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Abstract. The main problem we persue in this paper is the question of when a 
given path-connectedness in Z 2 and Z 3 coincides with a topological cormected- 
ness. We answer this question provided the path--connectedness is induced by a 
homogeneous and symmetric neighbourhood structure. On the way we make a 
study of topological structures, arguing that the point-neighbourhood formalism 
can be well applied in the digital picture investigations. 

1 Introduction 

The structure of digital images is strongly related to the topology of the underlying grids, 
Z 2 or Z 3. Topological properties are often insensitive to (small) geometric distortions 
that occur in images and disturb the reliable recognition of objects. Connectivity and 
region adjacencies are typically derived from grid adjacencies after segmentation and 
constitute a major component of the image structure. Moreover, 3D sensors and image 
sequences introduce further discrete dimensions which need topological structure. 

Following [12] and the motivation therein, we ask when the graph-theoretic path- 
connectedness of a given digital picture, which was originally induced by an adjacency 
relation, is determined by the classical topological connectedness. The topological for- 
malism we choose is the one based on the point neighbourhoods. We first show how this 
formalism coincides, up to a categorical equivalence, with the open-set formalism and 
closure-operator formalism. This is useful in order to establish a link to the previous 
results where other formalisms were used - see e. g. [10], [12] - and, also, to prepare 
the stage for potential applications elsewhere. We then use the point-neighbourhood 
formalism to find a simple classification of all homogeneous and symmetric adjacency 
neighbourhood structures in Z 2 (resp. Z 3) so that their path-connectedness be topolog- 
ical. This extends the results of [4] and [10], and supplements [11]. As an initial step 
in studying nonhomogeneous adjacencies we consider products of topologies which 
induce typical adjacencies. We obtain rather interesting topologies in this way. 

l This work was supported by the grant from the Austrian National Fonds zur F6rderung der 
wissenschaftlichen Forschung (No. S7002MAT) and by the project of Czech Ministry of 
Education No. VS96049. 
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2 The Point-Neighbourhood Definition of Topology 

tn this note we will exclusively use the point-neighbourhood definition of topological 
space. This approach is less standard but it seems quite handy in the context of digital 
picture studies. Before we go on in justifying the latter statement, let us present formal 
definitions and establish (categorical) equivalences with other approaches. We do not 
need more of the theory of categories than the mere definition of category and functor 
(see e. g. [1] and [8]). (We will generally follow [2], adjusting the exposition to our 
purpose and to a potential use in image processing. In the notation we will write exp P ,  
for a set P,  to denote the set of all subsets of P.) 

Definition 2.1: Let P be a nonempty set. Let us assign, to each x E P,  a set JI/(x),  
J / ( x )  C exp P such that 

(N1) if U E ,4/(x),  then x E U, 
(N2) if U E J r ( x )  and U C V (V C P),  then V E ~ / (x ) ,  
(N3) if U, V E Jf ' (x) ,  then U f3 V E -4/(x), 
(N4) if U E ~ ( x ) ,  then there is a set V E J / ( x )  such that, for each 

y E V, U E JI/(y).  

Then the set P together with the assignement x ~ ,A/(x) is called a topological space. 
The set U E ~4/(x) is called a (topological) neighbourhood ofx .  

If we stand n for the assignment n:  x --+ J4/(x), we can (and shall) refer to the 
couple (P, n) as the corresponding topological space. 

Let us now define the appropriate morphisms between topological spaces. 

Definition 2.2: Let (P,n) and (Q,m) be two topological spaces, and let 
f :  P --> Q be a mapping. We say that f is continuous if the following condi- 
tion is satisfied: For each x E P and for each V E ~4/(f(x)) (taken in m) the set 
f - l ( V )  = {y E X[f(y) E V} belongs to ~ / ( x )  (in n). In other words, it is required 
that the preimages of the neighbourhoods of f(x), for each x E P,  are neighbourhoods 
ofx .  

It is easily seen that topological spaces (taken for the objects) and continuous 
mappings (taken for the morphisms) form a category (see e. g. [ 11 or [81). Let us denote 
this category by 5~. 

Topological Spaces Defined by Open Sets and by Closure 
Operation. The Equivalence with the Point-Neighbourhood 
Approach. 

In this paragraph we want to show how one can pass from one definition of topology to 
another whenever there is a need for that. Other commonly used definitions of topological 
space are either based on the specification of open sets - an approach previously used in 
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digital pictures (see [3], [4], [6], [7], [10], [12], [13], etc.) - or on the closure operation 
in the sense of the classical definition. 

Definition 3.1: Let P be a nonempty set and let 6 C exp P such that 

(@1) 0E6',PE¢~, 
n 

(6'2) i fA1 ,A2 , . . . ,An  E 6',then N A i  E 6', 
i = 1  

(¢73) i fAi E 6' (i C I, I is an arbitrary set), then U A i  E ¢~. 
iEl  

The set _P together with the collection ¢~ (resp. the couple (P, ¢~)) is called 
a topological space with given open sets. The morphisms are then defined as follows. 

Definition 3.2: Let (P, 6),  (Q, ~ )  be topological spaces in the sense of Def. 2.1. Let 
f :  P -4 Q be a mapping. We say that f is continuous if f -1  (A) C 6 for any A E ~ .  

Again, the topological spaces in the sense of Def. 3.1 together with continuous 
mappings in the sense of Definition 3.2 constitute a category. Let us denote this category 
by gop. 

The third frequently used approach to general topologies is the approach based on 
the closure operation of sets. This definition reads as follows. 

Definition 3.3: Let P be a nonempty set. Let - : exp P ~ exp P be a mapping such 
that the following conditions are satisfied: 

(-1) ~=0,  
( -  2) X C )~ for each X E exp P,  
( - 3 )  X U Y = X U I  7 for eachX, Y E e x p P ,  
(-  4) X =  X for each X E exp 19. 

Then the set P together with the mapping - : exp P -9 exp P is called a topo- 
logical space given by closure operation. 

Definition 3.4: Let (P , - ) ,  (Q,-) be two topological spaces in the sense of Def. 3.3. 
Let f :  P --4 Q be a mapping. We say that f is continuous if f(){) C f ( X )  for each 
X E exp P. 

Once again, the topological spaces in the sense of Def. 3.3 together with continuous 
mappings in the sense of Def. 3.4 constitute a category. Let us denote this category by 

Thus, we have introduced three "topological" categories. We will use the category 
~,~ (later on denoted simply by 570P) for the topological considerations of digital 
pictures which follow. We would like to advocate this approach since the topological 
phenomena of image processing seem to be best expressed in this language. Since the 
previous considerations mostly used the approach via 57op or ~_ and since sometimes 
it may be practical to pass from one formalism to the other, let us see why (how) these 
three categories axe equivalent. This question will be addressed in the next paragraph. 
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4 Equivalence of the Topological Categories ~n, ~op, and ~9"_. 

Let us recall when two categories are said to be equivalent (see e. g. [8] or [1]). This 
notion just precises the intuitive feeling of when two structures possess the same intrinsic 
quality. 

Definition 4.1: Let ~c ~ and 2"  be categories. We say that they are equivalent if there are 
two functors F :  ~ -+ f and G:  .LP ---> JU such that F o G = Id ¢c and G o F = Id 
(the symbols ld ~ ,  Id.~ mean the respective identity functors). 

Theorem 4.2: The categories fin, fop and f _  are mutually equivalent. 
Proof." We will only indicate the basic ideas of the proof, the details being a routine 
verification. The manner how we proceed is clearly seen from the proof of the first 
equivalence. We therefore allow ourselves to define the respective functors and leave 
the verification as simple excercise. 

1. Let us show first that the categories f n  and fop are equivalent. Define the functors 
F :  fr~ ~ fop and G: ~ p  -+ f n  as follows: 

(i) If (P, n) E f n ,  then F(P, n) = (P, 6) ,  where 

6 = {A C P[ for each :c E A there is J f ' ( z )  E n such that ~ ' ( x )  C A)}; 

(ii) If  (P, 6 )  E ~op, then G(P, 6') = (P, n), where 

df ' (x)  = {V C PI there is a set A E 6 such that x E A and A C V}. 

As regards the morphisms, let us define both F and G to be identifies (i.e., F ( f )  = 
f ,  G ( f )  = f) .  We claim that both F and G are functors and F o G = l d 3 ,  and 
G o F = Id crop. In the proof of this statement, we first need to verify that the definition 
is correct (i.e., F and G are well defined on the objects of gn  and 9op). But this is 
straightforward. What requires a more careful checking is the fact that F o G = Id~ .  
(resp. G o F = ld eZo~). Let us consider the composition F o G (G o F can be treated 
similarly). Take a space (P, n). We have to show that if z E P and V E o/V(z), then 
there is an open set A E F(P,  n) such that x E A C P.  By our definition, the open sets in 
F(P,  n) are exactly those sets which contain each point together with a neighbourhood 
of the space (P, n). We need find an A E F(P, n) with this property. Take the set P - V 
and put P - V = {p E PI for each U E Jf ' (p)  we have U M (P  - V) ~ q)}. Then it 
can be shown that if we put A = P - (P - V), we have z E A and A E F(P,  n). 
Indeed, x E A since V is a neighbourhood of z and therefore z ¢ ( P  - V). Further, 
take an arbitrary point a E A. Thus, a E P - ( P  - V). It follows that a ~ (P  - V) and 
therefore there is a neighbourhood, U E Jg'(a) ,  such that U n (P  - V) = 0. According 
to axiom (N4), there is a neighbourhood, W E ,/g'(a), such that U is a neighbourhood 
of each w E W. If  W f3 (P  - V) ¢ 0, then there is a point z E W Cl (P  - V). But U is 
a neighbourhood o fz  and U M (P  - V) = 0. Thus, z ~ P - V which is a contradiction. 
We have proved that for each a E A there is a neighbourhood W E ,A/(a) so that 
W N (ff'-2--~) = Ol. This means that each a E A has a neighbourhood which is a subset 
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of A. In other words, the set A = P - ( P -  V) is an "open" set containing x. We see 
that for each point x E P and each neighbourhood V E (P, n) there exists an "open 
set" A E F(P, n) such that x E A and A C V. As a consequence, F o G = Id ~-,. The 
identity G o F = / d  yop can be derived analogously. 

2. Let us show that the categories 3~ and 3_  are equivalent. We will only determine 
thefunctorsF:  3n --+ i f -  andG: if_ --+ 3,~ so t ha tFoG = Ida,, a n d G o F  = Id~r. 

(i) Suppose that (P ,n)  E 3n. If X C P,  take X = {p E P I f ° r e a c h  
U E ¢A/(x), U M X ¢ (b). Then - : exp P -+ exp P is a closure operation 
on P,  and we set F(P, n) = ( P , - ) .  

(ii) Suppose that ( P , - )  E 3_ .  If x E P,  take ~A/(x) = {U C PI 
x E U and x E P - (P  - U)).  Then the collection K ( x ) ,  for each x E P,  
forms the sets of all neighbourhods in the sense of Def. 1.1. Let us denote by (P, n) 
the corresponding topological structure. Then it suffices to set G(P,- ) = (P, n). 

3. Let us finally show that categories ~op and 3 _  are equivalent. Let us construct the 
functorsF: ~op ~ ¢-~'-- andG: 3_  --+ gopsuchthatFoG = I d 3 o  p a n d G o F  = Id3_. 

(i) Suppose that (P, 6)  E 9op. If X C P,  take 2( = {p E P f fo reach  
A E 6 ,  A M X ¢ 0}. Then - : exp P 4-4 exp P is a closure operation on P,  
and it suffices to set F(P, 6)  = ( P , - ) .  

(ii) Suppose that ( P , - )  E 3_.  Put 37 = {A C P I P - A = P - A}. Then 6 fulfils 
the axioms @1 - 63  of Def. 1.3. Thus, (P, 6 )  is a topological space given by open 
sets, and it suffices to set G(P,- ) = (P, 6). One easily checks that F o G = ld ~zop 
and G o F = ld 3_. 

The previous result establishes the equivalence of the definitions of topologies. Thus, 
we can use the same symbol, say f l O P  for each of them (though we shall exclusively 
use the point-neighbourhood approach). The "translation" into other formalisms, when 
needed here or elsewhere, can be easily done by the procedures we outlined above. 

5 Path-Connectedness and Topological Connectedness 

Let us briefly recall the formulation of our problem (see [4], [12], etc.). Let Z be the 
set of all integers. Consider a digital picture in the Cartesian product Z 2 (resp. Z3). 
This can be understand as a subset of Z 2 (resp. Z 3) together with a given adjacency 
neighbourhood assigned to each point. Thus, for instance, we can talk on the standard 
6-neighbourhood structure in Z 3 if each point (x, y, z) E Z 3 is given the following 
adjacency neighbourhood structure: 

(x,y, z), ( x - 1 ,  y, z), ( x +  1, y, z), (x, y - 1 ,  z), ( x , y +  1, z), (x,y, z - l ) ,  ( x , y , z+l ) .  

The expression of 6-neighbourhood structure refers here to the fact that the adjacency 
of a given point introduces 6 new points. We will use this expression in case of ho- 
mogeneous and symmetric adjacencies (homogeneous means that the adjacencies 
neighbourhoods are geometrically identical at each point, and symmetric means that 
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the adjacency neighbourhoods are symmetric with respect to each "centre" point). We 
will be exclusively interested in these adjacencies. We will also assume for the sake 
of a lucid formulation of our results that no adjacency in Z 2 exceeds the standard 
8-adjacency and no adjacency in Z 3 exceeds the standard 26-adjacency. 

Suppose that we are given an adjacency neighbourhood structure. Let us call it J .  
Thus, to each point x we are given an adjacency neighbourhood, some set Sx. Suppose 
p, q C Z 2 (resp. Z3). Let us say that p, q are J - re la ted  if q E Sp. Let us say that p, q 
are J-path-related if there is a finite sequencepl , . . .  ,Pn such that pl = p, Pn = q and 
each points p i ,p i+l  (i < n )are  J-related.  

Let X be a subset of Z z (resp. Z3). Restrict the relation of J-path-connectedness 
to X.  Since J is obviously an equivalence relation, it follows that J decomposes X 
into the corresponding equivalence classes. 

We are in a position to formulate the question dealt with in this paper. Let us 
suppose that Y is an adjacency neighbourhood structure on Z 2 (resp. 23). We ask 
if there is a topology on Z 2 (resp. Z ~) so that, for each X C Z 2 (resp. Z3), the 
Y.path-connectedness  on X coincides with the topological connectedness given by 
t. This topology, if it exists, may (and will) be called the topology compatible with J .  

The above formulated question seems to be first posed in [12] and [4]. The results 
obtained so far to which we want to contribute here, can be found in [5], [9], [I0], [3], 
[13] and [6]). 

Let us recall the topological notions we need and let us also state the formulation 
of our question in the point-neighbourhood setup. Let (P, t) E , .~OP be understood in 
the sense of point-neighbourhoods. We say that P is disconnected if there is a partition 
of P into two open (or, equivalently, closed) sets. Thus, P is disconnected if it allows 
for a decomposition P = R U S, where R f3 S = 0 and both R, S are open in P.  If P is 
not disconnected it is called connected. Finally, a set X C P is called connected if it is 
connected in the topology of the topological subspace of P.  (Each set X,  X C P,  can be 
naturally given a topology inherited from (P, t) - one assigns z -+ U fq X, U E Jr ' (z) .  
With this topology, X is called a topological subspace of P.) 

6 Characterizing Homogeneous and Symmetric Adjacencies in Z 2 
and Z a. 

In [11] the authors applied the topological point-neighbourhood formalism to study 
homogeneous and symmetric adjacencies in Z 2. Reproving first known results in a 
unified and simpler way and adding to them, they then found a characterization of 
homogeneous and symmetric neighbourhood adjacencies which allow for compatible 
topologies. The highlights of the results are as follows. 

Proposition 6.1: Let Y be a homogeneous and symmetric adjacency on Z 2. Then Y 
allows for a topology compatible with Y if and only if 5 ~ does not exceed a 4-adjacency. 
For any 4-adjacency, there are exactly two topologies compatible with 5 ~. 
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Fig.  1. 
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When we investigate homogeneous and symmetric adjacencies in Z 3, we can there- 
fore restrict ourselves to those adjacencies which are essentially three dimensional. Let 
us say that an Y-neighbourhood, S, of the point (x, y, z) is essentially three dimen- 
sional i f  S - L ~ 0 for each (digital) plane L which passes through the point (x, y, z). 
The previous result in Z 2 can be translated in Z 3 as follows. 

Proposition 6.2: Suppose that J is a homogeneous and symmetric neighbourhood 
adjacency in Z 3. Suppose that Y is not essentially three dimensional. Then there is a 
topology on Z 3 compatible with Y if and only if Y does not exceed the 4-adjacency. 

Let us take up the case of essentially three dimensional adjacencies. The result we 
obtain is formulated in the following theorem. It should be noted that it supplements 
and extends known results ([3], [4], [9], [10], [13]). Again, we would like to advocate 
the point-neighbourhood approach, for the proofs then become simplified. 

Theorem 6.3: Suppose that Y is a homogeneous and symmetric neighbourhood adja- 
cency in Z 3. Suppose that J is essentially three dimensional. Then if Y is a 6-adjacency, 
then there are exactly two topologies on Z 3 which are compatible with Y .  If Y exceeds 
a 6-adjacency, then there is a topology on Z 3 compatible with J if and only if J does 
not exceed the spatial 14-adjacency (see Fig. 1). 

Proof." The basic idea of the proof can be formulated as a lemma (the assumptions being 
those of Th. 6.3): 

Lemma: If S is the J -ad jacency  neighbourhood of a point (x ,y , z )  E Z 3 and if t 
is a topology compatible with Y ,  then either S or {(x, y, z)} must be a (topological) 
neighbourhood of the point (x, y, z) in t (i.e., either S E JV(x) or {(x, y, z)} E JV(x), 
where JV (x) E t). A corrolary: Each point (x, y, z) E Z 3 has a smallest neighbourhood. 
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In order to prove this lemma, observe first that each topological neighbourhood in t 
of (x, y, z) must be a subset of S. Indeed, if we write Q1 = { (x, y, z) } and Q2 = Z 3 - S, 
then both Q1 and Q2 are obviously J-path-connected but the set Qt u Q2 is not. It 
follows that there is a topological neighbourhood in t of the point (x, y, z), some set U, 
which does not intersect Q2. But then U C Z 3 - (Z a - S) and therefore U C S. 

Let U be a smallest topological neighbourhood in t of (x, y, z) (it must exist by 
the lemma above). We now have to show that if there is P E U, P ¢ (x, y, z), then 
U = S. Thus, we have to show that if Q c S then Q E U. Since the reasoning needed 
in verifying this statement in general is fully analogous to the standard 6-adjacency 
case, we will present the proof for this case. Suppose without any loss of generality that 
P = (x - 1, g, z) and Q = (x, y + 1, z) (otherwise we will just rename the points). 
Suppose that Q ¢' U. Since the set {P, Q} is not connected and the set {(x, y, z), Q} is 
connected, it follows that the smallest neighbourhood of Q, some set V, must not contain 
the point P and must contain the point (x, y, z). It follows that (x, y, z) E U n V. For 
an obvious connectedness reason, the set U f'l V cannot contain a point different from 
(x, y, z). Thus, U N V = (x, y, z). Since V is the smallest topological neighbourhood 
of Q, it must also be a topological neighbourhood of (x, y, z) (Def. 1.I, the property 
(N4)). Thus, U f'l V must also be a topological neighbourhood of (x, y, z) which is a 
contradiction. This proves the lemma. 

Let us return to the proof of Th. 6.3. If Y is a 6-adjacency, then we necessarily 
have to assign to each point either the singleton neighbourhood or the corresponding 
6-neighbourhood (see Lemma). This correctly induces only two possible topologies 
tl ,  t2 (generalized Marcus-Wyse topologies, see [13]). A simple inductive argument 
then shows that these topologies are compatible with the general 6-adjacency (this has 
already been demonstrated in [13]). 

As regards higher adjacencies, the situation is transparently seen in Fig. 1. If we 
add the diagonals 44', 55', 66' and 77' to the 6-adjacency, we can carry on the Marcus- 
Wyse construction without arriving to a contradiction. This gives us a topology com- 
patible with the given adjacency. If, however, the adjacency exceeds the spatial 14- 
adjacency (i.e., if the adjacency neighbourhoods of Y is properly larger than the set 
{1, 1', 2, 2', 3, 3', 4, 4 I, 5, 5', 6, 61, 7, 71}), then there must be a digital plane in Z 3 the 
restriction of J to which properly exceeds a 4-adjacency in Z 2. But this is absurd in 
view of Prop. 6.1. The proof is finished. 

7 Taking Products of Adjacency Topologies 

Let us observe a fact which seems interesting in its own right and, also, it is relevant 
to the investigation of nonhomogeneous adjacencies. Let us ask the following natural 
question: If adjacency structures ~ (i < n) do allow for compatible topologies, is the 
same property preserved for the Cartesian products of 5~/'s, and which new topologies 
can come into existence this way? The answer to the former question is unfortunately 
no - -  if we take for ~ (i = 1, 2, 3) the 2-adjacency on Z and for t~ (i = 1, 2, 3) 

3 

the Marcus-Wyse topologies on Z, then J = H S ~ / i s  the 26-adjacency on Z 3 and 
i = 1  

this adjacency does not allow for any topology. Nevertheless, the topological product 
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3 
H ( Z ,  ti) constitutes an interesting nontrivial topology (the faces of all dimensions are 
i----1 
properly employed for neighbourhoods). Topologies like the latter product topology 
might have some bearing on theoretical image processing (compare also with [7]). 

8 Conclusions 

The contribution of this paper is essentially threefold. Firstly, the equivalence of three 
topological categories previously used in digital topologies is established. The proof 
presented by the authors is based on simple reasoning and it is thus accessible to non- 
specialists in topology. Secondly, it is demonstrated how the point-neighbourhood topo- 
logical formalism is often handier in digital picture studies than the other formalisms. 
Finally, the characterization of the homogeneous and symmetric path-connectedness 
which allows for a topological connectedness is found. In Z 2, this is exactly the path- 
connectedness which does not exceed the 4-adjacency, and in Z 3 this is exactly the 
path-connectedness which does not exceed the spaciet 14-adjacency. In the last section, 
an observation on the topological product construction is made. 
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