Algebraic View of Grammatical Inference

Alexander 8. Saidi'?, Souad Tayeb-bey'

1- Laboratoire de Reconnaissance de Formes et VisionINSA de Lyon- Bat. 403
20 Ave. Albert Einstein 69621 Villeurbanne 2- Dépt. Mathématiques, Informatique et Systémes
Ecole Centrale de LyonB.P. 163. 69131 Ecully
saidi@cc.ec-lyonfr, tayebbey@rfv.insa-lyon.fr

Abstract. We consider the problem of grammatical inference (GI) for classes of structured
documents like summaries, dictionaries, bibliographic data basis, encyclopaedias and so on. The
inference is based on examples of individual sample of these documents. In this paper, we present
an algebraic framework of the GI in which rewrite rules will define the process of generalisation.
The implementation algorithm discussed here is used in a document handling project in which
paper documents are typographically tagged and then recognised. One of the current applications in
this project is to translate paper documents into machine readable form

I- Introduction

We consider the problem of grammatical inference for classes of structured documents like summaries,
dictionarics, scientific reports, bibliographic basis, encyclopacdias and so on from examples. We propose an
algorithm that can identify the class of regular languages from positive examples. This is the usual case in
the grammatical inference for classes of documents whose structures are learned from examples. In the
proposed method, we infer a regular grammar which generalise the Prefix-tree of the given positive
examples. Although negative examples can be considered, the usual situation in this kind of document
recognition is to deal only with the positive representation. Theses examples are structured representation of
documents which are collected by optical typographic recognition techniques ([1]). it is known that any
algorithm that would construct a DFA (deterministic finite automaton) with a minimum number of states
compatible with all the data already processed can identify any regular language in the limit ([2]), The
search space being a lattice, we propose in this paper an algebraic framework for the grammatical inference
and show a function on the lattice that characterise the construction of partitions over the Prefix-tree of the
representation. In this framework, an initial algebra A, is assigned to the Prefix-tree of the strings in the
sample. Then the main result is that a quotient automaton of the Prefix-tree denotes a quotient algebra A,
whose terms are obtained by the application of a uniquely defined homotorphism from A, to A, The
corresponding function induced by this homomorphism is then defined by an algorithm, We also discuss an
aliernative view of GI problem base on the construction of a table of successor and predecessors of any
element of the alphabet. Then the relation between this table is discussed. We show how this table lead to a
automaton of the lattice. The proposed algorithms are used for GI in a project on paper document
processing whose one application is the transtation of the document into HTML. text.

414

II- The GI problem

The Inductive Inference paradigm is the basis of the automatic leaming problem ({11). We are interested in the
Syntactical Patiern Recognition framework where many grammatical inference algorithims cxist that can be
used in the leaming step of pattem recognition tasks ((34141,151,16), [71).
Most of the algorithms used to infer a regular grammar deal only with positive data. However, it is well known
that the class of regular languages can not be correctly identified from only positive examples. Hence, any
recursively enumerable class of language is identifiable using a complete representation with positive and
negative data ([141). However, the usual situation in (paper) document recognition is to propose a generalisation
of the language presented by a set on positive examples. For example, from scientific reports, we may have :

report ~>abstiact, acknowledgement, outline, chapter, chaper, references.

report —>abstract, outline, chapter, subchapter, chapler, index, references.

report ~>abstract, acknowlodgement, outline, figure-table, chapter, chapler, index.
Although one can propose some negative examples (for instance, no report without any chapier or no repoit
without outline), the general case is the unsupervised inference and the negative information is not available, In
this paper, first we give some basic definitions for reference. Then, in section IV, an algebraic view of GI
problem is given in details. In section V, some practical issues and the implementation of the proposed
algorithm are reported. An alternative view of GI based on tables are presented in section VI Then, some
relationships with other works in the field is recalled in the section VL,

I1I- Basic definitions

We assume the reader is familiar with context-free grammars, regular grammars and regular expressions ({15]).
We give some basic definitions used in the rest of the paper.

Let Z be a finite alphabet. The set of all finite strings of symbols from X is denoted Z*, The empty string is
denoted by €. The concatenation of two strings u and v is denoted uv. If a string is u=vw then v is a prefix of u
and w a suffix of u. A language denoted by L is any subset of I*.

A finite automaton (FA) A is a quintuplet (Q, Z, 8, q, F) where Q is the set of states, X is the set of input
symbols, & : Q x Z* ->2°s the transition function, g, Q is the start state and Fc Qis the set of final states. For
anautomaton A, the (regular) language accepted by A is denoted by I(A).

An automalon A is deterministic (DFA) if for all ge Q and for all ac I, §(q,a) has at most one {state) element. A
language is regular iff it is accepted by a FA. If A=(Q, Z, 8, q, F) is a FA and 1t a partition of Q, B(q,m) is the
only block that contains q and we denote the quotient set by Q/rt as the set of all partitions {B(q,m) l qeQ}.
Given a FA A and a partition 7t over Q, the quotient (or derived) autornaton Al = {Q/r, %, 8, B(g,n) {Be

Q| Jge B, geF)where &'is defined by VBB Q/n, Vac Z, Be8(B,2) iff Jqq€ Q, e B, g B": = &g.a).

It is easy fo see that for a partition 7t over Q, L(A) < L(A/m). The set of all automata derived from A is &
(language inclusion) lattice Lat(A). A Regular expression is defined by :

Qisaregularexpression gisaregular expression Foreach ae X, ais a regular expression

Ifrand s are regular expressions, then (r | s), (rs), (r*) are regular expressions. An optional regular expression t is
denoted by [r}=(r | €) and the regular expression (r+) = r*r.

A context-free grammar (CFG) is denoted by G=(N, T, P, S) where N and T are finite sets, Elements of N are
called nonterminals and those of T are called terminals. P s a finite set of productions. Each production rule is
of the form A —> @ with AeN, we (N U T)*, lwP!, The special nonterminal S is called the start symbol. A
{right) regular grammar is a context-free grammar whose the productions rules are of the fom A -> o or A -
->a B. where e T, A,BeN. The language L(G) is any string ce T* such that there is a derivation from S to
o (denoted by S ===>*w). By extension, the language of any nonterminal Ae N is any string ve T* such that
for 1,0e T*, S ==>* TAQ ==>* TG,

415

Given I, the positive representation from a regular language L, I is said to be structurally complete if all
ansitions of (the unknown) automaton A(L) are used in the acceplance of strings in 1. We call the A(L)
the canonical automaton of a language L. which is a DFA accepting L. and has the minimal number of
states. The meximal canonical automaten MAC with respect to 1, (where 1, is structurally complete) is the
automaton whose language is L and has the largest number of states. One can define the prefix tree acceptor
of I, denoted by PT(1,} from the MCA by merging states sharing the same prefix. PT(I) accepts only the
strings of 1. It is well known that if I is a structurally complete sample of a regular language L, then there
exists a partition 1 over the states of PT(1,) such that PT(I Y/ is isomorphic to A(L). The aim of this paper is
to give an algebraic specification of the state partitions of PT(1) in order to formally characterise a function
on PT(L). This is done by the definition of a function over the terms of an algebra associated to PT(I) that
produces a quotient-algebra whose terms are (by construction) isomorphic to those of PT(L).
The following theoremns delimit the search space of L{A) (|8]): If1, isa positive sample. the set T" of autornata such that
1, is structurally complete with any automaton in I" is LatMVICA(I)). IF 1, is a positive sample, L the target language and 1, is structurally
complete with respect to A(L), then A(L) is an element of Lat@T()
The automaton A(L) is leamable as a partition PT(] ¥n isomorphic to A(L) in the lattice of all possible
partitions of PT(I ¥rt. The main aim of grammatical (regular) inference is to characterise this lattice and to
guide a search in it. Nole that this scarch space grows exponentially with the size of the state set in PT(1)
and therefore with the size of 1. The automata we will construct in the sequel are constrained automata [91 :
some kind of conditional automata where transitions are constrained to fulfil some conditions. For example,
a transition & (p, a/b) means that the transition takes place if the symbol oe I' is followed by Be X' . By this
means, one can constrain the context (left and right) of a symbol in the automaton.

IV- The Algebraic View

We use here the relation between an initial many sorted algebra and grammars [goguen-77-78]. This
relation over context-free grammars is easily extended to regular grammars. Such a grammar is used as
a specification (rewrite) system to define an algebra. The major property is that the defined algebra is
initial in a given category. To construct the algebra associated to a context-free grammar G, each
nonterminal of G is assigned to a class of derivation tree. Consequently, the nonterminals of G are sorts
of a many sorted algebra whose operations are defined by the production of G. The derivation tree (and
hence the language) of any nonterminal X denote the carriers of the sort X,

Let G=(N,T,P,S) be a non ambiguous context-free grammar and L be its language (we do not use
variables in the sequel; the algebraic representation of grammatical programming is detailed in [11],
[12]). Let L, be the terms (strings represented by their derivation tree) of G. Let the algebra A -algebra
be associated to G whose signature is (NUT), P) where P’is the set of names given to productions in P.
The terms of this algebra are derivation trees starting from any nonterminal of G, The terms of the As
algebra are constructed by using the names of the productions of G. Constants (0-air operators of Ay
algebra) are elements of T in the grammar G. Two sirings will be equivalent if their derivation tree
(terms of Ag-algebra) are equivalent. By equivalence, we mean an equivalence relation over the sorts of
Ay Since the nonterminals N are sorts of A -algebra, any string o such that Xe N, X==>* @ is typed by
X, particularly when we L(G) where for the start non terminal S==>*w, Note that the terms of L, are
strings whose derivation tree are the terms of A, An A -algebra is initial in a category C if for all
algebra B of C, there exist a unique homomorphism k,, : A, --> B. By the initiality of A, we have a
homomorphism A; : A, --> sem where sem denote any algebra of C. One can consider the language
generated by a context-free (or regular) grammar as an example of sem and hence to associate a string
semantics to the terms of Ay One can also define another algebra assigned to another grammar
(context-free or regular) G’ and to define 2 homomorphism from G to G'. This function can be a (syntax-

416

dirccted) transtation function. Here, we are interested by £ : A, --> L, (see [11] for the details of the
construction of an A -algebra and h). We may note that by initiality, h always exists and is defined
uniquely. A is surjective and if the grammmar G is not ambiguous, then £ is also injective. In this case,
will be an isomorphism from A, to L, For any partition o’ PT(1,) where some states are considered
equivalent (merged by some function), the generated language is a super set of I, We will show that
there exists a uniquely defined homomorphism 4 from the derivations in PT(1,) to the derivations in any
partition of PT(L). We also show that for some function induced by h, terms of PT(I ¥ are
homomorphic to those of PT(1). Thus, we will characterise different DFA of the latiice LayPT(l Y/ by
the application of this function to the terms of the A -algebra. Let PT(L} and its automaton (a regular
grammar) G, a partition PT(LYr from PT(1,) and its automaton G’ Let A, and A’; be the algebra
assigned to G and G’ Note that A and A’; have the same signature and A, is a quotient algebra of A,
Suppose further that the sorts p and p’ of A, are equivalent (p=p’ are in the same block of states of
PT(1,)/r). Let [p] denote the equivalence class of p.
Theorem-1 : the value of a derivation tree Z in A, is the cquivalence class of derivation tree of Z in A,
Thatis : (ALXZ) = [A, (Z)]. proof : this is an immediate consequence of the quotient algebra A of A,
In other words, if p=pe [p], then the derivation trees of A, whose root are p and p’ are equivalents terms
in Al One candefine i : A, > Z* a homomorphism from PT(L) to L (or j:A’, ~-> Z*) and show that all
strings of L whose derivation tree root is [p] are equivalents. Let V=(NUT) be the set sort of the algebra
Ajand Al and b A > Al Let =,=(=,,) ve V, be a family of relations on A, defined by : a =, a'iff
hia)=h(a), a, a&V, = is called the congruence relation induced by the homomorphism /. The main
problem of grammatical inference is to define 4 : A;--> A’ and to assign it a function. This function is
defined by f: PT(1,) --> PT(I). Let us define the properties of h (and).
Theorem-2 : Let Ajand A, be the algebra assigned to PT(L,) and PT(I,Y/n. Furthermore, let / : A, —->
A, be a homomorphism and =, be the congruence relation induced by 4. If the homomorphism h is
surjective, then A, = A, Proof : according to the theorem of homomorphism [13]. Let f: A, >
A’ be the family of functions defined by f([a])=h(a), a is of a sort of A, We have [a]=|a] implies that
h(a)=h(a). To show that f is an isomorphism : - f is bijective : as h is surjective by assumption, then f is
surjective. Further, if f({a])=f((a), then h(a)=h(a’) and consequently [a}=[a]. Hence fis injective.
- fis a homomorphism : let (r : p <-- & ¢) be an operation of A, The homomorphism condition may be
satisfied by : f(Aqu) e QD) =RIAX &, @D=h(A) (@ 3) = (A)Xh@) , hig)) and by homomorphism condition
=(AXfoD), flqhy
Informally, this means that given / and f the function induced by 4, if the states p=p’ under some
conditions, then for every derivation in PT(1,)/r, there is a derivation in PT(L,). Note that we have seen
that the inverse is frue in the lattice L{PT(I+)).

V- Practical issues : definition of the homomorphism h

Below, we will give an algorithm (infer) that corresponds to the function f. The function infer induced
by the homomorphism h is parametered by an integer k>0. A derivation tree in A, is of the form
pal/a2, pl(a/a3, p3(a3/ad,pd(......))..))) where ai/aj means that ai is followed by aj. Informally
speaking, if one can find two derivations. p0(al/a2/../ak, pl(a2/ad/...ak+1, p3(ad/adf.../ak+2,p4(.......)..))) and
qUb1/b62/../ok, QI3 Jbk+1, q3(b3/bA.. /bk42,G......)..))) where for i=1. k-1, j=i+1, aifaj=bifby, then for (=0, k-1, plsg].
Note that k>0 defines the extent of the function infer below where for k=0, the language of the
generated partition is *. The more k is great, the "lower" is PT(+)/x in the lattice whose bottom
element is PT(1+) and whose top element is £*. It is straightforward to see that for O<iyj, L(PT(+)/m, 1)
& L(PT(I4+)/m, j). Hence, the value of the parameter k defines the depth of the search in the lattice.

‘The function infer induced by the homomorphism / is defined as follows ;

417

Given an integer value k*1, consider every string 1. The inference process starts with infer(<40, w>, {},

k), 1,,q, the start symbol (initial state). The function infer will generate a set of conditional rules for 1 if

k>1. Let the call infer(<q,w>, G, k) be the gencral case. A state variable is a state like g, where i is an

unknown natural number to be defined at the end of cach step.

Function infer(<q,0>, G, k) returns G, =

if <q,0> = <_£> retum G; il lol<k then let k=] - for this last tum !

if there exists a rule <p,0> < <p’ > in G, where v=tx,,..., p and o3=0r,,...0, @ and unify(q.p,G} (1)

then retumn infer(<p’, @,...,0, >, G) else create arule r @ <p, © > < <p’,@,,..,0, ¢>-- p’ of the form q , i will
return infer(<p’, 0,,...0, 9>, G, U {1});-- be defined later. end if; end infer;

LN QENQ LR LN LA TR LR G
When returned from infer, different variables states of the grammar G, of each step are assigned natural
numbers beginning from the least natural not still used. Note that merges are done in infer function at ().
"The unify function sets the relations between states.

Function unify(q, p, G) returns Boolean =

if g = p then return true; else if one of (or both) p and q is a state variable (say p)
then set (p=q) in Gi; return true; else return false; end ifend if;

end unify,

V-1- A simple example

We consider the following simple positive set for I, : I' = {abbbede, abocdee, abede)

Let K=2. Then consider the first example * abbbede . The A, term comresponding to this example is (/y means
"x" followed by "y") : pOa/b, pi(b/b, p2(tvb, p3(bie, pAc/d, pS(dve, po(e/e))))))) depicted by the following path in
PT(1,): Following infer function, the states with the same prefix of length KE are merged from 1.k-

i...@i_.@.‘l’i..@ﬁ_.@
1. Here the states 1,2 and 3 are merged and give the following automata: In other words, we have 8(p1, b/b)
= p2 and &(p2, b/b) = p3. Then pl, p2 and p3 are merged. Nota bene : merging prefixes is done in other
situations in an automaton : when designing an automaton, every derivation begins from g, where we want
that every example of I, begins with g,
The following is the trace of the construction of the grammar by the cail
infer(<p0, "abbbcde", {},2). Forthesoke of simplicity, we noke" o' " by "sb” t(that s, e E* ks concaternted tothe sing "ab™)
<pl), "abbbode"> CQurrent goal There is no candidate rule Conclusion : create the rule <p0), "ob" w> —> <p, "b". >
<pl, "bbbede™> Cunvent goal creats the rule <p, "bb" 41> -> <p, 'b". 0>
<p, "bbede”> Candidate nule<p, "bb". a> ~><p,, “b". 0> rule found =}, The states§ and J will be merged
<, "bode"> create the rule <, "be" > => <p,, "¢ o>
<p,, "ede"™ create the ule <p,, "od" o> > <p, "d", >
P, "de"> creaetherule <p,"de"u> > <p,, "¢ 0> create the e, "¢ > <
<
Here j=i means that these states are merged. When the derivation is completed, integer values are assigned
to the variables beginning by 1. That would set i=1, k=2, I=3, m=4. In order to have a set of rules
correspording to the above DFA (see the figure above) and for the sake of clarity, lef's say that k=4, =5, m=6.
Note that during the construction of this automaton, the rule <p, , "bb".ax> —-> <p,, "b". > is reused and
handles the recursive part of the derivation. The set of rules of G1 obtained from this example analysis is :
<p0,"ab" > ~><p, "B 0> <P, "W e>->P,. D 0> <P, B> ~><p,, ¢ o> <p,, "cd"ax>
~><p,, "d". 6> <P, "de" > ~> <p,, "’ i> <p,e> Do
The regular expression : The extraction of the regular expression associated to G is straightforward. We have
(Gl =ab*cde

418

Note that we apply a usual generalisation rule applied in the Grammatical Inference where every v+, v eZ* is
generalised to v*. The call infer(<p0. "abcedee™>, (1, 2) for the next example adds two more rules to G1 & <p,
"o > ~><p,, "¢ > <p, "ee" > > <p,, "¢ an. Then G2is

<pl), "ab" @>--><p, "B > <p,, "hho>->ep,, "hY @» <p,, "hetas-->ap,, et o

<p,. el o>e->ep,, A ws <p), e -, et > <py, tde” 0>->ap,, et o>

<p,. e’ w>--><p,, e > <p,, "e"> 5>

The third example "abede” is accepted by G2 and does not change the grammar, The final DFA is :
€ @ ah hie o/d die ele .
gm E gc/c 8“ @

The regular expression associated to G2 is L(G2) = ab'c'de’

V-2- The Constraint Logic Program associated to G1

The grammar G2 can be immediately prototyped by a (constraint) logic program. We implemented the

grammatical inference by a logic program which is parametered by the value of K.

‘The (constraint) logic program Prg™ associated to G2 where K=2 is given by the predicate aut®
aut™('a", b L), pO k- aut™ b 1L) pl). aut™('W, B IL), pl ko™ (' 1L] pl).
ant(b, e L L pl ket TL), pd) aut™('¢, L], pd k-aut™("d 1L], p5).
at(e’ e L], pd x-aut™(Ce 1LY, pd). aut™('d’, ‘e’ IL], pS k--aut™({"e' 1L, p6).
aut"('e’, " IL], p6 ¥-aut™({'e’ 1L], p6). aut™("e’ eI L], p6)<--aut™([e} L], p7).

i aut"{e], p7).

The query <-auf"(c) p0) submitied to Prg1* will succeed if e 14G2). In order to apply an ascending evaluation

procedure, the initial state p, should appear in a basic clause (not in the query). To do this, the above program is

transformed to adual one (using ¢.g. magic set techniques [16]) in which any rule of the form

aut((ouBIL.], pi)<—aur"(BIL], pj)i transformed to aut (e L.], B, pj) <-aut(L., ., i) From Prg”’, we obtain Prg™:

ant™(] . e, po)

t™(Cat TR, plo-an™ (L, pO). aw™ (b (L], ', pid- aut™ (L, b, pl),
ant™ b L), e, pad- aut™ (L, b, pl), aw™ ("¢’ (L], ¢, pad-awt™ (L, "c", pd),
aut™ (' 1L),d . pSd-aun™ (L. 'c’ , pd). at™ @' IL] . e, pbd-aut™ (L, 'd", p5).
™ (e 1L, ‘e, p6d-aut™ (L, 'e", p6). aut™'(('e" IL] £, p7 Jer-aut™ (L, e’ , p6).

wherearule au {[otl L], B, q) € aut"'(L, 0, p) states that in the transition (p.0iy=q, P has been the last symbol
(the left context of o) and ocwill then be the left context for the next transition. To verify if a string e L(G2), one should
reverse @ (denoted by @) and then submit the query <-auf*{m, € X). This query will succeed (and will assign a value to
X)in Prg" if the query <-aut"{, p) succeeds in Prg"(See e.g, [9] for detals)

In order to prove the properties of such a program, we would simplify Prg™ by omiting the transition symbols and all
other variables. We obtain a logic program on which we would apply the immediate consequence operator ([18]). The
least fix-point of this operator is defined by TP=, T dencted by T1° where T1" = (aut(p0)} and TM=TT. T1°
characterise the set of available states of the automaton. Furthermore, for an automaton A=<(Q, Z, 8, p,), autfe T,
feF, if there exists a valid string (starting from q0) which ends to the final state £

V-3- A realistic example

Let us consider the following example of final research reports, We apply the function infer for K=1 and K=2,

Conert —>Titke, ntr, Abs, Ack, Ol Chop, Chop, Ref, Il Contert > Tile, Abs, Otn, Chop, Chep, Chep, Ref, A, Ao,

Coriert > Titk, b, Abs, O, Chap, SChog, Ches SChoys Ref Ind, Anx.

ot —>Tide, ntr Oln, Chop, SChap, Chap, SChap, Chop, SChi, Ref. Gorkent —>Tidk, Oy, Chp, SChop, Chiop, SChp, Chip, SChop, Ref

For the sake of simplicity, we abbreviated symbols as follows : Intr dntoduction Abs :Absiract SChap :subchopler Ack:
Acknowledgement Chop: Chapler Ref: Referernce Ann: Annexes Oln Outline Ind: Index. The set of rules generated for K=1:

419

Q0. T op->T 0> Pl A @>->qi2,0> Pl qLIAKID->Rer 9L T p-s>glor GRES>O
Q1" Chyop->q8,0 3, Cep'ob-><d,0> 3, Re'0>->4R0> 4 O w>->qia> - 6. "On'w>->q8.0>
GEAK W3- PHID G0, O~ g0 6, A" (195> B 7, "Oh'n> ><qi,up g7, A" 0>-> gl o i1, Tt m>-> 6,0
"The language of this automaton is : L = Title [Tntr [Abs [Ack]} | Abs] (SChap | Chapy* Ref ([Ind] Anx)* {Ind]. It is
casy to note that for K=, the language acoepted by the automaton is larger set over Z* than the one for K=2 (see
also the next section). The sct of rules generated for K=2 is given in the next page. Note that the rocursive part of the
language for K=2 is on the Chapter x Sub_Chapter part. The associated language to this automaton is : L = Title
(Abs | Intr [Abs [Ack]]) L1 where L1 = Oln (Chap SChap)* (Chap SChap | Chap*) L2 1.2 = Ref [Anx Anx | Ind
Anx]]. The set of rules generated for K=2:

0, "Title" "Ol” c>-F<pS, "Oln" > <0, “Title""Abs" a-d<pi 1, "Abs™ > <0, "Title". " Ints” 0>~ <p8, "I >

<Pl A" o2 <0, " A" e <pl"Id>Dd o <2, "Ref" A" en-d<pl0,"Anx" 0>

<2 RefVind" >3 <pl, I 0> L Ref>Io <93, "Chap” "Chap" 6>-d<p, "Chap”.ap> <p3, "Chap™"Rel oD <pi2, "Ref" >
<pd,"Chap”."SChap” o> D <pl2, "SChap" > <4, "Chap”."Chiap” o <p3, "Chap” > <, "0l "Chap” a>-><pd, "Chap”.>

<6, "Ack”, " Oln" e>-><p5,"Oin" x> <p7, "Abs""Oln" a>=F<p5,"Oln" 0> <p7, “Abs""Ack” >-P<p6, "Ack” o>

DRI O Y eps, "Olnars <8I " Ab a3 7, "Abs" o q0,"Anx"»3 > 10, "Anx" “Anx" 05> > g, "Anx" s

<pl1,"Abs""Oln" o~ <ps, "Oln"ap i 2, "SChap”."Clug "> D<pd, "Clup o <pl2,"SChap”. " Rel” o> D2, "Rel" 4>

VI- An alternative view : The table of contexts

We give here an altemative construction of the result of igfer and give the related automaton. We believe that this
representation is a suitable alternative for the GI problem with a set of positive examples This is done by the construction
of atable whese every symbol of ¥ is given with its successor and predecessor. For the above example, we have :

Symbol Predecessor of ot Successor of 0,
ael

Title £ Intr, Abs, Ol

iy Tide Abs, Oln

Abs Inte, Title Ack, Oln

Ack Abs Oln

Oln Ack, Abs, Inir, Title Chap

Chap Oln, Chap, SChap Chap, Ref, SChap

Rel Chap, SChap Ind, Anx, $

Anx Ref, fnd, Anx Anx, $

SChap Chap Chap, Ref

Ind Ref Ano$

The special symbol $’ denotes the end of a string (a final state of the automaton; a $’is added at the end of each
string before analysing) while £ denote the empty string at the beginning of a string, In fact, the table shows that
some symbol of X can be followed (resp. preceded) by a set of other symbols in Z. The canonical automaton
associated to this table is (once again, for the sake of clarity, we distinguish between € - the empty string at start -
and ¥ which is the very last symbol of each string) : Note that there are three recursive paris on the nodes 6, 6-7-
6, and 10, In order o generalise the examples of 1, the context in which the symbol 03 is present can be
"forgotten” and let the symbol ot be followed by its successor anywhere in a string whatever be the predecessor of
a. Let a symbol oie Z, P the set of its predecessors and S the set of its successors, Consider also the (language
inclusion) lattice(PT(1,)) whose top element is X* and whose bottom is PT().An interesting use of this table is
based on the well known but yet simple generalisation rule in Inductive Leaming ([19]) which "forgets” the
context of a sequence. Consequently, in the case of the above table, we can:

I~ Allow e L to be followed by an element of § and preceded by an el of P ding to I,. This corresponds to K=3 in function

infer. For example, if a="Abs", the only possible triplets of the form B."Abs".5 are <Intr, Abs, Ack>, <Title, Abs, Oln> and <Intr, Abs,

Oln>, 2- Allow ae L to be followed by any el of 8 and p ded by any el of P. This gives a good degree of generalisation.
This is » special case of infer with K=2, For a="Abs", the possible cases are : ["Intr”, "Title"} x "Abs" x {"Ack", "Oln"} which makes 4
possibilities (generalisation). 3- Allow se I to be preceded and followed by any el of Z*, This is a special case of infer with K=0.
This gives the Top element of the lattice, For a="Abs", the possible cases are B x "Abs" x 8 with 8,8 z.'Olher conﬁgmalions are

possible which correspond to K=1 : allowing octo be only followed (resp. preceded) by any symbol of S (resp, P) and

420

free for the rest. However, during our experimentation on paper documents, the case (2) above showed to be a
reasonable configuration. While an automaton specifies rules to construct sequences of, say characters, the choices
above (variations of K) let generate strings with various degree of constraints. Note that if negative examples are
taken into account, more constraints must be verified and the precedence table alone will not suffice.

V1i- Conclusion

A new algorithm for GI has been presented which is immediately prototyped by a constraint Jogic program. The
algebraic specification allows to show that the homomorphism 4 exists and we gave an implementation of it by the
infer function, An alternative view of GI based on the construction of the table of successors and predecessors of any
symbol in Z* has been outlined. The relationship between this aliernative and infer function and the formalisation of
this approach are in hands. Most of the related works on Grammatical Inference deal with positives and negative
examples, When only positive examples are available (which describe the characteristic cases), researchs concem
rather the Structured Documents field and have led to several document standards like ODA and SGML. Among
other works in the field, [20] and {21] proposed similar imethods for document analysis. But the algebraic framework
of the grammatical Inference, the logical aspects and the table manipulation for the direct grammar extraction have,
as well as known, not yet been investigated. This work is developed inside a paper document processing project
where Gl results are used to classify and then translate documents into machine readable form. The generated logic
program is augmented to handle some attributes of the logical structure of paper documents such as typographic atiributes.

VilI- References

{118 Taych-Bey, A. S. Saich "Grarmmatical Formalism for Docusment Understanding Syster : From Docurnent towards HTML Text®,
BSDIAY7, November 1997, Brasilia,

[2)EM. Gold. "Language ientification in the limit”, Information and Control, 10(5)- 1967,

[31HS, Ruand T. Booth: "Geamenatical Infevence: Inroduction and Survey”. perts | & 2. IEEE Trars. Sys. rmanand Cyber, SMG-5:95-1 1.

(41R.C. Gonzzlez and M. G, Thomason. "Syntactic Pattemn Recognition, an Introcuction” . Addison Wesley. Reading Mass, 1978,

[S1H.S. Fu. "Syntactic Pattem Recognition and Applications”, Prentice ball, N.Y. 1982,

[6] L. Midet. "Grammatical Infevence”, Syrntactic and Structural Pattern Recogrition. H, Bunk and San Feliu eds. World Scientific,

{71. Oniica, P. Garcia, "Inferring regular Languagesin Polynosmial Update time”. Pettern Recognition and lirage Analysis 1992

{8]P. Dupont, L Micket & E, Vidal, "What s the search space of Regular Inforence?, I0GIM, Grammatical Inference and Applications.
Springer-Vedag-94.

[5) L. Fribourg, M. V. Peixoto. "Autorrates conourrents A Contrainges”. TSL13 (6). 1994,

[10}J. A. Goguen, JW. Taicher, EG. Wagrer, J.B. Wright. "Initial Algebra Semantics and Continuous Algebea”, JACM 24(1), 1977.

{11] A.S. Saidi : "Extensions Gramrmaticales de la Programimtion Logiue”, PhD. 1992,

{12} A. S. Saidh, "Ontheunification of phees”, IFIP-04,

[13]H. Etvig, B. Malx. " Fundarmentals of Algebraic Specification”, Vol-| & 2. Springer-Verlag1985.

{14) EM. Gold. "Complexity of automaton identification from given data™, Inforrmation and Control, 37- 1978,

[15)J. E. Hoparodt, J.D. Ullmann. "Formal Languages and their Relation to Automata”, Addison- Wesley 1969,

[16] F. Bancilhon & all. "Magic Sets and Other Strangs Ways to Implement Logic Programs”. Proc. ACM Symp. on principles of
Databases Systerns. Boston 1986.

{17]F. Coste, J. Nicols : "Regular Ifererce as a graph coloring Problem”. ICMLY7. 1997,

[18]KR Apt, MH. Van Emden : "Contribution to the Theory of Logic Programsming”. JACM. 20(3°. 1982.

{19 RS. Michalski & all. "Machine Leaming : An Artificial Intefigence Appronch’, vol. 1 & 2. Springer-Verlag 1984 and Morgm
Kaufinann 1986,

[20] H. Ahohen, H. Mannila. "Foeming Grammers for structured dooumnents”. Research report, University of Helsiriki, 1994,

[20]P, Frankhauser, Y. Xu. "MarkitUp! anincremental approach to document structure recogpition’”, Electronic Publishing-Organisation,
Dissernination and Design, 6(4). 1994,

