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Abstract: We present in this paper a study of concavity detection using binary edge mask 
information, and consistency links between them. A model for a corner is proposed as a 
particular arrangement of edge masks. In a second step, we merge these corner in order to 
build concavities. Enclosures are obtained as a particular case of concavities. Examples are 
shown in the context of suburban area and more particularly in house images. We also 
discuss.about the limits of this approach in terms of information provided by the edge 
masks and propose some improvements in order to extend our concavity definition. 

1. Introduction 
The notion of concavity is of importance in image analysis. Biederman, in his theory 
of human image understanding, Recognition-by-components [Bie-85], assumes that an 
image of an object is segmented at regions of deep concavity into an arrangement of 
simple convex generalized cone primitives, such as cylinders, bricks, wedges, and 
cones. In this approach, concavities are discontinuities in minima of negative 
curvature. Many other works have been proposed in order to model [Ros-82], detect 
[Phi-87, Liu-90], or measure [Ros-85] concavities. In this paper, we present a 
detection technique for concavities using the information provided by binary edge 
masks [Can-88], In this approach, we try to avoid numeric decision wherever possible. 
Using the edge mask labels, we propose a symbolic detection of the concavities. We 
build high level models by successively relaxing the constraints on the model. 

2. Symbolic Pixel Labeling for Curvilinear Feature Detection 
Traditionally, curvilinear feature detection has been performed by algorithms that ,  
given an input image, use a local operator to produce a numeric value for each pixel 
that indicates the likelihood that a line passes through that point. Other algorithms 
generate line segments using mathematical operators such as the Hough transform [Itl- 
88]. Still other algorithms find candidate starting points and sequentially follow the 
curvilinear feature until no more evidence can be found for its continuation (see [Fis- 
81]). These algorithms may have some control parameters such as thresholds that can 
be manipulated to improve the output to some extend. There are two problems with 
this approach when it is used as part of a scene analysis program [Can-88]: 

(1) The scene analysis program controls the curvitinear feature extraction algorithm by 
means of numerical values and thus becomes an "algorithm expert" instead of a 
"curvitinear feature expert". 
(2) The mathematical local operators provide no detailed justification for their decision 
to include or exclude a given point from the set of curvilinear features. At best, it may 
give some numeric measure of confidence in its decision, but this is only a summary 
of separate reasons for labeling the point as part of a curvilinear feature. 
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The system that we are working on addresses these problems in the following ways: 
(1) Information preservation. We try to keep all the individual sources of 
information, rather than replacing them by summary numeric measures, so that later 
stages can review the evidence used in making early decisions, even if the decision was 
to ignore the data. This also permits giving the user more detailed explanations of the 
chain of reasoning. 
(2) Symbolic instead of numeric reasoning. We try to avoid numeric decision making 
(such as thresholding confidence measures) wherever possible. The input data, of 
course, is numeric so some of the reasoning wilt involve numeric comparisons, 
arithmetic, etc. Symbolic labels, however, are used at a very early stage to make the 
reasoning process more explicit. 

The problem domain for our curvilinear feature detection system is road network in 
aerial photographs. However, if we view the gray levels if the image as the third 
dimension of the image, our system finds ridges (or valleys). The thickness of a 
curvilinear feature is related to, but not completely dependent on, the sharpness of the 
peak (or valley); thus as long as a curvilinear feature wider than one pixel has a ridge 
(or valley), we can detect it. We further restricted our problem domain by not allowing 
roads to have high curvature, such as hairpin turns. The output of our system is a set 
of cmwitinear feature fragments for an expert system to reason about. 

The first step of our algorithm is to extract the edge mask. For each pixel p, we 
generate a set of masks that describe the pattern of gray levels in the 3x3 neighborhood 
centered at p (see [Net-87]). Each mask is characterized by the threshold interval that 
produces it. The size of this interval is called the robustness of the mask (larger the 
interval, more confident the mask). In our application, we are not interested in all the 
binary masks that can be associated to a given 3x3 neighborhood. For a complete 
analysis of such binary masks see [Dup-97]. We focus on binary edge like masks 
whose list is given in Figure 1. 

Considering each mask to be an hypothesis about p, we want to construct consistent 
interpretations from the hypotheses. Noticing that the masks centered at two adjacent 
pixels (in the eight-connected sense of adjacency) correspond to two overlapping 3 x 3 
neighborhoods, we define mask consistency in the following way: 

(1) Joint robustness greater than O. There must exist at least one gray level that can 
serve as a threshold value for both masks. This means that there is a non-zero overlap 
in the ranges of threshold values (robustness) for the two masks. 
(2) Identical overlap. The two binary masks must have the same black and white 
pattern in the region where the two 3 x 3 neighborhoods overlap. 
(3) Geometrical consistency. The two masks must make geometric sense in the 
given problem domain. This means that no domain assumptions are contradicted by 
the combined mask pair. 

The first two conditions guarantee that the gray level values of the two masks are 
compatible. The third condition guarantees that the two masks make geometric sense 
in the problem domain. Two consistent masks are said to have a consistency link 
between them, and the transitive closure of these consistency links is used to build 
connected components representing consistent hypotheses. 
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Figure 1 : The classification of edge-like masks 

3. Corner  Detect ion  
3.1 Definitions and Hypotheses 
In the digital case, concavity is not a locally detectable property [Min-88]. However, 
using edge mask labels, it is possible to define a concept of corner. In the following, 
we only use the dark masks (masks used when the edge is composed of dark pixels). 
Equivalent results can be obtained with bright masks. We first propose some 
definitions and hypotheses we use in this paper. 
The edge operator provides us with a set of connected components. Let C = [(pi,mi), 
i=l,n]. C is a connected component (or part of) if forall i in [1,n-l], it exists a 
consistency link, as defined before, between the pixels Pi and Pi+l with the masks mi 
and mi+t. We note L(mi) the label of mask mi. 
Hypothesis  : A corner is a connected component or a sub-part of a connected 
component. 
This hypothesis is of importance and we will discuss later in this paper (§4) the 
problem of corner between two different connected components. 

3.2 Sharp Corner 
The notion of corner is related to the notion of angle and especially to the ninety 
degree value. An angle can be defined by three points. So, we can defined the first class 
of corners, called sharp corner as: 
Let C = [(pl,ml),(p2,m2),(p3,m3)]. C is a sharp corner iff: 

L(m2) = D90 and L(ml) :~ L(m2) and L(m3) ~ L(m2) 

Figure 2 shows an example of sharp corner. 

3.3 Smooth Corner 
In real data, due to noise and variation of object orientations, real corners are rarely 
sharp corners. So, we build a new class of corners, called smooth corner, as : 
Let C = [(pl,ml),(p2,m2),(p3,m3),(p4,m4) ]. C is a smooth corner iff: 

L(m2) = L(m3) and L(m2) in {D90, D135, D225} and L(ml) ¢: L(m2) and 
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L(m3) ~: L(m4) and L(ml) in {D180, D135, D225} 
and L(m4) in {D180, D135, D225} 

• 

I" 
Figure 2 : Sharp Corner (+ and. stand for the pixel locations) 

Figure 3 shows an example of smooth corner. As a particular case of this class, we 
can find two neighbor D90 masks which is not allowed as two sharp corners because 
of the second and third conditions (see Figure 4). 

D135- .~  - ~ D135 
• 

Figure 3 : Smooth Corner (+ and. stand for the pixel locations) 

D225 D225 

I 
Figure 4 : Double D90 mask (+ and. stand for the pixel locations) 

3.4 Large Corners 
In order to take into account the different situations which can occurred in real image, 
we extend the notion of smooth corner to large corner using the following definition: 
Let C = [(ps,ms),(pl,mt) ..... (pn,mn),(pe,me)]. C is a large corner iff: 
Any part C' of C is not a large, smooth or sharp corner 

L(ms) in {D180, D135, D225} and L(me) in {D180, D135, D225} and 
L(ml) = L(mn) and L(mt) in {D90, D135, D225} and L(ml) # L(ms) 

and L(mn) 4: L(me) and [(p2,m2) . . . .  (Pn-l,mn-1)] is a straight line. 

Using the edge mask labels, a straight line can be defined as follows : 
[(pl ,ml) ..... (pk,mk)] is a straight line iff 

for all i in [1,k], L(m-i ) in {D180, D135, D225} it doesn't exist (i,j) such that 
L(mi) = L(mj) and L(mi) # D180 

for all a in [i+l,j-1], L(ma) = D180 
Figure 5 is an example of large corner. We call Ps, the starting pixel, Pe, the ending 
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pixel, Pl and Pn the curvature pixels, P2 . . . . .  Pn-1, the internal pixels. (n+2) is the 
length of the corner. The smooth corner is a particular case of this definition for n=2. 

p3, Dl80 
± 

p2, D135] . -~  . ~ . i ~ [  ~ .  ~ - - p 4 ,  D135 

[++ +[ +1+ 
Figure 5 : Large Corner (+ and. stand for the pixel locations) 

3.5 Results and Confidence Measure 
Figure 6 shows the cul-de-sac image and Figure 7 the result of the edge operator for 
the house in the mid left. Figures 8 and 9 summarize all the sharp, smooth and large 
corners extracted. Several corners (sharp or smooth) appear in the same area. Some 
pixels are used in different corners. This is the result of large number of segments 
extracted by the mask-based edge operator. From a human point of view, there is only 
one corner in a corner of a house. In order to find the best corner, a first solution may 
be to select the best edge segments. As Netanyahu and Rosenfeld shown in the case of 
mask volume reduction [Net-87], this is not a good solution. 

On the contrary, in the mask-based approach, we want to delay as long as possible the 
feature detection decisions in order to base them on a maximal amount of knowledge. 
So, we have to keep all the solutions. However, we can provide the higher level with 
a confidence measure which characterizes the match of a given set of pixels with a 
given set of masks. We use the confidence measures defined by Netanyahu and 
Rosenfeld in [Net-87]. For each mask, they compute robustness, contrast, Fisher 
distance, homogeneity of the foreground, and the foreground road similarity. The first 
three seem to be the most appropriate evaluation of the goodness of the mask. We 
extend theses notions from the pixel level to the corner level. 

Joint robustness greater than zero is needed for consistency link between two pixels. 
But this constraint is relaxed for a set of pixels (we are not looking for absolute 
thresholding effect). So, this measure is not of interest in the corner context. On the 
other hand, we can use the initial definition of contrast ( difference between mean gray 
level from both sides of the curvilinear feature) and Fisher distance. At the corner 
level, we have several masks. We have more points than at the pixel level. So, the 
estimations of means and standard deviations (required for Fisher distance only) are 
more reliable. But, there is no way to compute these parameters directly from those of 
the individual masks. Detail of the contrast measure is shown on Figures 8 and 9. 

4. F r o m  Corner  to Concavi ty  
4.1 Definition 
Corners, as we defined them before, are local features (except for high values of length, 
but in this case, is it still corners ?). Concavity is a more global concept. We propose 
to go from local to global by a merging process. In order to define this higher level 



307 

model, we need to relax the constraints. Indeed, we cannot keep local constraints in a 
global context because of  noise. So, we decide to remove the preliminary hypothesis 
on the inclusion of  the pattern in a connected component. Thus, we will no longer use 
the masks. We propose the following definition of  a concavity : "A concavity is a set 
of corners (sharp, smooth or large) which have a non null intersection composed of 
connected pixels". 
4.2 A mode l  fo r  c o n c a v i t y  
Let P = [p 1 ... Pn] and Q = [q I ... qm] be two different corners. The first constraint in 
the merging process is : P n Q e ~.  Due to different index notations, P c~ Q must 
contain one of the following components: 

t) [pl ,-- Pk] = [qk-. .  ql] = I  
2) [Pl ... Pk] = [qm-k+l ..- qm] = I 
3) [Pn-k+l ..- Pn] = [ql --. qk] = I 
4) [Pn-k+l ... Pn] = [qm ... qm-k+l]  = I 

Remark : In the following, we will only consider the second type of intersection. 
Equivalent results can be obtained with the others. 

The second constraint is : P n Q is composed by connected pixels. So, we must have 
P ~ Q = I which is equivalent to (considering the other pixets) : [Pk+l ... Pn] n [ql 
--. qm-k] = O. An example of  a concavity, is show in Figure 10. In this case, the new 
concavity is [ql .-. qm,Pk+l  ..- Pn]- This process is iterated until no such pair of  
corners or concavities could be merged. 

E n c l o s u r e  is a particular case of  concavity. These one cannot be found yet if we 
allow only one intersection between two concavities. So, we build a new set of  
constraints (again for the second type of  intersection): P and Q form an enclosure iff 

it exists k such that [Pl ..- Pk] = [qm-k+l ... qm] 
it exists j such that [Pn-j+l .-- Phi = [qj+l ... qm-k] 

[Pk+l --- Pn-j] ~ [qj+t ... qm-k] = 0 
k+j < Min(n,m) 

If the second condition is not verified (i.e. j=0 in the third), P and Q form a concavity. 

4.3 Resu l t s  
Figure 11 shows the enclosures and maximal concavities found in the cul-de-sac 
image. Many large concavities belong to the houses but only one to the end of  the end 
of the road. Absence of  concavities, especially in the right down part of  the picture, 
may be explained in different ways. First, it is very difficult to find concavities 
because there is not enough edge segments in these places. Moreover, they are too 
small. In that case, the absence of  concavities is due to the absence of  corners. This 
situation may also be the result of  noise or of  particular orientations which are 
characterized by highly broken lines. Another way to find more concavities is to more 
relax the constraints. Indeed, we can remove the need of  a non null intersection 
between two corners and allow a gap between them. Then, we obtain a new model 
called large concavity. The gaps must be small (1 or 2 pixels). And, as in many 
cases, 
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Figure 6 " The Cul-de-sac image 
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Figure 7 : Result of the edge operator: masks and consistency links 
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Figure 8 " Sharp and Smooth Corners 
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Figure 9" Large Corners (length in {5,6}) 
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Figure 10 : From Corner to Concavity 

we have to add a constraint (less strong than the need of common pixels) on consistent 
orientations between the two concavities we plan to merge. 

5. Discussion 

The notion of relaxing constraints, in order to build high level models, by replacing a 
constraint by a strongless one, is used in all the process we have described from the 
pixels to the large concavities. Table 1 shows this evolution. 

Model Added constraint Removed constraint 
pixel 

edge mask 

edge segment 

sharp collaer 

large corner 

concavity 

large concavities 

robustness > 0 

consistency link 

ninety degree angle 

straight line between two 
identical masks 

common points between 
two corners 

consistent orientation 

robustness 

two identical neighbor 
masks 

inclusion in a connected 
component 

common points between 
two concavities 

Table 1 : From pixel to large concavity 

The models and algorithms we used give pretty good results for houses but the quality 
of the detection highly depends on the quality of the edge detection. Especially, we 
need long segments whatever are the orientation of the objects. The work of Mraghni 
[Mra-97] on mask-based edge detection will be of great help to improve these results. 
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Figure 11 • Enclosures and Maximal Concavities 
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