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Abs t rac t  A grammatical inference atgorii,hm is described wtfich com- 
tmtes a context-free grammar intcrl)olating fl-actal en('odings, The "l'r~u'- 
tality" of the initial curve is captured by the symbolic part of the al- 
gorithm whilc the al~l)roximaticm is t~(,rfornt(,d by {.he lumwrical pm't. 
l iybridization of the algorithm consists in exchanging some int'ormation 
between the two parts, i.e, ])y trauslat, ing tim cigenvalue ,~vn'ial, it)ns ()[' (,tie 
growt, h mat, fix into synt, actic variations while checking the compatibility 
with the symbolic syst, cm ah'eady inferred, 

1 Introduct ion 

Ir 11. lot of works httve been Imblishcd on patte,'n recognition in the previous 
decades, there are few available on the recognition of fractal sets. Fractals are 
easy to generate and yield nice art displays but once the wonder has vanished 
tile fascinating inverse problem of computing the models fl'om real data  remains, 
which is still unviolated. Even with models as simple as IFSs [12] the inverse 
problem may lead to untractable computations; it is thus impossible to compute 
more advanced models, even if desirable for the sake of generalization and for 
practical reasons. Nevertheless, the key to unlock fractal models seems to be 
the relationship between their internal structure and the basic elements they are 
made of. 

Structural  Pat tern Recognition (SPR) gathers a wide set of techniques whose 
distinctive feature is to give major importance to some special information 
against the set of patterns to process. In fact, recognition is achieved by com- 
bining inlbrmation of two different natures: firstly some disparate information 
consisting in a decomposition over a set, of primitive patterns and called the 
alphabet and secondly some long-range information describing relationships be- 
tween subsets of patterns called the structure. Accepted patterns must present 
both alphabetical and structural information compatible with the model but 
most of the time, the two are stra!ghtforwardly juxtaposed since they do not 
belong to the same physical or mathematicM space. 

In this paper, a method for computing models from "fi:actal encodings" of 
sets is discussed, ('~iven a sequence of encodings, the underlying structure or the 
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model is computed first, then augmented with dispa,'atc intbrmation. In order 
to make the first and the second one compatible, we use a syntactic model 
t.o provide a unilicd fi'amework for dealing with such intbrmation at various 
sotlmntica.I levels. This model is a (:onl.exl.-I,'roe (~ ramma.r ((:l"(',) because ( :l~("~s 
are al~prol~ria.l,e t.o fractal modelling I (t.hey a.llow intricat.e rocursive derivations) 
aml boca, use  a, lly "llOll ['I'~LctlL]'" |IOISC I | l l ly I)C modelled ]~y a roguln.r language 
(which does not change the overall st, ruct.ure [7]). The syntactic optimization 
runs together with a mmmrical algorithm so as to i~@r Lhe grammatical model. 

'['his nmthod has 10een tested on encodings of 2D curves generated by just- 
touching IFSs. However, the practical application which gave birth to this study 
was far more complex: it, dealt with the modeling of gold ore distribution in a 
mining area [11]. Because such a distribution exhibits fracta.l features, syntactic 
techniques seemed suitable for modeling huge data sets. 

The paper is organized as follows. Theoretica.t background is recalled in Sect,. 
2. An encoding process which extracts syntact,ic and sLructura, l information si- 
multaneously is discussed in Sect,. 3. Sections 4 and 5 detail the very core of the 
iuference reel, hod. In t.he conclusion, we el,l~ha.size t, he use or syntactic models 
for processing I'racta.I in[brmat, ion. 

2 Preliminaries 

L-systems are rewriting machines which can be used for generating setf-aifine 
fi'actal curves [5,8]. For instance, Fig. 1 shows the attractor of a DOL-system 
whose rules once conca.tenated yield the sentence "SSPR should take place in 
Australia", the initial word being "Sydney". DOLs [14] are among the siml)lest L- 
systems. Although "innocent-looking', they allow the computation of sequences 
with rather complex combinatorial properties. Moreover, the diversity of curves 
gets wider if several morphisms are used. 

In this paper, T is a finite set and T* the fi'ee monoid of words; I is the 
null letter. For t E T,x  E T ~, Ix] denotes the length of x and fail the munber 
or occurrences of t in as. Also, x[k] is the subword made of the k first letters of 
x. A D0L is a triple (T ,h ,s )  which generates the language £(D)  = {h"(s) = 
h o h ' " - l ( s ) ,  n > 0}. 

dl,(x,y) denotes the Levenstein distance (sometimes called edition dislm~ce) 
between strings x, y E T*. This distance is defined very intuitively by mea.ns of 
three basic operations, del (-etlon), ins (-ertion) and subs (-titution): 

dell1) = {1} 
V a e T, ad(a)  = {t} 
V u, v E T" \ {1}, del(uv) = del(u) v + u del(v) 

ins(l) = 7" 
V a E T ,  ins(a) = T a + a T  
V u, v E T* \ {1}, ins(uv) = ins(u) v + u ins(v) 

t Let. us mention the growing interest about grammars for fi'acta| generation [9, t0, 13]. 
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.~,,b.~(t) : { t }  
V ,  e "r, .,,d,.,(,,) : " r \  ( , }  
v . . ,  ,, c 'r" \ { ) } ,  .,.,,l,.,(,,,,) : .~d,.4,,) ,, + ,, .~,,1,.~(,,) 

I,~'(..)' I>o a. string, and ((f,(a:)),~H the balls built recursively according to: 

(',)(.,.) = { ,  } 

C,,,,,> l(.c) = dcl ( ( : , , - i (x))  + ins (C,',,.-I(J:)) + subs ((:,,- l(a:)) 

Theu (.he Levcnstein. di.~hmcc betw~,cn a' and y is: 

dd.,,, ,,/) = i,,r{,, ~ I.I I y ~ c',,(,,)} 

l,et us reca.ll a. few results about the l)erturbaJ, ion of the roots of a. polynomia.i 
and the oigeuvahles of a. ma.l.rix (soo [15] P)r insl.auce). In the following, vocl.ors 
a.re in bold font; the entries of any ma.l.rix A lie in brackets: (a i j ) ,  its (,ranspose 
is A "r, [:I[ is the matr ix  whose dements are ]ai, j l ..In is the identi ty matr ix  of 
size n. x n. or(A) is I.he sl)ect.rum of A. di j  is t.he Kronecker delt,a.. 

II.I] denotes either l.he usual Euclidean vector norm or the Fl'obeuius ma.trix 
norm; the l~tl, er has been chosm) since il, satisfies (,he (,riat)gle inequality Ibr 
mal, r ix mult ipl icat ion. 

We shall use the following proposition and theorems: 

P r o p o s i t i o n  1. Let A E M,,(tR),b, c C IR" then (formally) : 

( cbTA-I ) 
(A+cbT) -t=A -1 / ,  l+bTA-lc ' 

T h e o r e m  1 (Baue r -Skee l ) .  Let/1 be no)~singular; let Ax = l) mM (A + L;')~ = 
b + e. If  for some nonnegative ,5', s a,td e: 11(1< eS and le{< es and i,, addition 
,11 I A - q  .-"11< I the,, 

tt'~ - x i t<  ~ II t A - ' I  (.S' Ixl + s)ll 
l - ,  111A-'t Stl 

Ma,ny theorems yield inequalities for the roots of perturbed polynomia, ls; the 
following recent one refines Ostrowski's. Let the Bombieri's norm of a polynomial 

F'],, = \l ~" ':!('' -i)! i.,1~ 
i=0 )I,! 

T h e o r e m  2 ( B e a u z a m y  [4]). Let P and Q be two polynomials defined as: 
P(z) - 1-I ni=l (x - .vi) and Q(a:) -" I'I ' i~t (a , -  yi) and such that [P - Q]IJ < e. I f  
all the roots of P are distinct and if 

I , ~  n IP'(~s)l 

then for every j a root Yi of Q is such that 

I~..7 - .vd< m~ ( 1 +  Ix'il=)"/= 
I t"(x. i ) l  ' 
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Figur(:l. lteral;ing ghe rules "SSPII should t;ake place in Australia" on axiom "Sydney" 
(.11,357 symbols) 

3 Encodings of Real Sets 

The general idea of fractal coding is given in [3]. We have introduced in previous 
papers [5,7] an image encoding method based on a recursive segmentation of 
2D sets. This method yields non-balanced quadtrees [1] whose terminal leaves 
are subimages taken within tlle original image. Quadtree encoding is easy to 
implement, quadtrees meet accuracy issues since the general quadtree is but 
the image itself and mapping any quadtree to a screen can be performed very 
eltlciently. Ill tile present case, tlle whole image is assumed to be a. (possibly 
iniinite) collection of self-allinc copies of a few source subimages. 

The comparison between images is performed by an enhanced correlation 
operator which is able to manage rotation and scaling of the sets to be compared. 
The leaves are tile terminal letters of the final grammar while the branching 
nodes of the quadtree are considered as non-terminal symbols. They are rewritten 
as a word of the nodes (terminal or not) they are giving access to. Figure 2 shows 
a self-affine curve; rectangular boxes are terminal leaves linked by correlation 
maximization. 

This method has given satisfactory results for self-aifine sets but uufortu- 
nately it cannot be applied to multifractal sets which are anything but self-atllne! 
Thus, the algorithm discussed below makes no use of any extra structural in- 
formation delivered with the eneodings. Instead, it only makes the assumption 
that the encodings reflect the (multi-) "fractality" of some initial phenoluenon 
one wants to model. In the formal languages terminology, "fractality" implies 
"iteration" and requires at least the use of context-free grammars [7]. 

Nevertheless, it is always possible to encode a Jordan curve as a sequence 
of words highlighting some iteration process (provided there is some theoreti- 
cal justification in doing so !) as pointed out in [6]. For instance, the number 
of symbols N(E) for encoding a fraetal curve as a function of a small line seg- 
ment behaves as Ac -D where D is the fractal dimension; various algoritluns are 
available for computing D and for performing Freeman encoding. 
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As the curve is assumed to l.)e in terpolated by a non-erasing D01,-syst, em,  
Per ron-Frobenius '  theorem yields N(e)  ~ B ()~max) k for some k, A,,~× being 
the (posit ive) grea tes t  eigenvMue of the growth mat r ix  (see Sect. 4). Since e is 
a. p a r a m e t e r  of the encoding algori thnl  (e may  1)e a. function of the encoding 
ac('m'acy), it. is l~ossil)l( , to plot. ( Iog(( ) , lo f t (N(( ) ) )  so as to l ind A,,,,.x; th(, best 
inl.eg~,r se(lu~m('e / ' : l ,  ~ : 2 , ' '  ' ,  ,~111(1 t]l(? rela.l.ed mwodings are ('Oral)Uteri accordingly. 
iV(" per formed such a t)rocess successl'ully on jus t - touching  IFS curves [5]. 

.... z 

Figu re2 .  Possible correlation locations in a self-affine curve 

4 D0L Computation and Gramnlat ical  Inference 

As an input ,  let us consider a sequence ,S' = {xt ,x2 , . . . ,~Cr,}  of words over 
T = {ll ,  t .~,. . .  , t , }  (with n + l < p) and the related sequence of integer vectors: 
gk = [ ]xk l t~ , lxk l t~ , . . .  ,Ixklt,], 1 < k < p. S can be m a p p e d  to IR '~ by using an 
expans ive  m o r p h i s m  K : 2"* --~ N "  which is not  needed to be detai led here. T h e  
"fi 'actal space" is the comple te  space (lt~", h) where It is the I lausdorff  metric.  
One  assmnes  there  is an a p p r o x i m a t i o n  of S by a regular  DOL-sequence,  i.e. 

X k = t L k o C k ( ~ 0 )  , l < k < p  , (1) 

with ~b : T*  -+ 7'* a non-erasing morph i sm,  x0 some initial word 2 and #k a 
t ransduc t ion  such tha t  

2 Please note that  symbol ",--" means that the adressed value is the one related to the 
opl.imal case, i.e. widmut, noisc. 
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~lL(,k o 47"(~i;,), 4,~'(.i;,)) < q, I _< ~, < p . 

l'rovi()us ~,qual, ion can l)e r~,wril, lx'n in tlw mmlerica,l sl)a,ce as 

(2) 

gk = Ma~,, + G,  I < ~: < p , (:~) 

In this equation M C M . ( H ) , g ~  E IT", ~. is an initial reel,or a.nd 0a. stamls 
['or some bounded noise (supl<a<x , 10a.l= q < ,x,) whose distribution is assumed 
to be uniform over 'I'. One must notice ~,ha,t this condition is rather general: 
the noise may be anything but a cascading process. In general, supt.~ t0a. I < 
sup1 dI.(l~t o ~t(Xo) , ¢~l(x0) ). II; is importa, nt that q is finite as stated by: 

Propos i t ,  ion 2 ( B l a n c - T a l o n  [7]). I f  ( u" ) is ut~ increasiu,:l scqucn, cc 6wee rdiug 
to <.) whose limit is u, and ff  (v '~) is rt sequence such that 3 p, in ff I".],V 1/. > 
nh dL (u '~, ~:~ ) < p, then their mappings t~" (u")  and Ii  (v '~) in ~'." convelyc to th.e 
,s.mx .,urine in the Ihtumtorff re.el.rio It. 

M is the growth ma.trix of morphism 4~ and its entries are ]4,~(ti)[ti, InDrring 
the DOL-system in the perfect case (Vk, 0k = O and q = 0) can be achieved either 
in the symbolic space or in the numerical space. Itowever, neither rnethod works 
in case of noisy sequences. The new following approach consists in using tile 
partial results computed by a numerical algorithm as the input of a symbolic 
method and vice-versa, as long as the result after the current pass is not correct. 
The maximum number of loops is n (= #T) .  

First, one determines the characteristic polynonaial/5 of the perturbed matrix 
217I, written R for sake of clarity, from the set of vectors gk. Since the noise has 
an upper limit, the method converges to the correct values: the coefficients of 
/5 have continuous variations according to the noise, and so do the roots if this 
noise is small enough. Then, perturbed eigenvalues are computed, which are 
located in some Gerschgorin disks of the exact values we are looking for. We use 
a refined estimate of the disc for computing their variation range and possible 
integral matrices are constrained by this result. The symbolical part consists in 
determining the morphism rules with the greatest row sum; it, is performed by 
considering the number of occurrences of subwords of increasing length. 

Please notice that the proofs are given below in the scalar case which light- 
ens the notations (a lot !). Instead of considering the sequence of vectors gk, 
one considers a sequence of vector entries (gl = g t ( / ) , ' "  ,gp = g r , ( / ) )  • This 
sequence also forms a vector; let g denote this vector. The following lbrmul~  
are still valid for vectors, however in  a more complex form. Given # T ,  there 
is indeed a particular l for which the whole method does work (i.e. matrix G 
is nonsingular), Approximating/5 by P implies computing the best hyperplane 
through gl,  ' • • , gp: 

,± 12 
0a , ,  , J k -  r*tYk-l = 0 , 

k : n + |  1 : 1  / 

(4)  
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which yields: 

a = ( , ' - ' , ,  = [ ( s g ( i , j ) ) i , 5 = , ] - '  (S!l(i ,O) )i=, (5) 

P with (; E .,Vl,,(1,1),u E l l "  and (,h(' (,nl.ric,s being s g ( i , j )  = ~/,..=,,.+l ! l k - i q k - j .  
Solul ions of 

- a b', 1t.=o , ,  - at.a: = 0 (6) 
k.=C| 

are the esl, imated eigenva,lues, One has C[; = U - ( 0 0  "r +gO' r +Ogr ) .  PerUlrlm.tion 
of ( ) - t  can thus be computed by setting A = G -  (00 T + gO T), b = g, c = - f l  in 
(1) which allows Theorem 1 to yiekl the max of II a -  aql, t.lmt is the perturl.)ation 
over polynomial coel[icients. The next step is I.o qua.ntify the spectrum varia.tion: 
assuming that the roots of P are distinct 'I'heorem 2 ~g)l)lies : 

IA, - X.iI _< 2,, lad ( l +  I1,, - ;,tl (7) 
£ ]~:akAi n-k 
k =  I 

This result states thai. one can deduce I,he range of variations of or(l?) with 
respect to o'(M) from the bounds of Ok. flow is it possible to relate ]I h' - Mi] 
itself to the former ? Since/5(A) = D e t ( M  - L,.A), taking derivates with respect 
to any #t,,,. on both aides yiekls: 

Am' + m~,,~ A 'n- 10A " Oa,,,. - ~ D e t ( Q ( k ) )  , (8) 
k = l  

{ mi,i -- 6i,jA i 7£ k 
with Q ( k )  = O. i~ j  OA (9) 

Ogt,,, 5~,. i ~ i = k 

This expansion in terms of determinants of Q ( k )  is very impor tan t  since 
every line of H, reflects the related rule O(tk),  Taking A in the neighborhood 
of every Ai allows us to determine the upper bound of the entries of R as a 
function of the noise; the lower bound is always zero since ¢ is assumed to be 
non-erasing. Since M E .M(N), the problem can be solved by a minimization 
algorithm around initial entries of R. Simulated annealing has been used for 
finding M which minimizes tlN0n + i) - Mg(m)1] under the constraint 0 _< 
mi,j _< [variation given by (8)]. 

Thus, the whole algorithm can be summarized as follows. 

1. Compute 0"(/{) from g(1) ,9(2) , . . .  ,e(P). 
2. Compute the possible variations of ~'i,j fi'om values al, a 2 , . - . ,  a,> 
3. Compute the rewrite rules from the longest and the most fi'equent subwords 

in S. 
4. Fill matrix R and perform the minimization described above. 
5. If the variations of M are greater than those allowed by (8), choose the next 

possible subwords and repeat St, ep 4, 
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5 A C F G  a n d  a R e g u l a r  T r a n s d u c t i o n  

A (!FG can be derived from the D0I, computed abow, very easily. Brieily. every 
terminal letter ill ew, ry rule ¢(t) = .% I ~ 7', s E 7'* is replaced by a. new non- 
terminal symbol and by adding l,lw re,tared "~.~,rmina, l r,les". ( liven .1) = ('1'. ¢,  s),  
let us consider an a, uxiliary set N and a. one-to-one mapping tt : 7' --+ N 

Def in i t i on  1. 

(;;'~) = (~,\ N,/~(.~), {/'40 -~/ , . (¢(t)) ,  t ~ T} u {/,~(t) ~ t, t e T})  

Moreover, one has to acid significant rules for changillg these "perfect" words 
into t.he real ones. Practical results showed that it is mlwisc to add these rules 
directly to the grammar: the diversity of curves accepted by a syntactic parser 
gets too wide. Thus, we decided to model the difthrence between the context-IYee 
hmguage and the real samples by a transduction 7s, that is a subset T -  x T + 
of T* x T*. Let l -  (respect.ively t + ) &'.note the cardinal of T -  (resp. T + ). Since 
the noise is txmnded, 7 is a. regutar transduction ([2], an absohtt¢~ r¢,R'renc¢ 0. 

hffercnce of 7s is achieved by computing the sequence of distances between 
the "perfect" words ¢{Zk), 0 < k < p (x0 is unklmwn) and the real samples xk+l. 
The algorithm for computing dL{~,,.+l, xk)  yields the trace of the distance, tha.t 
is, the minimum set of basic operations used to transform any of the two words 
into the other one. Such a trace defines a set of local transduetions F ( k )  = 

I "~ . . .  , ~  {%,7~, , } for every k; let I~.~ defines tim union of local transductions 
overall the set S of words: Fs = U0<k<v F ( k ) .  

The (finite) transduction 7s is the union for every k of the local transduction 
% = . . . .  l k  x .~r'+~. minimizing ~l<k<~, l/. a n d  ~l<k<pt+k  simultaneously. 

6 C o n c l u d i n g  R e m a r k s  

Syntactic recognition of fractal patterns turns out to be a new promising field of 
research and applications. Promising, first because it shares a common back- 
ground with usual syntactic pattern recognition: one has to dig into formal 
languages theory in order to find a strong theoretical fralnework. In fact, the 
difference lies only in the nature of the model which is assumed to be fractal. 
But  this point is actually essential, for syntactic models can encode this fractality 
explicitly. Secondly, this fractatity is the key to establishing a fruitful connection 
between both theories of formal languages and dynamical systems. Fascinating 
problems such as the modification of geometrical generative power of grammars 
as a function of the mapping appear at the interface of this connection. 

Syntactic techniques exhibit real Mvantages over numerical and statisticM 
techniques (despite [16], a very pessimistic paper !) in the fractal case. Fractal- 
ity, considered ~ a recursion scheme, is naturally encoded by means of CFGs. 
High-level fractal informal, ion is processed a.t the same level as the disparate 
information. 
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