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Abstract A grammatical inference algorithm is desaribed which com-
putes a context-free granmmar interpolating fractal encodings, The “frac-
tality™ of the initial curve is captured by the symbolic part of the al-
gorithm while the approximation is performed by the numetical part.
Hyvhridization of the algorithm consists in exchanging some information
between the two parts, .o, by Lranslating the cigenvalue variations of the
growth matrix into syntactic variations while checking the compatibility
with the symbolic system already inferred.

1 Introduction

IT a lot of works have been published on pattern recognition in the previous
decades, there are few available on the recognition of fractal sets. Fractals are
easy to generate and yield nice art displays but once the wonder has vanished
the fascinating inverse problem of computing the models from real data remains,
which is still unviolated. Even with models as simple as [FSs [12] the inverse
problem may lead 1o untractable computations; it is thus impossible to compute
more advanced models, even if desirable for the sake of generalization and f{or
practical reasons. Nevertheless, the key Lo unlock fractal models seems to be
the relationship between their internal structure and the basic elements they are
made ol

Structural Pattern Recognition (SPR) gathers a wide set of techniques whose
distinctive feature is to give major importance to some special information
against the set of patterns to process. In fact, recognition is achieved by com-
bining information of two diffcrent natures: firstly some disparate information
consisting in a decomposition over a sel of primitive patterns and called the
alphabet and secondly some long-range information describing relationships be-
tween subsets of patterns called the structure. Accepted patterns must present
both alphabetical and structural information compatible with the model but
most of the time, the two are straightforwardly juxtaposed since they do not
belong to the same physical or mathematical space.

In this paper, a method for computing models from “fractal encodings” of
sels is discussed, Given a sequence of encodings, the underlying structure of the
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model is computed first, then augmented with disparate information. In order
to make the first and the second one compalible, we use a syntactic model
to provide a unified framework for dealing with such information at various
semantical levels, This model is a Clontext-Free Grammar (CFQ) beeause CFGs
are appropriate to fractal modelling! (they allow intricate recursive derivations)
and because any “non fractal” noise may be modelled by a regular language
(which does not change the overall structure [7]). The syntactic optimization
runs together with a numerical algorithin so as to infer the granunatical model,

This method has been tested on encodings of 2D curves generated by just-
touching IF'Ss. However, the practical application which gave birth to this study
was far more complex: it dealt with the modeling of gold ore distribution in a
wining area [11]. Because such a distribution exhibits fractal features, syntactic
techniques seemed suitable for modeling huge data sets.

"The paper is organized as follows. Theoretical background is recalled in Sect.
2. An encoding process which extracts syntactic and structural information si-
multancously is discussed in Sect. 3. Sections 4 and 5 detail the very core of the
inference method. In the conclusion, we emphasize the use of syntactic models
for processing fractal information.

2 Preliminaries

L-systems are rewriting machines which can be used for generating self-affine
fractal curves [5,8]. For instance, Fig. 1 shows the attractor of a DOL-system
whose rules once concatenated yield the sentence “SSPR should take place in
Australia”, the initial word being “Sydney™. DOLs [14] are among the simplest L-
systems. Although “innocent-looking”, they allow the computation of sequences
with rather complex combinatorial properties. Moreover, the diversity of curves
gets wider if several morphisms are used.

In this paper, T is a finite set and 7 the free monoid of words; 1 is the
null letter. For t € T,z € T*, |z| denotes the length of z and |z}; the number
of occurrences of { in . Also, z[k] is the subword made of the k first letters of
&. A DOL is a triple (T, h,s) which generates the language £(D) = {h"(s) =
hoh™=1(s),n > 0}.

dp,(z,y) denotes the Leveustein distance (sometimes called edition distance)
between strings 2,y € 7. This distance is defined very intuitively by means of
three basic operations, del (-etion), tns (-ertion) and subs (-litution):

del(1) = {1}

VaeT, del(a) = {1}

Yu,ve T\ {1}, del(uv) = del(u) v+ u del(v)
ins(ly =T

VaeT, ins(a)=Ta+aT

Vau,ve T\ {1}, ins(uv) = ins(u) v + wins(v)

' Let us mention the growing interest. about grammars for fractal generation [9, 10, 13}.
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subs(1) = {1}
VaeT, subs(a) =T\ {a}
Yoo € TN, subs{uv) = subs{u) v+ wsubs{v)

Let o be astring, and (€ (2))hen the balls built reensively according i

Co(e) = {a}
Chymyi(e) = del (Cy oy (2)) + ins (Crumq(2)) + subs (C_y(x))

Then the Levenstein distance between 2 and y is:
di(e,yy=inl{n el y e C,(2)}

Let us recall a few results about the perturbation of the roots of a polvnomial
and the eigenvalues of a matrix (see [[5] for instance). fu the following, vectors
arc in bold font; the entries of any matrix A lic in brackets: (a; ;), its transpose
is AT, || is the matrix whose clements are [a; ;. 1, is the identity matrix of
size n x n. o(A) is the spectrum of A. d; ; is the Kronecker delta.

Il denotes either the usual Euclidean vector norm or the Frobenius matrix
norm; the latter has been chosen since it satisfies the triangle inequality for
mmabrix multiplication.

We shall use the following proposition and theorems:

Proposition 1. Let A € M,(R),b,c € R" then (formally) :
chT A1
1+bTA~1c
Theorem 1 (Baucr-Skeel). Lol A be nonsingular; let Ax = b and (A+ )k =

b +e. If for some nonnegative S,s and e: |I/|< €5 and |e|< es and in addition
1A S)l< L then

(A+cbT)"t = A~1 (I,,‘ -

s AHATH (S x| + s)l)
Il —x||< ,
| L—elllA-1 S
Many theorems yield inequalities for the roots of perturbed polynomials; the

following recent one refines Ostrowski’s. Let the Bombieri’s norm of a polynomial

- 7 ] .
P=7%"0 aix’ be:

n

Pl = |3 2D

. n!
i=0

Theorem 2 (Beauzamy [4]). Let P and Q be two polynomials defined as:
Ple) = [Ti=, (2 — 2:) and Q(2) = [T\, (® — u) and such that [P - Q]p < ¢. If
all the roots of P are distinct and if
1P’ ()]

(T o) =172
then for every j a root y; on is such that
(14 leif?)"/2

1P ()]

€ < — mm

fx; —wl< 2n
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Figurel. Iterating the rules “SSPR should take place in Australia” on axiom “Sydney”
(41,357 symbois)

3 Encodings of Real Sets

'The general idea of fractal coding is given in [3]. We have introduced in previous
papers [5,7] an image encoding method based on a recursive segmentation of
2D sets. This method yields non-balanced quadtrees [1] whose terminal leaves
are subimages taken within the original image. Quadtree encoding is easy to
implement, quadtrees meet accuracy issues since the general quadtree is but
the image itself and mapping any quadtree to a screen can be performed very
efficiently. In the present case, the whole image is assumed to be a (possibly
infinite) collection of sell-affine copics of a few source subimages.

The comparison between images is performed by an enhanced corrclation
operator which is able to manage rotation and scaling of the sets to be compared.
The leaves are the terminal letters of the final grammar while the branching
nodes of the quadtree are considered as non-terminal symbols. They are rewritten
as a word of the nodes (terminal or not) they are giving access to. Figure 2 shows
a self-affine curve; rectangular boxes are terminal leaves linked by correlation
maximization.

This method has given satisfactory results for self-affine sets but unfortu-
nately it cannot be applied to multifractal sets which are anything but self-affine!
Thus, the algorithm discussed below inakes no use of any extra structural in-
formation delivered with the encodings. Instead, it only makes the assumption
that the encodings reflect the (multi-) “fractality” of some initial phenomenon
one wants to model. In the formal languages terminology, “fractality” implies
“iteration” and requires at least the use of context-free grammars [7].

Nevertheless, it is always possible to encode a Jordan curve as a sequence
of words highlighting some iteration process (provided there is some theoreti-
cal justification in doing so !) as pointed out in [§]. For instance, the number
of symbols N(¢) for encoding a fractal curve as a function of a small line seg-
ment behaves as Ae=P where D is the fractal dimension; various algorithims are
available for computing D and for performing Freeman encoding.
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As the curve is assumned to be interpolated by a non-erasing DOL-system,
Perron-Frobenius’ theorem yields N{¢} ~ B(/\,,mx)k for some k, Ayax being
the {(positive} greatest eigenvalue of the growth matrix {see Sect. 4). Since ¢ is
a parameter of the encoding algorithm (¢ may be a function of the encoding
accuracy}, it is possible to plot (log(c), log{N{(¢}}) so as to find Ay the best
integer sequence ki, ko, ..., and the relaled encodings are comptuted accordingly.
We performed such a process successlully on just-touching 1S curves [5].

Figure2. Possible correlation locations in a self-affine curve

4 DOL Computation and Grammatical Inference

As an input, let us consider a sequence S = {wy, 22, - ,2p} of words over
T = {ty,ta, 1y} (with n+ 1 < p) and the related sequence of integer vectors:
gk = [|zkle,, lTkley, oy J2kle,], | < k < p. S can be mapped to R™ by using an
expansive morphism K : T — R" which is not needed to be detailed here. The
“fractal space” is the complete space (R", h) whete h is the ITausdorfl metric.
One assumes there is an approximation of S by a regular D0L-sequence, i.¢.

ok = ko ¥ (%), L<k<p, (1)

with ¢ : T* — T* a non-erasing morphism, &, some initial word? and . a
transduction such that

"

? Please note that symbol “~" means that the adressed value is the one related to the
optimal case, i.e. without noise,
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di{px od;"'(;i:;,),d)"'(.&n)) <qg, il <k<p. {(2)

Previous equation can be rewritlen in the numerical space as

ge = Mg+ 0 1 <k <p . ()

In this equation M € M, (I'), gi € I'1?, gu is an initial vector and ;, stands
for some bounded noise (sup;¢x<p 10k]= ¢ < o) whose distribution is assumed
to be uniform over 7. One must notice that this condition is rather general:
the noise may be anything but a cascading process. In general, sup, |0 | <
supy dp(py o (j)l(:co), d)’(:vg)). It is important that q is finite as stated by:

Proposition 2 (Blanc-Talon [7]). If (u") is un increasing sequence (aceording
to <) whose limit is u, and if (v") is a sequence such that Ip,m € N.¥n >
m, dr,(u™, v*) < p, then their mappings K{u") and K (o™} in BR" converge lo the
swme urve i the Hausdorfl metrie h.

M is the growth matrix of morphisiu ¢ aud its entries ave |¢(4;)]e,. Inferring
the DOL-system in the perfect case (Yk, 0 = 0 and ¢ = 0) can be d.clucve(l either
in the symbolic space or in the numerical space. However, neither method works
in case of noisy sequences. The new following approach consists in using the
partial results computed by a numerical algorithm as the imput of a symbolic
method and vice-versa, as long as the result after the current pass is not correct.
The maximum number of loops is n (= #7T).

First, one determines the characteristic polynomial P of the perturbed matrix
M, written R for sake of clarity, from the set of vectors gi. Since the noise has
an upper limit, the method converges to the correct values: the coefficients of
P have continuous variations according to the noise, and so do the roots if this
noise is small enough. Then, perturbed eigenvalues are computed, which are
located in some Gerschgorin disks of the exact values we are looking for. We use
a refined estimate of the disc for computing their variation range and possible
integral matrices are constrained by this result. The symbolical part consists in
determining the morphism rules with the greatest row sum; it is performed by
considering the number of occurrences of subwords of increasing length.

Please notice that the proofs are given below in the scalar case which light-
ens the notations (a lot !). Instead of considering the sequence of vectors gg,
one considers a sequence of vector entries (g1 = gi1(l), -+, gp = 8p(!)). This
sequence also formns a vecior; let g denole this vector. The following formulas
are still valid for vectors, however in a more complex form. Given #7T', there
is indeed a particular | for which the whole method does work (i.e. matrix G
is nonsingular). Approximating P by P implies computing the best hyperplane
through g1, -, gp:

9 P n
5 S lo =D wgkt] =0, (4)

K=n+41 =1
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which yields:
a=G" = (g0, )2 )7 (sl 0))), (5)

with (¢ € M, (L), u e 117 and the entries being sg(i, j) = ZZ:”‘H Hhemillli=j
Solutions of
n~t
P Z"’U =27 - Z ape” ™ = (6)

k=0
are the estimated eigenvalues. One has G = ¢ — (007 +g07 +0g"). Perturhation
of =1 can thus be computed by setting A = G — (067 +g0" ), b=g,c = -0 in
(1) which allows Theorem 1 to yield the max of ||a— &||, that is the perturbation
over polynomial coefficients. The next step is to quantify the spectrum variation:
assuming that the roots ol P are distinet "Theorem 2 applies :

(14 A3 n/2)

;z k(tl‘gl\f’?_k

k=1

R -l (7)

This result states that one can deduce the range of varialions of ¢(/1) wilh
respect to (M) from the bounds of 0. How is it possible to relate || R — M|]
itself to the former ? Since P()) = Det(M — I, A), taking derivates with respect
to any @, on both sides yields:

7"
AT ma, AT IE)C{(PIA = Z Det(Q(k)) , (8)
m /‘:=1

my g — 5,’ «,‘)\ 1 # k
with Q() ={ dmiy o O . (9)
dam, " )Oam -
This expansion in terms ol determinants of Q(k) is very important since
every line of R reflects the related rule ¢(tx). Taking A in the neighborhood
of every A; allows us to determine the upper bound of the entries of R as a
function of the noise; the lower bound is always zero since ¢ is assumed to be
non-erasing. Since M € M(N), the problem can be solved by a minumnization
algorithm around initial entries of R. Simulated annealing has been used for
finding M which minimizes ||g(m + 1) — Mg(m)|| under the constraint 0 <

m; ; < [variation given by (8)].

Thus, the whole algorithm can be sunumarized as {ollows.

Compute o(R) from g(1),9(2), -, 9(p).

Compute the possible variations of r; ; from values ay, ag, -+ ,ay.
Compute the rewrite rules from the longest and the most frequent subwords
in S.

Fill matrix R and perform the minimization described above.

. If the variations of M are greater than those allowed by (8}, choose the next
possible subwords and repeat Step 4.

b o

o
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5 A CFG and a Regular Transduction

A CEFG can be derived from the DOL computed above very casily. Briefly. every
termsinal letter in every rule (1) = s, € T\ s € T* is replaced by a new non-
termminal symbol and by adding the related “terminal rules™. Given D = (1", ¢, s),
let us consider an auxiliary set N and a one-to-one mapping yt: 7' = N

Definition 1.
Gp = (T.N, uls), {jult) = j(d(0),L €T} U {p(t) » 1, € T))

Moreover, one has to add significant rules for changing these “perfect™ words
into the real ones. Practical results showed that it is unwise to add these rules
dircctly to the grammar: the diversity of curves aceepted by a syntactic parser
gets too wide. Thus, we decided to model the difference between the context-lree
language and the real samples by a transduction vg, that is a subset T~ x T
of T* x T*, Let £~ (respectively t1) denote the cardinal of T (resp. T). Since
the noise is bounded, v is a regular transduction ([2], an absolute reference),

Iuference of 75 is achieved by computing the sequence of distances between
the “perfect” words ¢{xy),0 < k < p (2o is unknown) and the real samples 2y 41.
The algorithm for computing dp (#1.41, ¢x) yields the trace of the distance, that
1s, the minimum set of basic operations used to transform any of the two words
into the other one. Such a trace defines a set of local transductions I'(k) =
(¥, 42, -+ 7L*} for every k; let I's defines the union of local transductions
overall the set S of words: I's = Uy, I'(R).

The (finite) transduction yg is the union for every k of the local transduction
y =17 x T minimizing Yy 4o tr and 30y chep t} simultaneously.

6 Concluding Remarks

Syntactic recognition of fractal patterns turns out to be a new promising field of
research and applications. Promising, first because it shares a common back-
ground with usual syntactic pattern recognition: one has to dig into formal
languages theory in order to find a strong theoretical framework. In fact, the
difference lies only in the nature of the model which is assumed to be fractal.
But this point is actually essential, for syntactic models can encode this fractality
explicitly. Secondly, this fractality is the key to establishing a fruitful connection
between both theories of formal languages and dynamical systems. Fascinating
problems such as the modification of geometrical generative power of grammars
as a function of the mapping appear at the interface of this connection.

Syntactic techniques exhibit real advantages over numerical and statistical
techniques {despite [16], a very pessimistic paper !) in the fractal case. Fractal-
ity, considered as a recursion scheme, is naturally encoded by means of CFGs.
High-level fractal information is processed at the same level as the disparate
information.
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