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A b s t r a c t .  Volume imaging techniques are becoming common and skele- 
tonization has begun to prove valuable for shape analysis also in 3D. 
In this paper, a method to reduce solid volume objects to their 3D curve 
skeletons is presented. The method consists of two major steps. The first 
step is aimed at the computation of the surface skeleton, and is an im- 
provement of a previous method. In the second step, the surface skele- 
ton is further reduced to the 3D curve skeleton. Our skeletonization 
method preserves topology; no disconnections, holes or tunnels are cre- 
ated. It also preserves the general geometry of the object, especially in 
the case of elongated objects. Resulting skeletons for a number of syn- 
thetic and real images are presented. 
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1 I n t r o d u c t i o n  

The 3D skeleton of a volume object is either a set of 3D surfaces and curves, or, 
in the case of solid objects, a set of only 3D curves. In any case, the 3D skeleton 
is a unit wide subset of the object centered within the object and characterized 
by the same topological properties as the object. The 3D skeleton is a promising 
tool for an increasing number  of applications, especially in biomedical imagery. 
However, the articles published on 3D skeletonization are still not very numerous, 
compared to the l i terature on 2D skeletonization. 

The  general s t ra tegy for 3D skeletonization does not differ significantly from 
the s t rategy in the 2D case. Object  voxels are changed to background voxels 
under the constraint  tha t  topology and geometry of the object are preserved. 
However, a number  of essential problems are more difficult to solve efficiently in 
the 3D case. E. g., when designing topology preserving removal operations, be- 
sides preventing disconnections and creation of cavities~ which must  be done also 
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in 2D, you must avoid the creation of tunnels and the "excavation" of unwanted 
deep cavities in complex surfaces. Although many concepts such as Euler char- 
acteristics, simple points and connectivity have been studied in the past years 
[1, 6, 7, 8, 15], the implementation of skeletonization methods based on their use 
is rather complicated. 

Different approaches to 3D curve skeletonization have been proposed [2, 8, 
9, 10, 17, 18]. Mostly, the only examples given are tiny test images, which makes 
it difficult to understand what the results would be for reasonably sized and/or 
real images. It seems that the definition of protrusions or end-points, are what 
separates existing algorithms; every author has his own criteria, resulting in very 
different skeletons. 

This paper is a follow-up to a previous one, where a new method to compute 
the surface skeleton of volume objects was proposed [4]. We first improve the 
method for the computation of the surface skeleton (Sect. 3) and then introduce 
a method to reduce the surface skeleton to a curve skeleton (Sect. 4). We present 
resulting skeletons for a number of synthetic and real images (Sect. 5). 

2 Definit ions 

Each voxel v has three types of neighbours among its 26 closest neighbours; 
6 face-, 12 edge-, and 8 point-neighbours, that share a face, an edge, and a point 
with v, respectively. 

In a binary image we define an object component as a 26-connected set 
of voxels. As a consequence of the 26-connectedness selected for the object, 6- 
connectedness must be used for the background. If the background consists of 
exactly one 6-connected component, then the object is termed a solid object. 

A border voxel is an object voxel with a face-neighbour in the background. 
Object voxels, which are not border voxels, are internal voxels. 

Voxets are characterized by the numbers of n-connected components of object 
and background in their neighbourhood. E. g., a voxel is a break-point voxel if it 
has more than one 26-connected object component in its 26-neighbourhood. The 
recursive algorithm in [5] can be used to count connected components efficiently. 

Nf l8  is defined as the number of 6-connected background components in 
the 18-neighbourhood of a voxel having the central voxel as a face-neighbour. 
On a 3D surface, an outer voxel has Nf l8  = 1. If NIl8 > 1 it is called a tunnel 
voxel, because removing it would create a tunnel through the object. This clas- 
sification of surface voxels is discussed in [11, 16]. 

The D 6 metric is obtained by counting the number of steps in the minimal 
6-connected path between voxels. The D 6 distance is the 3D equivalent of the 
city-block distance in 2D [3]. 
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3 S u r f a c e  S k e l e t o n  

The surface skeleton is computed in two phases. First, an at most two voxels 
thick set of skeletal voxels is found, based on the notion of multiple voxels. In 
the second phase, the set is reduced to a unit-wide surface skeleton. Here, we 
sketch the general method and describe in detail only the first phase, which has 
been modified and improved with respect to [4]. 

Voxels are iteratively removed from the object, until no more voxels can be 
removed. Each iteration consists of four parallel steps (or scans through the 
image). 

S tep  1: . 

1. Among voxels not already labelled, identify border voxels, and label them 
with the current iteration number. 

2. Among internal voxels, identify voxels with an edge-neighbour in the 
background and label them with the current iteration number plus one. 

S tep  2" Among voxels labelled with the current iteration number, mark those 
that are multiple. 

S tep  3" Among non-multiple voxels labelled with the current iteration number, 
mark as tunnel voxels those for which N/18 > 1. When computing N/18 
neighbouring non-multiple voxels labelled with the current iteration number 
are interpreted as background voxels, i. e. they are treated as if they were 
already removed. 

S tep  4" Remove all unmarked border voxels. 

Labelling the voxels with an edge-neighbour in the background with the iter- 
ation number plus one, gives them the correct distance label (from the original 
background). Consider the internal voxels placed at the intersection of the two 
crossing planes in Fig. 1, and suppose that we do not label them as requested 
by Step 1.2. Removal of the border voxels in the intersection, exposes to the 
background other voxels in the intersection. These voxels would become remov- 
able in the next iteration. By iteration, the surface skeleton would finally have 
four planes linked to each other only by a single middle voxel. This would still 
be topologically correct, but not desirable as it would complicate analysis of the 
surface skeleton. If we instead consider that all voxels in the intersection have the 
s a m e  distance label in the D 6 distance transform of the object, it becomes ap- 
parent that they should all be checked for removal in the s a m e  iteration. Hence, 
the labelling of voxels introduced in Step 1.2. 

In Step 2 we identify multiple voxels. For volume images, we define a bor- 
der voxel of the current iteration, v, as multiple if any of Conditions A1-A3 is 
satisfied: 
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Fig. 1. Where two surfaces cross the outermost voxels of the crossing are removed, but 
creation of deep cavities is prevented by Step 1.2 in the surface skeletonization method. 

Cond i t ion  AI :  No pair of opposite face-neighbours (aligned along one of the 
three principal planes) of v exists, such that one of them is an internal voxel 
and the other a background voxel. 

Cond i t ion  A2: A 2 × 2 neighbourhood ofv (in any of the three principal planes) 
exists, such that the edge-neighbour of v is a border voxel (of the current or 
an earlier iteration), and the two face-neighbours are background voxels. 

Cond i t ion  A3: A 2 × 2 × 2 neighbourhood of v exists, such that the point- 
neighbour of v is a border voxel (of the current or an earlier iteration), 
while the other six neighbours are background voxels. 

Step 3 is necessary to prevent tunnel creation in thin complex objects [11, 16]. 
This problem is even more pronounced when reducing the surfaces to curves, and 
will be further described in Sect. 4. 

The skeletal set obtained is 26-connected and at most two voxels thick. 
The voxels are labelled with the iteration number, which coincides with the 
D 6 distance transform of the object. As the skeletal set includes all the local 
maxima of the D 6 distance transform, object recovery is possible using the re-  

v e r s e  D 6 distance transformation [14]. 
A few internal voxels might still remain where many surfaces and/or curves 

meet. Some of these voxels might not be labelled, i. e. they do not have an edge- 
neighbour in the background. Such voxels should be assigned a label equal to 
the minimum label in their 6-neighbourhood plus one, which corresponds to the 
label they would have in the D 6 distance transform. 

The set can be reduced to unit thickness by applying s i x  directional thin- 
ning processes sequentially. Using directional processes is necessary to prevent 
breaking connectedness and excessive shortening. After the thinning processes 
the skeleton consists of unit-wide surfaces (and curves). 
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4 C u r v e  S k e l e t o n  

The surface skeleton can be further reduced to a curve skeleton. A thorough 
investigation of the strategies leading to the computation of the curve skeleton 
can be found in [12]. Voxels are iteratively removed from the unit-wide surface 
skeleton, until no more voxels can be removed. Each iteration consists of three 
steps (or scans through the image). Only the two first steps are performed in 
parallel. 

Step 1: Identify outer voxels, Nf18 = 1, on the surface. 

Step 2: Inspect all outer voxels (both from the current and earlier iterations). 
Mark a voxel as removable, if it has two 26-connected components of outer 
voxels, but only one 26-connected component of object in its 26-neighbour- 
hood. 

Step 3: Sequentially remove marked voxels, unless they are break-point voxels. 

Step i identifies the voxels which are candidates for removal. Intuitively, in- 
terior surface voxels have more than one background component in their neigh- 
bourhood, and voxels on the border of a surface have one background com- 
ponent. As the background is 6-connected, its components are counted using 
6-connectedness. In Fig. 2 the outer voxels are marked in grey. If counting back- 
ground components in the 26-neighbourhood, the hatched voxels would also be 
identified as outer voxels. Removal of a hatched voxel would change the topol- 
ogy of the object as a tunnel would be created, therefore they must not be 
identified as outer voxels. The solution is to count only the 6-connected back- 
ground components in the 18-neighbourhood having the central voxel as a face- 
neighbour [11, 16], Nf18. 

Fig. 2. A thin surface where the outer voxels are marked in grey. The hatched vox- 
els are erroneously identified as outer voxels, if counting the 6-connected background 
components in the 26-neighbourhood; the 18-neighbourhood should be used. 
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Every outer voxel is checked for removal in Step 2. The voxel must have only 
one 26-connected object component, otherwise the object will be disconnected. 
Also, it must have two components of outer voxels, otherwise it may be the 
tip of a protrusion. With this definition of protrusion some voxels that are not 
really "protrusions" may remain, giving the curve skeleton for complex surfaces a 
"cloudy" look. This happens when the outer voxels do not constitute a connected 
set; some voxets only have one component of outer voxels, even if it is not a 
protrusion. Outer voxels identified in earlier iterations are also checked as the 
removal of neighbouring voxels may create two components of outer voxels, which 
allows removal. 

The removal of any single voxel marked in Step 2 preserves connectedness, 
but the simultaneous removal of all of them may disconnect the object. There- 
fore, Step 3 must be sequential. 

If the original surface is (locally) an even number of voxels broad, the curve 
skeleton becomes two voxels wide. It can be reduced to unit thickness by an 
iterative thinning process. Each iteration consists of three steps (or scans through 
the image). Only the two first steps are performed in parallel. 

Step 1: Classify tip-of-protrusion voxels as those for which a "cap" (Fig. 3) of 
background voxels fits in any of the six directions. Classify break-point voxels, 
which have more than one component of object in their 26-neighbourhood. 

Step 2: Among non-classified voxels, mark outer voxels, Nf l8  = 1, whose re- 
moval will not create tunnels. 

Step 3: Sequentially remove the outer voxels, unless the object is disconnected. 

Fig. 3. A 26-neighbourhood shown slice by slice with a "cap". The central voxel is 
a tip-of-protrusion voxel. Background voxels are white. "Don't care" voxels are grey. 
Rotation of the "cap" gives the other five direction masks. 
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The result is a 26-connected unit-wide curve skeleton. The original object can 
thereafter not be recovered, but its topology and geometry are preserved. The 
skeletal voxels are labelled with their (D 6) distance to the original background, 
which might be useful information in quantitative shape analysis. For elongated 
objects, e. g. blood vessels, curve skeletonization preserves the essential infor- 
mation, especially since the curve voxels are marked with the current diameter. 
See [13] for a recent publication. 

5 E x a m p l e s  a n d  D i s c u s s i o n  

Volume objects are synthesised in 128 × 128 × 128 images. In Fig. 4 a box of size 
40 x 60 x 80 voxels is shown. The surface skeleton of the box can be seen in the 
middle. The original object can be recovered, except for some of the original bor- 
der voxels. The curve skeleton of the box can be seen to the right, describing the 
shape of the original object well. The skeletonizations of a pyramid (base 85 × 85 
and height 122 voxels) and of the same pyramid rotated 45 ° can be seen in Fig. 5. 
Remember that the underlying metric is the rotation dependent D 6 metric. 

f/7~ \ \  

Fig. 4. A box (left), its surface skeleton of labelled voxels (middle), and its curve 
skeleton (right). [Thanks to Dr. Pieter Jonker, Delft University, The Netherlands, for 
letting us use the volume visualization software.] 

A non-synthetic example is a hand in a 170 x 150 × 120 image (Fig. 6). The 
original hand includes more than 400 000 voxels. By representing the hand with 
its surface skeleton, 6.1% of the original voxels are needed. By reducing the 
rather complex surfaces, a complex curve skeleton is obtained. In Fig. 6 the curve 
skeleton has been further pruned by a simple connectivity-preserving threshold- 
ing of the distance labels. Only 861 of the original voxels are needed to describe 
the topology and, to some extent, the shape of the hand. 

The skeletonization takes on average a few minutes for objects in images of 
a few Mbyte size on ordinary (DEC Alpha) workstations. 
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Fig. 5. Top: A pyramid (left), its surface skeleton (middle), and its curve skeleton 
(right). Bottom: The pyramid rotated 45 ° (left), its surface skeleton (middle), and its 
curve skeleton (right). 

As the underlying metric used in the skeletonization is D 6, the skeletons 
produced suffer from rotation dependence. Also, objects with flat surfaces will 
produce much "nicer" skeletons than objects with curved surfaces. To solve these 
problems we need to develop skeletons based on more rotation independent met- 
rics. The skeletons are also sensitive to noise. Every protrusion from a flat surface 
or a straight edge (in any rotation), that is not locally a corner of an octahedron 
oriented with the coordinate axes through its vertices, will generate a skeletal 
branch. Pre-processing in the form of morphological smoothing operations will 
alleviate this problem. All essential parts of the skeletons are there, so the task is 
to remove branches resulting from weak protrusions and noise. Developing good 
pruning strategies for 3D surface and curve skeletons is an important problem 
for further research. 
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F ig .  6. A hand (top), its curve skeleton (middle), and the pruned curve skele- 
ton (bottom).  [The copyright holders of this hand are Prof. Jun-ichiro Toriwaki and 
Prof. Kazuhiro Katada,  Nagoya University, Japan.] 
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