
Algebraic View of Grammatical Inference

Alexander S. Saidi ~'~, Souad 'l'ayeb-bcy ~

I- Laboratoire de Reconnaissance de Formes et Vision INSA de Lyon- BAt. 403
20 Ave. Albert Einstein 69621 Villeurbanne 2- D6pt. Math6matiques, lnformatique et Syst~mes

Ecole Centrale de LyonB.P. t63. 69131 Ecully
saidi@cc.ec-lyon.fr, tayebbey@rfv.insa-lyon.fr

.Abstract. We consider the problem of grammatical inference (GI) lbr classes of structured
tkx~ments like mmmari~, dictionaries, bibliographic data basis, encyclopaedias ,and so on. The
inlizrence is based on examples of individual sample of these d~uments. In this paper, we pr~cnt
an algebraic framework of the GI in which rewrite roles will define the process of genendisation.
The implementation algorithm discussed here is used in a document handling project in which
paper dtxZtlments are tylx~graphically tagged and then recognised. One of the current applications in
this project is to trm~slate paper documents into machine readable form

I- Introduction

We consider the problem of grammatical inference for classes of sUuctured documents like summaries,
dictionaries, scientific reports, bibliographic basis, encyclopaedias and so on from examples. We propose an
algorithnl that can identify the class of regular languages from positive examples. This is the usual case in
the grammatical inference for classes of documents whose structures are learned from examples. In the
proposed method, we infer a regular grammar which generalise the Prefix-tree of the given positive
examples. Although negative examples can be considered, the usual situation in this kind of document
recognition is to deal only with the positive representation. Theses examples are structured representation of
documents which are collected by optical typographic recognition techniques ([1]). It is known that any
algorithm that would construct a DFA (deterministic finite automaton) with a minimum number of states
compatible with all the data already processed can identify any regular language in the limit ([2]), The
search space being a lattice, we propose in this paper an algebraic frmnework for the grammatical inference
and show a ftmction on the lattice that clmmcterise the construction of partitions over the Prefix-tree of the
representation. In this framework, an initial algebra A¢ is assigned to the Prefix-tree of the strings in the
sample, Then the main result is that a quotient automaton of the Prefix-tree denotes a quotient algebra A~
whose terms are obtained by the application of a uniquely defined homomorphism from A~ to A~. The
corresponding function induced by this homomorphism is then defined by an algorithm. We also discuss an
allemative view of GI problem base on the construction of a table of s ~ and predecessors of any
element of the alphabet. Then the relation between this table is discus,wA. We show how this table lead to a
automaton of the lattice. ~ proposed algorithms are used for GI in a project on paper document
processing whose one application is the translation of the document into HTML text.

414

II- The GI problem

The Inductive Inference pt~adigm is the basis of the automatic learning problem ([1]). We are interested in the
Syntactical Pattern Recognition frmnework where many gnunmatical inference algorithms exist that can be
tt~'d in the leaulfing step of ixmem recognition t~t~ks ([31,141,[51,161, [71),
Most of the algorithms ~ to infer a regular granlmar ~ only with positive data. However, it is well known
that the class of regular languages can not be correctly identified from only Ix~sitive examples. Hence, any
t~ursively enumemble c l ~ of language is identifiable using a complete relresemtation with positive and
negative data ([14]). However, the usual situation in (paper) document recognition is to l~'qgose a generalisation
of the language presented by a set on positive examples. For example, from scientific re_Ix~, we may have:

mporl -~kslmct, outline, ~ , ~ , ~ . in.x, m fermce~
~ . 'p~ t - : ,~ t a:lwowled~m~t, out~ figure~,,~Oer,,:~m~r,i,',Ozx.

Although one can propose some negative examples (for instanee, no report without any chapter or no report
without outline), the general case is the unsupervised inference and the negative information is not available. In
this l"~er, first we give ~ n e basic definitions for reference, Then, in ,,~ction IV, an algebraic view of GI
problem is given in details, In section V, .some practical i~sues and the implementation of the proposed
'algorithm are reported, An ahernative view of GI based on tables al~ presenled in section VI. Then, some
relationships with o l I~ works in the field is recalled in the section VII.

III- Basic definitions

We assmne the reader is familiar with context-free grammars, regular grammars and regular expressions ([15]).
We give some tx~.~ic definitions used in the rest of the paper.
Let Z be a finite alphal~ The set of all finite strings of symbols from Z is denoted Z*. The empty string is
denoted by v_. " I~ concatenation of two slrings u and v is denoted uv. If a siring is u=vw then v is aprefir of u
and w a suffix of u. A language denoted by L is any subset of Z*.
Afinite automaton (FA) A is a quintuplet (Q, Z, & q~ F) wbere Q is the set of states, Z is the set of input
symbols, 5: Q x Z* ")2 u is the transition function, qoe Q is the start state and F ~ Q is the set of final states. For
an automaton A, the (regular) language accepted by A is denoted by L(A).
An automaton A is deterministic (DFA) if for all q~ Q and for all a~ E, ~(q,a) has at most one (state) element A
language is regular iff it is accepted by a FA. If A=(Q, Z, 5, qt F) is a FA and n a partition of Q, B(q~n) is the
only block that contains q and we denote the quotient set by Q/re as the set of all partitions {B(q,n) I qeQ}.
Given a FA A and a partition rc over Q, the quotient (or derived) automaton A/n = {Q/~, X 5; B(qd0, {B~e
Q/n I ~kl~ B,, qe F}where 5'is defined by VB,B~ Q/n, Vae L B'e 51B,a) iff~,q'e Q, qe B, q'e B': q~ ~q,a).
It is easy to see that for a r, oaifion n over Q, L(A) ~ L(Mn). The set of all automata derived from A is a
(language inclusion) lattice Lat(A). A Regular expression is defined by:
O is a regular expre.,.~on e is a regular expression For each a~ L a is a regular expression
If r and s are regular expressions, then (r I s), (rs), (r*) are regular exlxessions. An optional regular expression r is
denoted by [r]=(r I 0 ~ the regular expression (r+) = r* r.
A context-free grammar(Cl~) is denoted by Cr=(N, T, P, S) where N and T are finite sets. Elements of N are
called nonterminals and those of T are called l~m'ninals. P is a finite set of productions. Each production rule is
of the form A -> co with Ae N, ~ (N u T)*, kol~l, qhe special nonterminal S is called the start symbol. A
(righ0 regular gnmvnaris a context-free grammar whose the productions rules are of the fcrrn A --> ~ or A-
-> o~ B. where ¢~ I', A,Be N. The Im~guage L(G) is any string t.~ T* such that tl~*e is a derivation from S to
co (denoted by S ~----->*w). By extension, the language ofauy nonterminal A~N is any string "t~T* such that
tbr "~,t~ T*, S ~----.>* xAo ~ * xax:r.

415

Given I+ the positive representation from a regular language L, I+ is said to be structurally complete if all
u~msitions of (the unknown) automaton A(L) are used in the acceplam:e of .strings in I+. We call the A(L)
the canonical atttomaton of a language L which is a DFA accepting L and has the minimal number of
states. "llle marinud tzmonh'al automaton MAC with respect to 1÷ (where l. is structurally complete) is the
automaton whose language is L and has the largest number of states. One can define the prefix tree acceptor
of I denoted by t~ (U from the MCA by merging states sharing the same prefix. PT(I+) accepts only the
strings of I+. It is well known that if I+ is a structurally complete sample of a regular language L, then there
exists a partition n over the states of PT(I+) such that PT(I.)/n is isomorphic to A(L). The aim of this paper is
to give an algebraic specification of the state partitions of FT(I.) in order to formally characterise a function
on PT(I). This is done by the definition of a function over the terms of an algebra associated to PT(I) that
produces a quotient-algebra whose terms are (by conslmction) isomorphic to those of PT(I).
The lbllowing theorems delimit the search space of L(A) ([8]): Ill is a positive sample.~e set rorau~r~a such that
I. is struca~mlly complele with any aulomalon in r is LaI(MCA{I)). If I. is a Ix)strive smnple, L the target language and I+ is structundly
~.x)mplete with ~esffzct to A(L), then A(L) is an elen~nt of l.,nl(lr['(l)).
The automaton A(L) is learnable as a partition PT(I.)/n isomorphic to A(L) in Ihe lattice of all possible
partitions of PT(I)/n. The main aim of gnunmatical (regular) inference is to characterise lhis lattice and to
guide a search in it. Note tlmt this se,'u~ch space grows exlx~nentially with the siz~e of the slate ~ t in PT(I)
and therefore with the size of 1+. The autt~nat,a we will construct in the sequel are consta,'ained automata [9] :
some kind of conditional automata where transitions are constrained to fulfil some conditions. For ex~unple,
a transition 8 (p, a/b) means that the transition takes place if the symbol ~e ~ is followed by ~ ~ . By this
means, one can constrain the context (left and right) of a symbol in the automaton.

IV- The Algebraic View

We use here the relation between an initial many sorted algebra and grammars ,[goguen-77-78]. This
relation over context-free grammars is easily extended to regular grammars. Such a granlmar is used as
a specification (rewrite) system to define an algebra. The major property is that the defined algebra is
initial in a given category. To construct the algebra associated to a context-free grammar G, each
nonterminal of G is assigned to a class of derivation tree. Consequently, the nonterminals of G are sorts
of a many sorted algebra whose operations are defined by the production of G, The derivation tree (and
hence the language) of any nonterminal X denote the carriers of the sort X.
Let G=(N,T,P,S) be a non ambiguous context-free grammar and L be its language (we do not use
variables in the sequel; the algebraic representation of grammatical programming is detailed in [1 !],
[12]). Let L G be the terms (strings represented by their derivation tree) of G. Let the algebra Ao-algebra
be associated to G whose signature is ((NUT), P') where P'is the set of names given to productions in P.
The terms of this algebra are derivation trees starting from any nonterminal of G, The terms of the Ac,-
algebra are constructed by using the names of the productions of G. Constants (0-air operators of A o-
algebra) are elements of T in the grammar G. Two strings will be equivalent if their derivation tree
(terms of Ao-algebra) are equivalent. By equivalence, we mean an equivalence relation over the soas of
A~. Since the nonterminals N are sorts of Ao-algebra, any string to such that X~ N, X ~ > * 6o is typed by
X, particularly when ¢o~ L(G) where for the start non terminal S~>*oa. Note that the terms of L o are
strings whose derivation tree are the terms of A o. An Ao-algebra is initial in a category C if for all
algebra B of C, there exist a unique homomorphism h~; : A o --> B. By the initiaiity of A o, we have a
homomorphism he; : A,~ --> sem where sere denote any algebra of C. One can consider the language
generated by a context-free (or regular) grammar as an example of sem and hence to associate a string
semantics to the terms of A o. One can also define another algebra assigned to another grammar
(context-free or regular) G' and to define a homomorphism from G to G'. This function can be a (syntax-

416

directed) translation function. Here, we are interested by h : A o --> L o (see [1 I] for the details of the
construction of an Ao-algebra and h). We may note that by initiality, h always exists and is defined
uniquely, h is surjective and if the grammar G is not ambiguous, then h is also injective. In this case, h
will be an isomorphism from A, to L,,. For any partition of IT(l,) where some states are considered
equivalent (merged by some function), the generated language is a super set of I.. We will show that
there exists a uniquely defined homomorphism h from the derivations in IT(I) to ~ derivations in any
partition of PT(I.). We also show that for some function induced by h, terms of PT(I~)/~ are
homomorphic to those of FI'(I). Thus, we will characterise different DFA of the lattice Lat(PT(I)/rc by
the application of this function to the terms of the AG-algebra. Let PT(I+) and its automaton (a regular
grammar) G, a partition PT(I.)/rr from PT(I.) and its automaton G'. Let A o and A~ be the algebra
assigned to G and G'. Note that A~and A~ have the same signature and A~ is a quotient algebra of A o.
Suppose further that the sorts p and p' of A~ are equivalent (l~'p' are in the same block of states of
IT(I.)/r0. Let [p] denote the equivalence class of p.
Theorem-! : the value of a derivation tree Z in A'~ is the equivalence class of derivation tree of Z in A o.
That is : (A~(Z) = [A G (Z)]. proof: this is an immediate consequence of the quotient algebra A~ of A G.
In other words, if I'm-p'e [Pl, then the derivation trees of A~j whose root are p and p' are equivalents terms
in A',,. One can define i : A o --> 2;* a homomorphism from IT(I.) to L (or j :A~-> ~*) and show that all
strings of L whose derivation tree root is [p] are equivalents. Let V=(NuT) be the set sort of the algebra
A, and A~, and h : ,% --> A~. Let ~ = (~ v) w V, be a family of relations on A~ defined by : a ..~ a' iff
h(a)=h(a'), a, a'e V. ~ is called the congruence relation induced by the homomorphism h. The main
problem of grammatical inference is to define h : A o --> A o and to assign it a function. This function is
defined by f: VI'(I,) --> IT(I)/n. Let us define the properties ofh (and f).
Theorem-2 : Let Aoand A o be the algebra assigned to IT(I.) and FI'(I÷)/n. Funhen'nore, let h : A a -->
A~ be a homomorphism and ~, be the congruence relation induced by h. If the homomorphism h is
surjective, then A~,¢, = A~. Proof: according to the theorem of homomorphism [13]. Let f : Ao,r~ -->
A' o be the family of functions defined by f([a])=h(a), a is of a sort of A o. We have [a]=[a] implies that
h(a)=h(a). To show that f is an isomorphism : - f is bijective : as h is surjective by assumption, then f is
surjective. Further, if f([a])=f([a]), then h(a)=h(a) and consequently [a]=[a]. Hence f is injective.
- f is a homomorphism : let (r : p <-- oc q) be an operation of A~. The homomorphism condition may be
satisfied by : f((&,~O ~la], [q])) = f([(A,~(o~ q)l)= h((&) (~ q)) = (A~h(a), h(q)) and by homomofphism condition

-- (A',~(f(ta]), f(lq]))
Informally, this means that given h and f the function induced by h, i f the states p=-p' under some
conditions, then for every derivation in lrl'(I.)/~, there is a derivation in IT(I.). Note that we have seen
that the inverse is true in the lattice L(IT(I+)).

V- Practical issues : definition of the homomorphism h

Below, we will give an algorithm (infer) that corresponds to the function f. 1'he function infer induced
by the homomorphism h is parametered by an integer k>0. A' derivation tree in A o is of the form
p0(al/a2, pl(a2/a3, p3(a3Ia4,p4(.......))...))) where ai/aj means that ai is followed by aj. Informally
speaking, if one can find two derivations, p0(al/a2/.../ak, pl(a2/a3L..ak+l, p3ta31a4L../ak+2,p4(.......))...))) and
q0(b I/b2/....'bk. ql(b2&3/../bk+l, q3(b3/b4/...,'bk+2,q4(.....))...))) where for i=l ..k- l,j=i+l, aYaj=bi/bj, then for I=0..k-l. pl~ql.
Note that k>0 defines the extent of the function infer below where for k=0, the language of the
generated partition is E*. The more k is great, the "lower" is FF(I+)/n in the lattice whose bottom
element is PT(I+) and whose top element is E*. It is straightforward to see that for O<i'j, L(PT(I+)/n, i)

L(PT(I+)/rt, j). Hence, the value of the parameter k defines the depth of the search in the lattice.
The function infer induced by the homomorphism h is defined as follows :

417

Given an integer value k31, consider every string I+, The inference process starts with b#r(<q0, to>, [},
k), I., q, the start symbol (initial state), The function infer will generate a set of conditional rules for I . if
k>l. Let the call infer(<q4o>, G, k) be the general case. A state variable is a skate like q, where i is an
unknown natural number to be defined at the end of each step,

I¢'tmctlon Infer(<q,to>, (;.~, k) returtts G~, =
if <q,to> = <_,r> return G~: iflo$<k then let k= [ml -- for Ibis last lure l

if there exists a rule <p?o> < - <p: y> in G, where v=~x,.-.t'~ p and or=~t,..,ff.~,q~ and unify(q,p,G) (1)

then return infer(<pL ct,..,ct~q~>, G,) else create a rule r : <p, to > <-- <p',o~,..,o.,,~0>-- p' of the form q, i will
return infer(<p', t'x~,..,~ q~>. G, w {r});-- be defined later, end if; end infer;

When returned from infer, different variables states of the grammar G n of each step are assigmxt natural
numbers beginning from the least natural not still tt~.ed. Note that merges are done in infer timcfion at (1).
The unify function sets the relations betw~a slates.

Functhm unify(q, p, G) returns Boolean = [
if q = p then return true: else if one of (or both) p and q is a stale variable (say p)

then set (p=q) it} Gi; relaru true; else return false; end if;end if;
end unify;

V - l - A s i m p l e e x a m p l e

We comider the lollowing simple positive set for I.: I* - { ~ , alxxx~, aJ:x:de }
Let K=2. Then consider the flint example" ~ ". The A o term coneslx:~ling to this example is (x/y means
"x" followed by "y") : p0(aro, pl(b/b, p2(b/b, p3(Nc, lrl(c/d, p5(d/e, p6(e/O)))))) depicted by the following tx~h in
PT(I,): Following/n~r function, the states with the same prefix of length KE are merged from ! ..k-

1. Here the states 1,2 and 3 are merged and give the following automata: In other words, we have ~ p l , h/b)
= p2 and ~(p2, h/b) = p3. Then pl, p2 and p3 are merged, Nota bene : merging prefixes is done in other
situations in an automaton : when designing an automaton, every derivation begins from q~ where we want
that every example of I. begins with q ,
The following is the trace of the construction of the grammar by the call
iafer(<pO, "abbbcde">, {1,2). FvrtMsvkeofsblvlidty, wemte"a"f'b".~by"ab".t0(~tis, o ~ * t s ~ t o ~ " ~ ') :

<pO, "abblxxle"> Cunent goal "[Ix~ is no candidate role Conclusion: create the role <pO. "ab".ot, -> <p~. "b". ox>
< p l , ' ~ ' ~ (~rent goal create the rule <p,, "bb".0a:.-> <pj, "b", tte,
<p/'blx~"> ~mle<p , , "bb" . t t~ -><p / ' b" .o l> mlefound t=j.ThcstaleslandJwiUbemerged
< pj, '~ocde"> c rez the role <p,, "bc" ,~ -> <la,, "c", o~
<p~,"ede"> cmte~rule <p,,"at",tt~-><p,"d",tt~.

it ItH r, <p."de"> ct,ea~themle ,q% ~ ,tn.-><p., e .tin. aeatethemle~., e "> ->o
O

Here j---i means that these states are merged. When the derivation is completed, integer values are assigned
to the variables beginning by 1. That would set i=l, k=2, 1=3, m=4. In order to have a set of rules
coneSlXm~g to the akn, e DFA (see the figure above) and for the sake of clarity, lefs say lhat k=4, -1=5, m=6.
Note that during the construction of this automaton, the role <Pi, "bb".ox> - > <E, "b". to> is reused and
handles the recursive part of the derivation. The set of roles of G1 obtained from this example analysis is :

<pO, "ab".ox. -> <p,, "b", ax:, .:p,, "bb"xt~-> <p~, "b". ax> <p,, "be".ox>-> <p,, "e", ttx. ,q% "cd"
-> <p,, "d". ox. ,::p."d=".ta>-><p,."e".ta> <p,,"e"> ->.=.

The regular exlxession : The exl~fion of the regular expression associated to GI is straightforward. We have
:L(G1)=ab* e d e

418

Note that we apply a usual generalisafic~ rule applied in tie G~mat i ca l Inference wtexe every v+, v eZ* is
ger-~'alised to v*. The call infer(<p0, "alxxxlee">, G l, 2) for fi~e next example adds two mote rifles to Gl : <p,
"cc".o~ --> ~, , ,c". o~ <p,, "ee".t~ -> <p,. "e". _oz,. Then G2 is ~.

(ll{) , "l|hi'.(I))--)(l*li , t'h'*, i l l) <i'll, "bh".t i i>--><p,, "b", (0> <Pl, "hc" ' (°>"><[h , "c". 0)>
<IL. "cd",to>--><p,, "11". to> <i'~), "cc".tl)>--'><l),, "c", m> <p(, "dc",(o>--><l') ~, "c". o)>

[<p~, "ee",(o>--><p~, "e". tO> <p~, " e "> - -><>

The third example "abcde" is accepted by G2 and does not change the grammar, The final DFA is :

The regular expression associated to G2 is L(G2) = ab 'c°de °

V-2- The C o n s t r a i n t Logic P r o g r a m associated to G I

'Ihe grammar G2 can be immediately pmtotyped by a (constraint) logic progmn. We implemented the
grammatical inference by a logic fxogram which is txu'maetaed by lhe value of K.
The (conslraint) logic lXogmm Prg '~ associated to G2 where K=2 is ~iven by the ixaticate, am':

: tul*'(['a ' , ' b ' I L J , p0 ~:-- a l l l " ' (l 'b ' I L I , p l). a u f ' (l ' b ' . 'b ' t L] , p l):--ll l l l" '(I 'b ' I L] , p l).
aut* ' (['b ' , ' c ' t L] , p l ~--aut~"(i 'c ' I L] , p4), auC"(['c ' , ' d ' I L] , p4)e . .au l~(l 'd ' I L] , p5).
attt"~(['c'. 'c" I L], p4):--aut"~(['c' t L], p4). aut~"(['d', 'e' I L], p5)~..aut'~'*([,e, i L], p6).
aut"'(['e', 'e' I L], p6 ~:--aut"'(['e" I L], p6), aut"'(['e',l~ I L], p6)<--aut"~([e I L], p7).
aut"'([e], p7).

qhe query <-aut'~(ol p0) sutmiitted to Prgl "z will succeed if (t~ L(G2). In order to apply an ascending evaluation
procedure, the initial slate Po shc~d ~ in a basic clause (not in lhe qtmy). To do this, the above program is
Iramfonned to adual one (using e.g. magic set techniques [16]) in which any role of the foim
aut"([~,131L], pi)<-alt"(li31L], I~).is tr, msflmllxl to lllff"(t(x I L], ~, pj) <_aut"diL, ot, p i) . ~ ~ , ~ ~ ~ :

aut~"~([]. ~. pO }. I
rluf*"~(l'a ' I L |, "h', pt,O- llttf ''t (L, 'a', pO), atlf"~l['b' I L], 'b', pl.,~- attl""* (L, "b', pl 1, I
liuf"'(l 'b' t L] , ' c ' , p4<)-- aut '~*~ (L, ' b ' , pl). atti"~"(['c ' I L] , ' c ' , p4~- am *'~ (L, ' c ' , p4),]
aul'~'(['c* I L] , "d'. pS<)-- aut '~'* (L. ' e ' . p4). au f~"(l'd' I L] . ' e ' , p6~-aut*" (L. ' d ' , p5). I
aut*"~(i'e" I L 1, "e' . p6,gi--au f +"' (L. ' e ' , p6), atit~'t(['e ' I L] ,e, P7)<" "aut'~" (L, ' e ' , p6).]

where a mle aut'~([a l L], ~ q) 6" aut" (L, o~ p) slates lhat in lhe ~mf~n ~(l~a)=q, ~l has lxml lpe last symbol
(lhe left context ofoO ard a will II~n be Ihe left context for ihe next ~ . To ~ ifa ~ g ~ ~) , ~ ~
revose o~ (~r t x l by ~ ard l t~ s u ~ t the tlmy <.ad~'~(~ K X~ This quety will ~ c t ~ (and will ~ a ~ m ~
x) in Prg<" if the q t ~ <-aut"(o, p~ succe~ in l~'(See e.g. [91 for a~ils).
In order to prove lhe ~ of sldl a ~ , we wa&l simptify Rg~ by mliuing lhe immition symbds ~ dl
olher variables, We obtain a logic ~ on which we woukt apply lhe immediale tamStXlttn:e ~ ([18]) ,ltle
~st r=-0oint of this ~mtor is ~ by Tg=%,TT'denoted t,y Tl" wtm'l"P= {aut"~)} m:l TI~=T?. TP
cMr0clam the set ofav~lable states of Ihe ammmm. Ralhama~ f0r lm lt, mmaton A=(Q, Z, ~5, rt, ~, ~ ~ '
f~ E iflhere exists a valkl siring (stilling from q0) which ends to ihe flml stm f.

V-3- A realistic example

Let us consider the following ~ offirtal resem:h reports, We apply the ftmcikm/n#r for K=I and K=2.
Corza ->T~ Intr, Ai~ ack o~CM~CM~ P~, ~ cor*~ ->-r#.,aix o ~ or4~ ~ o q ~ p . a ; ~ ~
cmt~ ->'rtl. ire, Aix Ol~ O,m sCM~ Ot~ SCk~ l~. i.J, Am.
oonm -> Tin, ~r,O~.CM~ scr~ Cr~ sc~ cr~ s (~ r~ Catnt ->Tm, O~,(:~ SC~ C ~ S (~ cr~ SO~ ~.
Fcrthesak~ofsimplicity, w e ~ v i a t e d s y m b o l s a s f o l l o w s : I n l r : ~ Al~'Atzir~ S , C ~ : ~
A d ~ r ~ o ~ C]-,~:CIiI~ Ref: R,~,~,ce Am:Am=~ Ok, . 'O~ lrd: kdex The set ofrulesgeiciallxt for K=h

AN:

419

,q~O.'T~"~,->,~7,ra~ <pl,"AnC'ta,->,q~,t~ <pl,l~->o qa,",~t"ta,-><l~,~t, ,~p2,"lnd'~.->q~l,ox, <p2,1~'>->o

The language of this automaton is : L = Title [Intr [Abs [Ackl] I Abs] (SC'hap I Chap)* Ref ([Ind] Anx)* [Ind]. It is
easy to nt~e tlmt for K=I, the langta~ge ~ by the aut~rmlon is larger ~ | over 2;* than the one for K=2 (.see
aLso the next section). ~ set of rules generated for K=2 is given in the next page. Nole tlmt the recursive part of the
language for K=2 is on the ~ x Sub_Clml~ pert. The associated language to Ihis automaton is : L = Title
tAbs I Inlr [Abs [Ack]]) L! where L I = OIn (Chap SCSap)* (Chap SChap I Chap*) L2 L2 = Ref [Anx Anx lind
[Anxl]~'rhe set of rules generaed for K=2:

.q~O.'T~lle"."Oln".e~,-~pS,"Olff',oz> ,q~0."Titlff'."Abs".(t'c,-)<pll,'Abff'.~t~ <~),'qlzlle","h~',o.~'-)<p&"lwat'.oz>
• ::pl, "lw3',"Ara~.ta:,~<pg. "Anx",~z~ . <pl,"Ind">-) o .qx2, "Re f '."A r~.',ez:.-) <p I O, "An x".o:z>
~2, "Ref'."Ind".ol>e~pl, 'Ind".~ > <p2. "P, eP>-)o ,q~3. "CI ~'."(~ap"xt~ e ,q~3. "Ci'mp".o~ <p3, "Chap"."Rel"~c, -) NoZ "Rel~ x.t~

<p4."Cl~p"."SCh,~".~-)<plZ"SC"hap".~ <04."a~,~p"."a~¥',~e<o3."a~".~ ~5?'oln"."a~o".oD.e~."C~a0".~a>
q~."Ack","Oln".ee,e.q~'~,"Oln".oz:, ,:p7, "Al~'V'Oln".oz:,-)'<pS,"Oln".oz, <p7."Al'~"."Ack",ox,-')<p6. "Ack",~
<l~."h~'."(lh£.¢~-')~A"Oh~".~ ~p&"h~',"AM".~-)q~7,"Al~",oz, <lO."Anx">-),~. ,q~lO."Anx"."Anx",ta>-)<l~)."Ans".t~r~

q!! !, "Al~","Oht",ole.-)<pS~"OIn",~ q~12,"~.l~,~£?tl,¥'.ox>-')q~4."(.lutp",o.~, qfl2,"S(..l~p"."Rcr'.~,t>-)<l~2."Rct".tm.

VI- An alternative view : The table of contexts

We give here an altemalive tx~sW, vaion of the n~adt of/after ancl give the rdaled a,,~mton. We believe that this
~laXrentafon is a ~table alternalive for lhe GI ~ with a set ofl:~siti~,e examples.'llais is dine by the ~

: tre6xessor. For tbe alxne e x a n ~ we have:
Symbol Predecessor or 0t

¢tg 'r

Title t

Inlr Title
Abl~ l~t¢ I *lille

Ack AI~
Oln Ack T Ahs t [ntr I Title

Chap OIn, Chep, 5Chap
Rcf Chapl $Chap, ,

AnX Rcf t lnd t Anx

sCh~p, C~p
lnd P.ef

Suet 'e~or of

Intr~ Abs. Otll
Abs r O~n

Aek I Oln

Oln
Chap

lad r Anx~ $

Arts r $
Chap~ Rcf

.~x, $

The special symbol $' denotes the end of a siring (a final state of the autonmton; a $' is added at the end of each
siring before analysing) while ¢ denote the empty siring at the beginning of a siting. In fact, the table shows that
some symbol of Z can be followed (resp. IXeCCX~) by a set of ~ symbols in 'r. 'Ihe canonical automaton
associated to this table is (once again, for Lhe sake of clarity, we distinguish between e - the empty string at start -
ard $'which is the very last symbol of each string): Note that there are three recutsive parts on the nodes 6, G7-
6, and I0. In order to generalise the examples of I+, the context in which the symbol ~ Z is lxesent can be
"forgotten" and let the symbol a be followed by its successor anywheae in a siring whatevex be the Ixedecessor of
~ Let a symbol ~ X P the set of its ~ and S the set of its successors, Consider also the (language
inclusion) lattice(Fr0)) whose top element is I;* and whose bottom is trr(I.,)An interesting use of this table is
based on the well known but yet simple gencralisation rule in Inductive Leaming ([19]) which "forgets" lhe
context of a sequence. Consequently, in the case of the above table, we can:
I- Allow tz¢ I; to be followed by an element of S and preceded by an element of P according to I . This corresponds to K=3 in function

ir!ler. For example, if ~="Aba", the only possible triplets of the form p,."Abs".8 are. <lntr, Abs, Ack>, <Title. Abs, OIn> and <Intr, Abs,

OIn>, 2- Allow ¢t¢ "~" to be followed by any element of S and preceded by any element of P. This gives a good degree of generalisation.

This is a special case of infer with K=2. For ~t="Abs". the possible c a r s are : {"lmrL "Title"} x "Abs" x {"ACE", "OIn"l which makes 4

possibilities (generalisntioo). 3- Allow ae I~ to be preceded and followed by any element of I;*, This is a special case of infer with KMI.

This gives the Top element of the lattice, For ff.="Abs", the possible cases are I~ x "Abs" x 6 with 6,pa lL'OthP.,r Corl l~gU~Ol~

possible which cotrespmd to K=I : allowing e~to be only followed (rasp. preceded) by any symbol of S (reap. P) and

420

free for the rest. However, during our expenmenlation on paper doo.maents, the case (2) above ff~owed to be a
reasonable configuration. While an automaton specifies rules to consmJct ,,~quences of, say characters, the choices
above (variatiorts of K) let generate strings with various de~ee of cortslrainLs. Nole that if negative examples are
taken into acct~nt, more cort,~,aims mttst be verified and the precedence fable alone will not sdlice.

VII- Conclusion

A new algorithm for GI has been presented which is immediately pmtotyped by a constraint logic program. "Ihe
algebraic specification allows to show that lhe h c ~ i m a h exists and we gave an implemenlation of it by the
hirer function. An alternative view of (3I based on the constn~on oflhe table of stxx::essom and predecessors of any
symbol in Z* has been outlined. The relationship between this allemalive taxi infer funetion and the formalisation of
this ~ ~,e in ~ . Most of the ~ehted wc~ks on Grammatical Inference deal with positives aM negative
examples. When only positive examples ,are available (which describe the characlerislic cases), ~ h s concern
rather the Slructur~ IX~nents field and have led to ~vexal document slardards like ODA and SGML. Among
other w~e,s in the field, [20] and [21] lXOlmsed similar melhoJs for document analysi~ But the algehaic framework
of the grammatical Inference, the logical a~ax:ts and the 1able manipulation for the direct ffammar exaaction have,
as well as known, not yet been investigated. This work is developed inside a paper docmmat l'rCcessing Ixoject
where GI tesulls are used to classify and then translate documents into m~hine readable form. The genemled logic
~ is augn'enled to handle sonae atlfi[x~es oflbe logical s~t~.-,tme oflmper doctmaenls strda as tYlx~graphic allribules.

VIII- References

[I | S. q;~BeT, A. S. S~di " C ~ ~ for Do~mrt U ~ S~ern: From ~ ~ow~ls HTML Te~.
BSDIA~/, No~rrt~ 1997, Bra~li~

[2] EJ~I. Oct~ " ~ ~ inll~lin~t". 1 ~ a n c l ~ . 10(5)- 1%7.
[3] HS. Fu ardT. Booth: "Gt,mlrai~ Infeten0~ ~ and Sur~-3r.lmaS I & 2 IFFl~.Tmns. Sys. ~ ~ 8 ~ 5 : ~ t 1"
[4] IL C ~ and M. G. ~ "Syrtaoie ~ i ~ m I ~ " . ~ Wesley. Rea:li~ Mass. 1978.
[51H.S.I~. "Sy~m:tic Patem Rem~i~on md Applicaions". Pax~cel,oll, N.y. 1987,
[6] L Midet "Ccmm,ak:al lm"eren:e". Syntactic ard Slnl:lm~ F, ikan R ~ l i o n . H, Bu~and San Fdiu eds Wodd Scia~tic.
[7] J. Onica, P. GanSa. "IrOning regular ~ ~i Polylur~ Updalelime'. ptlleln ~ aqd In-ege ~ 1992.
[8]P. lYap~ L Midct &F_, Vidal. ",Vl~t ts fie sc~d~ sl~ of P, eguhr Infcrmce7', IO01~ ~ Infamce md Applicnions

19] L Frilm~ M. V. Pdx~o. "Atm-a~ ax~rcr~ ~ ~".TSI.13 (6). 1994.
[I0] J. A. Gogum, J,W. Tald~, EG. W~n~-, J.B. Wright "Irilial Algebra ~ md~Algebra". JACM 240). 1977.
[I 1] A, S. S,~: ' ~ ' ~ r ~ ~ d e l a ~ l.ogk~". RaD. 1992
[12] A. S, Sakli. "On the anif~aion of plrmes". IFIP-94,
[131 H. l~g, B./vl~. " ~ ofAlg~t~ Sl~f, za~", Vol-I & 2. ~-Vcrhg1985.
[141E.M.C, old. " ~ t y o f ~ ~ from givm daa", lffonnam ardComd, 37-1978.
[151J. F, Hopct~JD. ~ '~x~n-ol La~ ~,~,2,~ and ~"~ir Rdaim ~o Atmm~", ,~xJ~on-Weaey 1969.
[~ . s , ~ & ~ '~,,~c sm and Cr~ S m ~ Ways to Inrhvm t.o~ ~ " . ~ AC~ Sym~ on p ,a : i~ of

~ S y a m ~ Beaon 1986
[17] E Cosle, J. N'~ols: '~,egular li£ta,a ~e as agraph oolo~ Pmblma". ICMLVL 1997.
[18] K.R. Apt, M.H. Van F.n'dm: " ~ to ~he'lheoty of Logic P ~ " . JACM. 29(3 °. 1982.
[t91R.S. M ~ &all. " M a d i m l ~ : An A~tkial I ~ A I ~ " vol. 1 & 2. Sp~ger-Verlag 1984 atr, J M(xgan

Kaffmaln 1986.
[20] H. Ah:h~ H. M a n n i l a ' ~ a , , ~ g ~ for~documn~".Reseath report Uni~'yofl-ldsi~. 1994.
[20]P. ~ , Y. Xtt "M~tUp! m imm'en~ ~aon:h ~o axtm~ amc~e reco~" , l~ec~r~c Pal~t~ g O ~

Diss~naion md Design, 6(4). 1994.

