
Constrained Attribute Grammars for 

Recognition of Multi-dimensional Objects 
(_;ittlia M. Paga l lo  

Apple Computer, Inc. 
One Infinite Loop, MS 302-21S 

Cupertino, CA 95014 
E-mail: pagalto@apple.com 

Abstract 
tlandwriting recognition is now a standard feature in many hand-held computers. In most systems, 
recognition is currently limited to recognition of handwritten text and graphics, tlowever, there is a 
need to extend recognition to undtidimensional domains thai are traditionally difficult to input wilh 
a keyboard on a desklop computer. In this paper, we address tile problem of recognizing multi- 
dimensional objecls by introducing a new class of grammars that we call constrained attribute 
grammars. In a constrained attribute grammar, semantic information is captured by attributes, while 
spatial relationships are capture by constraints on the attribute values. In addition, the concepts of 
keyword and relevance of a keyword are considered to reduce the computational complexity of 
parsing such grammars. A computationally efficient parsing algorithm based on these concepts is 
also presented. 

Keywords: syntactic pattern recognition, parsing algorith.,, mathematical formulas interpretation, 
spatial objects interpretation. 

1 Introduction 
In pattern recognition, syntactic methods are preferred over statistical methods 

whenever it is convenient to represent a pattern as a collection of related sub-patterns. However, 
strictly syntactic methods for pattern recognition are too limited to capture the full complexity 
of the sub-patterns in some domains. To overcome this limitation, Fu [5] introduced the 
concept of attribute grammars for pattern recognition. In an attribute grammar, semantic 
information about a pattern is added as attributes to the syntactic rules. 

The semantic information added to eacb production rule in a grammar is used either to 
compute the attributes of a pattern using the attributes of the related sub-patterns, or to indicate 
the applicability of the rule. The palterns are encoded into one-dimensional strings and are 
parsed using one of two conventional parsing approaches, top-down or bottom-up. However, 
these techniques cannot be applied to some structured domains, such as mathematical formulas 
or organizational charts, since the input cannot be easily encoded into a one dimensional string. 
Various techniques to overcome limitations to top-down and bottom-up parsing for multi- 
dimensional domains have been considered [2, 4, 10]. 

In this paper, we present a new class of grammars for recognizing multi-dimensional 
objects. The grammars establish a relationship between input symbols and rule symbols for 
domains where spatial relationships cannot be encoded into one dimension. We call these 
gt'ammars constrained attribute grammars (CAG). As in an attribute grammar, a constrained 
attribute grammar establishes a structural relationship among sub-patterns of a pattern by 
syntactic rules and adds semantic information about the patterns by means of the attributes. In 
addition, a constrained attribute grammar establishes a correspondence between input symbols 
and rule symbols by using constraints. Also, in a constrained attribute grammar the inpt,t 



360 

symbols are divided into two classes, keywords and non-keywords, and a relevance measure is 
applied to the keyword elements. The relevance measure is domain specific and establishes an 
order for selecting the keyword elements during parsing. 

We also present a computationally efficient algorilhm fl)r parsing a CAG, The 
algorithm takes advantage of the concepts of keyword and relevance measure to I~euristically 
ha,Tow lh,; number of rules that can be expanded at any given point while parsing, va practice, 
this heuristic often aw)ids expensive backtracking. We can think of the relevance measure as a 
way to prioritize keywords, and of keywords as local starting points for parsing. Hence, these 
two concepts allow us to parse groups of spatially related objects in the order that is determined 
by the keywords and the relevance measure. In addition, domain dependent knowledge can be 
encoded into the keywords and the relevance measure. This technique allows us to use the same 
parsing algorithm with no modifications for different domains. For instance, we have used the 
same parsing algorithm, with no changes, to parse mathematical expressions and organizational 
charts. 

Similar methods have been considered for recognition of visual languages fi)r on-line 
systems [2,3,4], however, the concepts of keyword and relevance measure are not considered 
there. The concepts of keyword and relevance measure permit the encapsulation of domain 
dependent information so that there is neither a need for domain dependent changes, as in [2], 
nor for interventions by the designer, as in [3]. Also, several methods have been proposed for 
off-line recognition of spatial objects such as mathematical expressions and organizational 
charts [61. While we have not applied our techniques to off-line recognition, the framework 
presented here is usefid in such applications as well. 

We implemented a CAG approach to recognition of nmlti-dimensional objects as part 
of a hierarchical recognition system 181. Basically, in a hierarchical recognition system, several 
recognizers are organized into a hierarchy where each recognizer at one level generates the input 
fi)r the recognizers at the next level. The recognizers at the first level use unrecognized 
information as input, e.g. strokes or bitmap images. In our case, a text or a shape recognizer or 
both provide the basic input elements for recognition of multi-dimensional objects [7,9]. 

The remainder of this paper is organized as follows. In Section 2 we present the 
concept of constrained attribute grammars and contrast them with attribute grammars. In 
Section 3 we describe a computationally efficient algorithm for parsing CAGs. In Section 4 we 
present an example o fa  CAG for a simplified mathematical expression domain and describe the 
key steps in parsing a given expression. In Section 5 we conclude the paper with observations 
about CAGs and discuss briefly future directions. 

2 C o n s t r a i n e d  A t t r i b u t e  Grammars 

A constrained attribute grafnmar is a seven-tuple G : ( V,,, V~, V,,k, A , P ,  S, 
M )  where V,, is a set of non-terminal symbols, Vk is a set of keyword symbols and V,,~. is a 

set of non-keyword symbols. The union of Vk and V,~ is Ihe set of terminal symbols. A is a 

se! of attributes so that for each terminal or non-terminal symbol X, A(x)  denotes the 
attribute value of x.  An attribute usually describes a spatial characteristic of a symbol. For 
instance the width of a symbol's bounding box. 



361 

P is a set of production rules. Each production rule has a syntactic part, a semantic 
part, and constraints that establish both a partition on the input symbols and a correspondence 
between subsets of these symbols and rule symbols. The syntactic part has the form: 

E ---> E I E 2 , . . E n  where n is a positive integer, 

E ~ V,,, Et ~ V. u V~ and Ei  E Vn L) V,,k . Hence, each rule has at most one keyword. 

The requirement that each rule has at most one keyword and that such keyword is listed as the 
first symbol on the right-hand side helps simplify the implementation of the parsing 
algorithm. However, this requirement is not a limit:'~ion since a rule with more than one 
keyword can be rewrilten as a sequence of rules with at most one keyword, and because rule 
symbols can be written in any order by using the appropriate constraints. The syntactic and 
semantic parts of a production rule have the same interpretation as in attribute grammars [5]. 
The constraint part contains a predicate |or each right-hand side symbol of a rule. Each predicate 
selects a subset of input symbols and implicitly establishes a correspondence between the 
subset and the corresponding symbol on the right-hand side. Non-null constraints are usually 
expressed in terms of attributes. 

S is, as usual, the start symbol. Finally, M is a mapping t'nm, kcywords into the 
real numbers. This mapping is a measure of the relevance of a given keyword when parsing 
some input. The idea is that keywords are considered in order of relevance when parsing. This 
provides the parsing algorithm with local starting points and reduces the need for backtracking. 

In summary, in relationship to attributed grammars, CAGs add the notion of 
constraints. A constraint associates input symbols (i.e. sub-patterns) to terminal and non- 
terminal symbols, and it defines spatial relationships between sub-patterns. Also, a CAG 
distinguishes some of its terminal elements (keywords) and it provides a relevance measure for 
them. Distinguishing some elements in the input reduces the computational complexity of the 
parsing algorithm as we discuss in the next section. 

3 Parsing Algorithm 
In this section we present the basic recursive function tbr parsing a CAG where each 

rule is either a replacement rule or it is a rule with exactly one kcyword. A replacement rule is 
a rule that replaces a non-terminal symbol with another symbol (either a non-terminal or a 
terminal symbol in the grammar). In practice, this turns out to be the most relevant case since 
the presence of keywords reduces backtracking. Also, we assume that each keyword is the 
rightmost element in a rule. While this is not a requirement, it simplifies the presentation and 
the implementation of the algorithm. In [I] we discuss the algorithm for the general case. 

The function ParseCAG takes as input a CAG G ,  a set of symbols R and a ram- 
terminal symbol L. Initially, the non-terminal symbol is the start symbol, and R is tile set 
of input symbols. The function returns success  if the input symbols form a valid expression, 
otherwise it returns fa i lure .  If the function returns success ,  the set R contains a parsed tree 
lor the input symbols. 

The function ParseCAG(G, R, L)  is defined as: 



362 

Step 1. (End recursion?) If the set R contains more than one symbol go to Step 2. Otherwise, 
let E be the symbol in R. If tbere is no rule of the form L ~ E ,  return failure. Otherwise, 
remove E from R. Form the intermediate symbol L, add L to R and return success. 

Step 2. (Select keyword) If R does not contain any ;,eyword, return failure. Compute the 
relevance measure for each input keyword in R. Call the most relevant keyword k.  Mark all 
the rules unused. 

Step 3. (Find rule) Select an unused production rule [br which k is the rightmost symbol. If 
there is no such rule, then return failure. Otherwise go to Step 4. 

Step 4. (Match symbols) Let E - -~  EIE2...F,, (where F~u = k )  be the syntactic part of the 
rule selected. Let CI...C~ be the corresponding constraints. Match the keyword symbol k 
with El .  For each symbol Ei, call Vi the subset of Ri that satisfies the constraint Ci, 
2<_i<n .  

Step 5. (Recursive call) For 2 < i < n,  call P a r s e C A G ( G ,  Ri, Ei). If all calls return 
success, remove all the symbols that matched the rule selected from R, and add R; to R. If 
any call returns failure, mark the current rule as used and go to Step 2. 

4 Example 
To highlight the main aspects of CAGs we present in this section a simple CAG G 

for recognizing mathematical expressions with only two operators, addition and division line. 
For this example, any number, and the operators "+" and "division line" are labeled as terminal 
symbols. In addition, each operator is labeled as a keyword. The symbols S,  E ,  El and E2 
are non-terminal, S is the start symbol and t is a non-keyword terminal symbol. 

For each symbol x ~ G,  its attribute value is the ordered tuple of the coordinates of 
tile corner points of the bounding box of the input symbol corresponding to x.  We denote it as 
A(x).  The relevance measure M of a keyword is the width of its bounding box. The 
production rules are given in Table !. The semantic part of the rule indicates how to compute 
the attribute for the left-hand side symbol if the rule applies. In this example, the bounding box 
lot tile left-hand side symbol is the same as the one for the right-hand side symbol (Rule I and 
Rule 4), or it is the union of the bounding boxes for the right-hand side symbols. Now let's 
turn to the constraint part. In Table 1, the constraint part of each rule lists a predicate for each 

symbol in the right-hand side of the rule. The null symbol ~b indicates that there is no 
condition to be tested. For instance, in Rule 2, the first predicate indicates that there is no 
condition to check tbr "+", while the other two predicates select the symbols to consider when 
rewriting El and E2. 

We can write a general grammar for mathematical expression by adding rules to the 
simple grammar of the example in this section. For example, the multiplication operator can 
be added by adding a rule similar to Rule 2 where addition is replaced by multiplication in the 
semantic part of the rule. Other operators can be added in a similar way. 



363 

Syntactic Part Semantic Part Constraints 

I. A(S) = A(E) or A(t) 

2. E--~+EtE~ A(E) = A(+)  u A(EO u A(£2) , A(x) is to the 

right of A ( + ) ,  and 

A(x) is is to the left 

of A(+) 

3. E---)-EIE2 A( E) = A(-)  u A( EO u A( E2) , A(x) is above 

A(+), and A(x) is 

below A ( + )  

4. Et--) ~ t  A(EO = A(E) or A(t) $,  for i = 1 , 2  

Table 1, Production rules fi~r a CAG for simple mathematical expressions 

We now describe the key steps in selecting keywords and applying the constraints 
when parsing the handwritten expression given in Figure l.a. For this example, let 's assume 
that the relevance of a keyword is the width of its bounding box. 

Z :3+ 
5 

Fig. la .  Input Expression 

Figure l.b.I to l.b.2 show the order in which keywords are selected and how 
contraints are used to partition the input and associate input elements to non-terminal symbols. 
Observe that keywords are selected in the following order: first the division line and then the 
plus sign. Notice that the relevance measure favors the division lines over the plus sign thus 
avoiding the need for backtraking that would occur if the plus sign was selected first. To 
complete the parsing successfully, Rule 4 and Rule 1 are applied. 

" 9 1 ~  El 

_.A_.,, t st keyword 

_.A E2 

Fig, l.b.1 First keyword. Boxes show how input elements are 
associated to the non-terminals in Rule 3 using the rule constraints. 



364 

El E2 
2nd keyword 

Fig. l.b.2 Second keyword. Boxes show how input elements are 

associated to the non-terminals in Rule 2 using the rule constraints. 

5 Conc lus ions  

Our initial experiments show that CAG is a promising approach for recognition of 
spatial objects in an on-line system. The use of keywords and a relevance measure can provide a 
good heuristic tbr establishing the order in which the input elements are parsed. The results 
show that when keywords and a relevance measure are selected appropriately, parsing can 
proceed with no or little backtracking. 

CAG is a flexible approach since the domain dependent inl'ormation is encoded as 
parametric data in the rules and keywords, tlence, tile descriplion of a domain can he completely 
captured by the grammar and no changes are required to the parsing algorithm. The modularity 
of the approach also allows for a concise implementation of several domains wilhin a system. 
This is an important consideration when designing a solution for hand-held devices since ROM 
and RAM memory is not readily available. 

In the domains we considered, the selection of the keyword elements was quite natural. 
For instance, each operator is a keyword for mathematical expressions. The relevance measure 
is a parameter that should be tuned for each domain. It is our experience that even simple 
measures can give good results. For instance, in the mathematical expressions domain, we 
started by using the width of a keyword bounding box as a relevance measure. 

While we focused on on-line recognition, the techniques presented here could be easily 
incorporated in an off-line system for document recognition. 

R e f e r e n c e s  
[1] G. Pagallo "Method And Apparatus For Processing Graphically Input Equations", 

U.S. Patent 5,544,262, 1996. 

[21 R. H. Anderson, "Syntax-Directed Recognition Of Hand-Printed Two-Dimensional 
Mathematics", in Interactive Systems fi~r Experimental Applied Mathematics, 
M. Klerer and J. Reinfelds, Ed. New York: Academic, I968. 



365 

131 

141 

[51 

[61 

[71 

[81 

IiOl 

R. Helm, K. Marriott, and M, Odersky "Building Visual Language Parsers". 

A. Belaid and J.P. Haton, "A Syntactic Approach For Handwritten Mathematical 
Formula Recognition", Vol. Pami-6, No. 1, 105-111, 1984. 

K. S. Fu, Syntactic Methods in Pattern Recognition, New York: Academic, 1974. 

H. Lee and J.S. Wang "Design Of A Mathematical Expression Understanding 
System", Pattern Recognition Letters 18, 289-298, 1997. 

L. Yaeger, R. Lyon, and B. Webb "On-Line Hand-Printing Recognition With Neural 
Networks", in Proceeding of the Fifth Conference on Microelectronics for Neural 
Networks and Fuzzy Systems, Lausanne, Switzerland, 1996. 

G. Pagallo, E. Beernink, M. T. Tchao, and S. Capps, "Method And Apparatus For 
Computerized Recognition", U.S. Patent 5,592,566, 1997. 

R. Bozinovic and G. Pagallo, "Shape Recognizer For Computer Systems", U.S. 
Patent 5,544,265, 1996. 

R. Mohr, "Precompilation Of Syntactical Descriptions and Knowledge Directed 
Analysis Of Patterns", Pattern Recognition, Vol. 19, No, 4, pp. 235-256, 1986. 


