpoint of information criterion. 

1 I n t r o d u c t i o n  

The basic assumption of most  conventional image processing algorithms is tha t  
an image pixel is an atom., which is the smallest element of the image not di- 
vidable any further.  However, in reality, an image pixel corresponds to a certain 
region in the real world, and the region is not always homogeneous. If the resolu- 
tion of the sensor is coarser than the scale of spatial variation in the real world, 
even a single pixel consists of multiple constituents. Such heterogeneous pixel 
with underlying internal s t ructure  is called a mixed pixel or a mixel, whereas a 
homogeneous pixel containing only one consti tueut is called a pure pixel. 

Fundamental  differences of statistical propert ies between nfixels and pure 
pixels must  be recognized for the analysis of images with the presence of mixels. 
Therefore the purpose of this paper  is to propose new stochastic models, such as 
area proportion density or mixel density, for the proper  handling of mixels fl'om 
the viewpoint of probabil i ty theory. These models are rarely noticed in previous 
studies on nfixels, but  in this paper ,  we discuss the importance,  characteristics 
and derivation of the models. Since one of the main application of this paper  
is the analysis of cloud mixels on satellite images, which are taken with coarse 
resolution sensors, we apply the proposed method  to thc classification of satellite 
images, and the effectiveness of the me thod  is quanti tat ively evaluated f rom the 
viewpoint of i ,fformation criterion. 
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Observation (1 pixel) 

Real World (region) 

Convent iona l  In t e rp re t a t i on  It is ~tssumed 
that spectral reflectance from each class x; 
is a known constant. 

Our  In t e rp re t a t i on  It is assmned that spectral 
reflectance from each class ~i is an unknown 
random variable; while the probability den- 
sity function of each class p~ (~i) is known. 

Fig. 1. The mixel model and the interpretation of the mixel model 

2 T h e  M o d e l  of  a M i x e l  

Suppose observing the real world by a sensor with p different bands. The pixel 
value of each pixel is then represented by a p dimensional observation vector 
r = (r l  . . . . .  rp) t. In this paper, a mixel containing k classification classes is 
called a k-class mixel. For example, Fig. 1 illustrates a 2-class mixel. Moreover, 
spectral reflectance originating in each classification class within a k-class mixel 
is denoted as mi = ( x i l , . . .  ,Xip) t, and the area proportion of earl1 classification 

class is denoted as ai, where 0 < ai < 1 and ~ ' - -1  al = 1 is satisfied. 
In general, it is natural  to assume that  the pixel value of a mixel is the 

weighted sum of spectral reflectaalce originating in each class xi,  weighted by 
the fimction of area proportions. Based on this assumption, this paper adopts 
the simplest model, namely the linear model as follows: 

k 

r = E a i x i  + z ,  (1) 
i = 1  

where the first te rm is the linear combination of spectral reflectmlce weighted by 
area proportions, and the second term represents noise independent of classes. 

However, because of the limited space of the paper, we focus on the most 
representative case, 2-class mixel case observed with 1-band. The linear model 
in this case is represented as follows: 

r = axl + (1 - a)x2 + e~ (2) 

where the area proport ion of class 1 is denoted as a. 
Here, the most important  distinction between our interpretation and conven- 

tional interpretation (for example [1], [2], [3]) on Eq. (1) is summarized in Fig. 1. 
The  assumption that  xi  are known for all mixels, as conventional interpretation 
assumes, is based on the assumption that  xl are constants. In other words, the 
sources of variation with regard to the pixel value of mixels are assumed to be 
confined in class-independent noise term e. In reality, however, radiation fi'om 
each class shows some variation due to the causes of its own, and the sum of such 
variations results in the variation of pixel value of mixels. Therefore, the basic 
assumption of this paper  is that  "x i  are random variables, and the variation of 
radiation from, each class contributes to the variation of pixel value of mi.~:els." 
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Fig. 2, Spatial relationship between the figure model and the observing pixel, and APD 
derived from the figure model 

We now think of a probability density flmction (PDF) of each classification 
class pl (ml), which we call a pure pixel density (PPD), and develops a new theory 
based on the probability theory. From this standpoint, :ci in Eq. (2) becomes a 
random variable with PDF pi(xi); and four variables in Eq. (2) are unknown; 
the only known variable is the pixel value of a mixel r. This indicates that  the 
solution of a can be obtained from Eq. (2) through the analysis of PDF whose 
corresponding random variables appear on the right-broad side of Eq. (2). We 
start with investigating the stochastic model of a, which we call area proportion 
density (Sect. 3). We next examine the stochastic model appearing on the left- 
hand side, which we call mizel density (Sect. 4). After proposing two types of 
distributions., we discuss a method for estimating the area proportion a from the 
observation value r based on expectation (Sect, 5). 

3 Area Proportion Density Derived from the Internal 
Structure of Mixels 

Area proportion density (APD) of mixels is a stochastic model closely associated 
with the internal structure of pixels. This density was sometimes investigated 
by studies on meteorology or remote sensing; however, only empirical distribu- 
tion was proposed in those works. We, on the other hand, derive APD analyti- 
cally using such simple figure models as the square model and the cross model 
representing a convex figure and a concave figure respectively. Possible spatial 
relationship between the figure model and the observation pixel is illustrated in 
Fig. 2. Supposing that  the observation pixel takes any relative position to the 
figure model, we can think of a PDF f(a) of area proportion a (0 < a < 1), 
where area proportion is the percentage of area of the figure model captured 
inside the observation pixel, 
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Fig. 3. APD derived fi-om fractal synthetic imagery (FD : Fractal Dimension) 

For example, in case 4 of the square model, we can derive cmmflative area 
proportion density F(a)  ill an exact analytical form as follows: 

F(a )  = a - aloga .  (3) 

Due to the limited space of this paper, we omit the detail of analytical derivation 
process and illustrate only the final result of APD in Fig. 2. In this figure, the 
APD of particular observation scale is the intersection along the "area propor- 
tion" axis. Although this figure looks complex, APD in a particular scale shows 
the variety of shape sud~ as L-shape, J-shape and unifoml-shape. 

Second we derive APD from simulation using synthetic images. Since one 
of the main application of this paper is the analysis of cloud mixels on satellite 
images, and cloud shape can be described using fractal, we adopt fractal synthetic 
imagery as a simulation model. First successive random addition algorithm [4] is 
used to create synthetic images, and created images are then "virtually" observed 
in block basis to sinmlate low resolution sensors. APD obtained through this 
protocol is illustrated in Fig. 3. This U-shaped density is very well described by 
Arc sine distribution [5], [6], known in the field of random walk, described by: 

1 {4) 
f ( a )  -- ~ ' X / ~ -  a) 

We finally propose Beta  distribution [7] as the model of APD because of its 
capability for describing all types of distributions derived thus far. Beta distri- 
bution is represented as follows: 

1 ~_~. ~)~_~ (5) f ( a ) -  B(~, f3)  a ( 1 -  

where 0 < a _< 1, a > 0,/3 > 0, and B(a,/3) = f :  a~- i (1  - a)*3-1da is beta  
function. This distribution represents a wide range of distributions by changing 
two parameters,  such as uniform distribution at (a,/3) = (1, 1) and Arc sine 
distribution at (a,/3) = (0.5,0.5). Furthermore,  the mean ItB and the variance 

c~ 2 c t /3  cr B2 of Beta  distribution is calculated as ltn = ~--4--~' and cr B = (~+~)~(a+/3+1) 
This means that  if a = ~, tt = 0.5 and the distribution becomes symmetric. 
Otherwise, two parameters  c~,/3 are related to the convexity and concavity of 
boundary  shape, and can be used as shape or textural  at tr ibutes of an image. 
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4 M i x e l  D e n s i t y  

Incorporating APD proposed in Eq. (5), and assuming the PDF of xl in Eq. (2) 
as normal distribution, we can now calculate the stochastic model of r,  which 
appears on the left-hand side of Eq. (2). First, we discuss the PDF of r by fixing 
the value of a. If we assume that  PPD pi(xi)  of all classes are known, then we 
can calculate a new PDF p(r; a) by referring to a fornmla for calculating the 
PDF of the surn of random variables [6]. If we omit the noise term in Eq. (2)~ 
we get the solution as follows: 

p('r; a) = ql(r  - t)q~(t)dt = ql(r) * q2(r), (6) 

where qx(r) = p l ( r / a )  and q2(r) = p2(r / (1  - a)), and * denotes convolution. 
The noise-included version of p(r;  a) can be easily obtained by just convolving 
the PDF  of the noise term p~(r) as follows p(r; a) = ql (r) * q2(r) * p~(r). 

For instance, if PPD is represented by normal distribution N(tt i ,  cry), and 
the PDF of the noise term is also assumed to be normal distribution N(0, a~), 
then p(r;  a) also becomes normal distribution N(p.a, ~ )  with the following pa- 
rameters: 

tt~ = aft1 + (1 - a ) # 2 ,  
2 = {a l} + { (1  - + (7)  

The fundamental  reason that  p(r; a) can be so easily derived in this case orig- 
inates in the fact tha t  normal distribution is a member of stable distributions, 
Moreover, even in the case that  PPD is not represented by normal distribution, 
we can derive p(r; a) by means of characteristic functions on continuous case, or 
F F T  (Fast Fourier Transform) oi1 discrete case. 

We now consider the set of nfixels present in the image as a population. 
In this context, area proportion a should be regarded as an event of a random 
variable defined in the parameter  space ~. Then rnizel density (MD) d(r), which 
gives the probability of the pixel value of a mixel taking r independent of the 
value of area proportion a, is derived by the following equation: 

d(r )  = (S) 

To facilitate readers' understanding on Eq. (8), we introduce the simplest 
case in which radiation from each class is assumed to be exactly the same for 
all mixels; that  is the case that  the variance within each class is 0 and PP D  is 
represented by delta function p~(r) = 8 ( r - # i ) .  In this case, p(r; a) is calculated 
as p(r; a) = d (r - {a#l  + (1 - a)tt2}). To further simplify the derivation process, 
we assume APD to be uniform distribution f (a )  = 1. Then the exact form of 
MD is obtained as the following: 

P,1 < r < P,2 (9) 
d(r) = f (a )p(r ;a)da  = 0 r <_ t t l . r  >_ P2 
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Fig. 4. Examples of 2-class mixet density with 1-band 

This exact solution represents uniform distribution, as shown in Fig. 4 (a), with 
the interval (P,,,tz2). We show another example in Fig. 4 (b), when PPD is 
represented by normal distribution. 

As demonstrated above, MD is not a density derived from the simple sum- 
mation of PPD; rather derived from integrating convolved PPD using Eq. (6). 
In other words, MD is the consequence of spatial quantization effect of digitized 
imagery. Therefore, MD should be regarded as a new stochastic nmdel that 
represents a fundamentally different stochastic process compared to PPD. The 
significant characteristics of this model may be smnmarized as follows. 

1. MD extends between peaks of a set of related PPD. and its fiat shape is very 
peculiar and hardly used as a PDF. 

2. Since the shape of MD is determined by both the shape parameters of a set 
of related PPD and APD, MD itself does not have its own shape parameters. 

In particular, the former characteristic is important, since there are few statis- 
tical image classification techniques that utilizes PDF of this shape. For image 
histograms with long-tail flat regions between keen peaks, the idea of MD sug- 
gests a new interpretation that peak regions and flat regions correspond to PPD 
and MD respectively, as shown in Fig. 4. 

5 E x p e c t e d  A r e a  P r o p o r t i o n  

Finally we proceed to the estimation of area proportion appeared in Eq. (2). We 
propose a new method of estimating area proportion as the expectation of a in 
terms of p(r: a), which we call expected area proportion: as follows: 

= / ~  a f (a)p(a lr )da ,  (10) ae 

where p(alr) is a conditional PDF obtained by p(alr ) = p~m:~) = p(~:a) 
p(v) Iqp p(r:a)da" 

Again we introduce the simplest case to demonstrate the concrete calcula- 
tion of expected area proportion. Assuming that PPD is represented by delta 
function, we can calculate expected area propm'tion ae based on Eq. (10) using 
the form of p(r; a) shown previously: 

fo #: - r a~ = a f (a )p(a l r )da  = t"2 - it* ' ( i i )  
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Fig. 5. The expected area proportion of 2-class mixels with 1-band 

where we assmne H,1 < r < ix,2 without losing generality. This exact solution 
shows that  area proport ion is linearly proportionM to the pixet vahle of a mixel. 

Next we assmne PPD to be normal distribution. The result illustrated in 
Fig. 5 shows that  as the variance of PPD becomes smaller, the graph of expected 
area proport ion changes from a curve to a linear function. This result is the 
natural  extension of Eq. (11) because normal distribution with zero variance is 
identical to delta function. 

6 Mixture Density Estimation and Image Classification 

To apply our proposed method,  it is required to estimate all the P D F  from 
image data. Hence we regard the image histogram as a set of M lmmber of 
PDF,  namely finite mixture density, as follows: 

M 

p ( , t ¢ , - )  = - m i ( , t c d ,  
i=1 

(12) 

where pi(rl¢i)  is the PPD with parameters ¢i, and c~i is a mixture where oi > 0 

and ~ 1  al = 1. Here important  distinction between conventional models and 
ours nmst be noticed; the number of classification classes is not identical to the 
number of PDF appeared in Eq. (12). That  is because we have to consider MD in 
addition to P P D  to incorporate the effect of mixels. After estimating parameters  
of PPD by applying EM algorithm for mixture density estimation [8], [9], we 
apply Bayes decision rule for pixel-based image classification. Because of the 
limited space, we address the detail of the method in another paper  [10]. 

The images used in the experiments are infra-red images observed by AVHRR 
sensor (Channel 4) on meteorological satellite NOAA. These images are mainly 
filled with streak clouds around Japan in winter, which meteorological condition 
likely produces many mixeIs on the image. First we show the result of mix- 
ture density estimation in Fig. 6. In all cases, the mixture density model shows 
good fitness to a long-tail image histogram becmlse of the adoption of MD; 
and we can observe especially good fit when Beta  distribution is used as APD. 
This goodness-of-fit is then quantitatively evaluated using Akaike Information 
criterion (AIC) [11]. The figures at the bot tom of Fig. 6 illustrate relationship 
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between Beta  distribution parameters  and AIC. These figures show tha t  opti- 
mal  a and fl are dependent  on images; however our mixture  density est imation 
method  found nearly opt imal  parameters  as shown in the middle of Fig. 6. 

Finally we describe the result of image classification in Fig. 7. In all cases, 
satellite images consist of large mmaber of mixels, which spread around pure 
pixels in a planar form. Our method  works effective bo th  when the tmmber  of 
sea class pixels dominates as (a),(b) mad vice versa as (e). This result shows the 
wide applicability and robustness of our proposed method.  

7 Conclus ion  

This paper  proposed an image classification me thod  considering the presence 
of mixels on an image. A new s todmst ic  model  area proportion density were 
proposed so tha t  they reflect the underlying internal s t ructure  of mixets. More- 
over, mixel density is derived from the linear model of mixels with the concrete 
derivation process, and its characteristics, peculiarity of shape is summarized.  
Furthermore,  our proposed method  of est imating area proport ion of mixels called 
expected area p,vportion, together with other proposed models, was applied to 
the classification of satellite images. We believe this me thod  paves the way to the 
direct modelling of complex image his togram based on the probabil i ty theory. 
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Fig.  6. The result of mixture density estimation applied to the image histogram (thin 
solid line: histogram, bold solid line: MD, bold dotted line: PPD),  and the bot tom line 
is the relationship between Beta distribution para~neters and AIC. The ellipses in those 
figure correspond to the optimal region in terms of AIC 
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