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2 D. Keppler 

1 Introduction 

The leukotrienes comprise a group of biologically highly potent mediators 
synthesized from 20-carbon polyunsaturated fatty acids, predominantly 
from arachidonate (Samuelsson et al. 1979; Murphy et al. 1979; Samuels- 
son 1983; HammarstrOm 1983). They include the cysteinyl teukotrienes 
LTC 4, LTD 4, LTE 4, and N-acetyl-LTE 4, as well as dihydroxyeicosatetra- 
enoate leukotriene B 4 (LTB4). Leukotrienes act at nanomolar concentra- 
tions in host defense, intercellular communication, and in signal transduc- 
tion. The cysteinyl leukotrienes induce smooth muscle conctraction and in- 
crease vascular permeability (Dahl6n et al. 1981; Lewis and Austen 1984; 
Piper 1984); LTB 4 elicits leukocyte sticking to vascular endothelia and in- 
flammatory infiltration, and contributes in vivo to vascular permeability 
changes, immunoregulation, and pain responses (Ford-Hutchinson 1990, 
1991b). Leukotrienes have been implicated as mediators in the pathogene- 
sis of inflammatory, allergic, and other diseases, including bronchial 
asthma, arthritis, inflammatory bowel disease, anaphylaxis, shock, hepa- 
torenal syndrome, pancreatitis, psorisasis, and tissue trauma (Piper 1984; 
Lewis and Austen 1984; Denzlinger et al. 1985; A. Keppler et al. 1987; 
Samuelsson et al. t987; Keppler 1988, Huber et al. 1989; Huber and Kepp- 
ler 1990; Ford-Hutchinson 1990). Only a limited number of cell types are 
capable of synthesizing LTC 4, LTB4, or both. Predominant producer cells 
are macrophages, monocytes, neutrophils, eosinophils, mast cells, and 
basophlls (Lewis and Austen 1984; Verhagen et al. t984; Lewis et al. 
1990). In addition, transcellular synthesis from the 5,6-epoxide LTA 4 re- 
leased from some cells represents a pathway for synthesis of LTB  4 and 
LTC 4 in endothelial cells, platelets, mast cells, lymphocytes, and even ery- 
throcytes (Odlander et al. 1988; Dahinden and Wirthmueller 1990; Fein- 
mark 1990; Jones and Fitzpatrick 1990). 

Recent progress in leukotriene research has led to a more detailed un- 
derstanding of the enzymes and proteins mediating the biosynthesis of leu- 
kotrienes and to the development of potent inhibitors of biosynthesis as 
well as receptor antagonists interfering with signal transduction (for re- 
views see Rokach 1989; Piper and Krell 1991). Moreover, the mechamsms 
of leukotriene transport during release from biosynthetic cells (Lam et al. 
1989, 1990; Schaub et al. 1991) and during hepatobiliary elimination (Ishi- 
kawa et al. 1990; Keppler et al. 1992) have been recognized, and pathways 
and compartmentation of leukotriene inactivation were further elucidated 
(Soberman et al. 1988; Stene and Murphy 1988; Keppler et al. 1989; Shir- 
ley and Murphy 1990; Sala et al. 1990; Jedlitschky et al. 1991). In addition 
to receotor-mediated leukotriene actions on the cell surface (Saussy et al. 
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1989; Herron et al. 1992), intracellular leukotriene actions in growth factor 
signal transduction have been recognized (Peppelenbosch et al. 1992). 

2 Leukotriene Biosynthesis 

Leuko~ene biosynthesis is triggered under pathophysiological and exper- 
imental conditions by a variety of immunological and nonimmunological 
stimuli, including Ca 2+ ionophores. The key enzyme, arachidonate 5-1ip- 
oxygenase (EC 1.13.11.34) depends on the availability of arachidonate, 
which is released from membrane phospholipids by phospholipase A 2 (EC 
3.1.1.4) or by the sequential action of phospholipase C (EC 3.1.4.3) and 
diaclyglycerol lipase (EC 3.1.1.34). Ca2+-dependent activation of phos- 
pholipase A 2 with subsequent release of arachidonate is associated with 
phosphorylation and translocation of the cytosolic phospholipase A 2 to 
membrane vesicles (Lin et al. 1992). The concentration of free arachido- 
nate is controlled, in addition, by its reincorporation into lysophospholipids 
(Ferber and Resch 1973; Irvine 1982). Arachidonate 5-1ipoxygenase is a 

FLAP /I 
synthase // 

Fig. 1. Proposed scheme of the association and concerted action of  enzymes and proteins 
involved in the synthesis of the parent cysteinyl leukotriene LTC 4. This association may 
allow for chanelling of the intermediates into the export carrier and may be localized in 
vesicles at the plasma membrane. FLAP designates the five-lipoxygenase-activating protein 
(Ford-ttutchinson 1991a), Release of LTC 4 from a leukotriene-synthesizing cell is 
mediated by an ATP-dependent export carrier (Schaub et al. 1991) which is distinct from 
the LTB 4 transporter 
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bifunctional enzyme and also catalyzes the synthesis of  the 5,6-epoxide 
LTA 4. Depending on the differentiation of a leukotriene-generating celt, 
LTA 4 may be converted to LTB 4 by LTA 4 hydrolase (EC 3.3.2.6) or to 
LTC 4 by the membrane-bound enzyme LTC 4 synthase (EC 2.5.1.37). A 
protein termed five-lipoxygenase-activatmg protein (FLAP) is required, in 
addition, for the synthesis of LTC4 and LTB 4 in intact cells (Dixon et al. 
1990; Miller et al. 1990; Rouzer et al, 1990; Ford-Hutchinson 1991a), One 
may assume that the enzymes and proteins required for cellular synthesis 
of leukotrienes are closely associated and translocated to the cell 
membrane allowing for concerted catalysis and export from the cell 
(Fi . 1). 

2.1 Biosynthetic Enzymes 

Arachidonate 5-1ipoxygenase catalyzes the first step in leukotriene syn- 
thesis by addition of oxygen to carbon 5 of arachidonate yielding (5S)-hy- 
droperoxy-6,8,11,14-eicosatetraenoate. The latter is converted by the se- 
cond catalytic activity of the 5-1ipoxygenase protein, LTA 4 synthase, to 
5,6-oxido-7,9,11,14-eicosatetraenoate (for review see Samuelsson and 
Funk 1989). 5-Lipoxygenase/LTA 4 synthase has been cloned and express- 
ed in mammalian cells (Dixon et al. 1988; Matsumoto et al. 1988; Rouzer 
et al. 1988). This 78-kDa protein requires Ca 2÷ and ATP for maximal ac- 
tivity. Moreover, translocation of 5-1ipoxygenase from the cytosol to the 
cell membrane, which is triggered by Ca 2+, is associated with activation of 
cellular leukotriene synthesis (Rouzer and Kargman 1988). Inhibition of 
this translocation by the indole derivative MK-886 inhibits leukotriene 
synthesis in intact cells (Rouzer et al. 1990). The target protein of MK-886 
has been identified as the 18-kDa membrane protein FLAP, which is es- 
sential for leukotriene synthesis and must be coexpressed together with 
5-1ipoxygenase (Dixon et al. 1990; Miller et al. 1990; Reid et al. 1990; 
Ford-Hutchinson 1991a). FLAP may act to couple phospholipase A 2, 
membrane phospholipids, and 5-Iipoxygenase. The presence of 5-1ipoxy- 
genase and FLAP is limited mostly to cells of  the myeloid lineage and is 
related to cell differentiation (Habenicht et al. 1989). 

The product of  5-1ipoxygenase, LTA 4, is converted enzymatically either 
by LTA 4 hydrolase to LTB 4, by LTC 4 synthase to the glutathione conjugate 
LTC 4, by 15-1ipoxygenation to 15-hydroxy-LTA 4, or by cytosolic epoxide 
hydrolase to 5(S),6(R)-dilaydroxyeicosatetraenoate. LTA 4 hydrolase is a 
cytosolic monomeric protein of about 69 kDa which has been cloned and 
expressed in Escherichia coli (Samuelsson and Funk 1989). LTA 4 hydro- 
lase has been detected in virtually all tissues as well as in blood plasma 
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Fig. 2. Synthesis, export, and peptidolytic degradation of LTC 4. Synthesis of LTC 4 from 
LTA 4 and glutathione by micmsomal LTC 4 synthase is followed by unidirectional ATP- 
dependent export from leukotriene-synthesizing cells, such as murine mastocytoma ceils 
(Schaub et al. 1991). The ectoenzymes 7-glutamyltransferase and LTD 4 dipeptidase cata- 
lyze the biological activation and deactivation to LTD 4 and LTE 4, respectively (Hammar- 
str6m et al. 1985) 

from several species and in erythrocytes (McGee and Fitzpatrick 1985). 
Surprisingly, LTA 4 hydrolase has been identified as a Zn2+-containing 
aminopeptidase with a sequence homologous to the active site of certain 
peptidases (Haeggstrt~m et al. 1990; Minami et al. 1990). Accordingly, the 
aminopeptidase inhibitor bestatin (0rning et al. 1991a) as well as the an- 
giotensin-converting enzyme inhibitor captopril (Orrting et al. 1991b) were 



6 D. Keppler 

found to act as inhibitors of LTB 4 synthesis from LTA 4 in the micromolar 
concentration range. 

The synthesis of  LTC 4 is catalyzed by membrane-bound LTC 4 synthase 
(Fig. 2), which is distinct from cytosolic and microsomal glutathione S- 
transferases (S6derstr6m et al. 1988; Yoshimoto et al. 1988). The enzyme 
is highly specific for its substrate LTA 4 and has an isoelectric point of  
about 6, whereas other members of the glutathione S-transferase family are 
basic, with isoelectric points at or above 8.5, and catalyze the synthesis of  
a wide range of xenobiotic and endogenous glutathione S-conjugates 
(S6derstr6m et al. 1988). LTC 4 synthase also reacts with LTA 3 and LTA 5. 
LTA 3 is a potent competitive inhibitor of  LTC 4 synthesis from glutathione 
and LTA 4 (Yoshimoto et al. 1988), Further properties of LTC 4 synthase 
will be elucidated when this protein has been purified to homogeneity, 
cloned, and expressed. LTC 4 synthase is present not only in cells of  the 
myeloid lineage, including mast cells and eosinophils, but also in several 
tissues and in endothelial cells (Feinmark 1990). 

A "[-glutamyltransferase catalyzes the conversion of LTC 4 to LTD 4. 
Since LTD 4 is biologically much more potent than LTC 4 (Lewis and 
Austen 1984; Piper 1984), the partial degradation of the glutathione moiety 
to the cysteinylglycine derivative LTD 4 (Fig. 2) may be considered a bio- 
synthetic reaction generating the ligand for the LTD4/LTE 4 receptor. 
~/-Glutamyltransferase is a glycoprotein enzyme widely distributed on cell 
surfaces. It has not been established whether a specific ~/-glutamyltransfer- 
ase isoenzyme is responsible for LTD 4 generation. This reaction depends 
on catalysis in the low nanomolar concentration range by a high-affinity 
ectoenzyme (Weckbecker and Keppler 1986; Huber and Keppler 1987). 

2.2 Transcellular Leukotriene Synthesis 

Interaction between different cell types allows for enzymatic cooperation 
in leukotriene synthesis, also termed transcellular synthesis (Dahinden 
et al. 1985; McGee and Fitzpatrick 1986; Odlander et al. 1988; Dahinden 
and Wirthmueller 1990; Feinmark 1990; Jones and Fitzpatrick 1990). In 
neutrophils, LTA4 formed in excess of the capacity for intracelhilar LTB 4 
synthesis is released into the extracellular fluid where it can be stabilized 
by albumin. Neutrophil-derived LTA 4 is a precursor for leukotriene syn- 
thesis particularly in cell types deficient in 5-1ipoxygenase, such as ery- 
throcytes, platelets, and vascular endothelial cells. As an example, LTA 4 
hydrolase in erythrocytes generates LTB 4 from neutrophil-derived LTA 4 
(McGee and Fitzpatrick 1986). Moreover, LTA 4, released from neutrophJls 
and bound to albumin, serves in the synthesis of LTC 4 by mast cells 
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(Dahinden et al. 1985; Dahinden and Wirthmueller 1990). Thereby, the 
capacity of mast cells for LTC 4 generation is augmented. Leukotriene pro- 
duction under conditions where cell-cell cooperation occurs differs quan- 
titatively and qualitatively from the sum of the separate cellular biosynthe- 
tic capacities. In disease processes different cell combinations may exist as 
compared to the normal condition. Transcellular leukotriene synthesis not 
only contributes to systemic leukotriene production but also influences the 
efficacy of inhibitors of leukotriene biosynthesis, which differ in their ac- 
tion on different cell types. 

2.3 Inhibition of Leukotriene Biosynthesis and Action 

Selective inhibition of leukotriene biosynthesis or selective blockade of the 
receptors for LTD 4 and LTE 4 or for LTB 4 is not only of therapeutic 
interest. These approaches furthermore serve to define the role of the leu- 
kotrienes under pathophysiological conditions. The recent development of 
biosynthesis inhibitors and of receptor antagonists has resulted in a consid- 
erable increase in selectivity and in compounds which are effective in the 
low nanomolar concentration range (Fitzsimmons and Rokach 1989; Ford- 
Hutchinson 1991a, b; Aharony and Krell 1991). 

Direct inhibitors of 5-1ipoxygenase have been described and many of 
them are "redox" inhibitors, presumably reducing the iron at the active site 
of the enzyme (for review see Fitzsimmons and Rokach 1989). Natural li- 
poxygenase inhibitors include the flavonoid compounds and hydroxylated 
cinnamic acids with cirsiliol and caffeic acid, respectively, as potent repre- 
sentatives in both groups. Nordihydroguaiaretic acid (NDGA) is a com- 
mercial antioxidant which inhibits lipoxygenase enzymes. NDGA is a 
widely used antioxidant irdaibitor which lacks sufficient selectivity for 
5-1ipoxygenase and efficacy in the living mammalian organism. Among 
the quinone inhibitors Takeda's AA-861 represents a prototype compound 
with limitations comparable to NDGA. These compounds may be valuable 
in studies with cells in culture, but, in addition to a number of side effects, 
they do not sufficiently suppress systemic leukotriene production in the 
intact organism. Direct 5-1ipoxygenase inhibitors that are effective in vivo 
and exhibit sufficient selectivity include compounds with hydroxamate or 
N-hydroxyurea functionalities. One of these drugs- A-64077 or zileuton 
[N-(1-benzo-thien-2-ylethyl)-N-hydroxyurea] is an effective inhibitor of 
leukotriene biosynthesis in man (Bell et al. 1992). As indicated in Fig. 3, 
this leads to an inhibition of both LTB 4 and systemic LTC 4 synthesis. 

As an alternative approach to direct enzyme inhibition, interference of 
5-1ipoxygenase translocation to the plasma membrane by compounds 
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Fig. 3. The arachidonate cascade with several of its stimuli in the intact mammalian 
organism and with the sites of action of biosynthetic inhibitors and examples for 
LTD4/LTE 4 receptor antagonists. Synthesis of leukotrienes may be elicited in vivo by a 
number of pathophysiological stimuli (for review see Keppler 1988) as well as physiolog- 
ical primers and elicitors such as the granulocyte-macrophage conoly-stimulating factor 
(GMCSF; Denzlinger et al. t990). Inhibitors of leukotriene biosynthesis from the first gen- 
eration of drug development include MK-886 (Gillard et al. 1989; Ford-Hutchinson 1991a) 
and A-64077 (Bell et al. 1992), as well as captopril and bestatin with their additional poten- 
tial to inhibit LTA 4 hydrolase (Orning 1991a, b). More potent, second generation inhibitors 
of LTA 4 synthesis include MK-591, A-78773, and ICI's D-2138. Some selective and potent 
antagonists of LTD4/LTE 4 receptors, MK-571, ICI 204219, and SK&F 104353, are indicat- 
ed (Snyder and Fleisch 1989; Piper and Krell 1991; Lewis et aL 1991) 

which bind to FLAP induces potent and selective suppression o f  the syn- 
thesis of  leukotrienes (Gillard et al: 1989; Ford-Hutchinson 1991a; Evans 
et al. 1991). The indole derivative MK-886 (Gillard et al. 1989), which 
binds with high affinity to FLAP (Rouzer et al. 1990), does not signifi- 

cantly affect 5-1ipoxygenase itself but blocks leukotriene synthesis in intact 
cells and in vivo. Systemic leukotriene production, measured by an index 
metabolite in bile during guinea pig anaphylaxis, is completely suppressed 
by MK-886 (Guhlmann et al. 1989). MK-886 also suppresses cysteinyl 
leukotriene excret ion into human urine to a large extent (Ford-Hutchinson 
1991a). FLAP,  as a novel drug target for inhibiting the biosynthesis o f  leu- 
kotrienes, also binds a group of  quinoline derivatives which inhibit leuko- 
triene synthesis in intact cells with a similar mechanism of  action and at 
lower concentrations than MK-886 (Evans et al. 1991). 
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Selective inhibition of  LTB 4 biosynthesis, without inhibition of LTC 4 
synthesis, has become feasible as a consequence of the discovery that be- 
statin and captopril inhibit LTA 4 hydrolase with IC50 concentrations of 4 
and 11 ~4 ,  respectively (0rning etal. 1991a, b). The functional resem- 
blance of LTA 4 hydrolase to metallohydrolase enzymes (HaeggstrOm et al. 
1990) will necessitate chemical modification of the drugs for successful 
and selective inhibition of LTB 4 synthesis in vivo, without or with little 
inhibition of peptidases and angiotensin-converting enzyme. 

Inhibition of  LTB 4 action has been achieved by the development of 
L T B  4 receptor antagonists. Among these, the hydroxyacetophenone deri- 
vative LY 255283 has 50% inhibitory potency in the binding assay at a 
concentration of 87 nM (Herron et al. 1992). 

LTD4/LTE 4 receptor antagonists are, at present, most promising in drug 
development for antiasthma therapy (Piper and Krell 1991). Reasons to 
develop LTD4/LTE 4 receptor antagonists have included the lack of evi- 
dence for signal transduction via LTC 4 receptors in man, the higher biolog- 
ical potency of LTD 4 relative to LTC 4, and the rapid formation of LTD 4 
and LTE 4 from LTC 4 on cell surfaces and in the blood circulation in vivo. 
At least three new structural classes of high-affinity LTD4/'LTE 4 receptor 
antagonists have been developed and tested in man. These are SK&F 
104353, ICI 204,219, and MK-571 (for reviews see Snyder and Fleisch 
1989; Piper and Krell 1991; Lewis e ta  l. 1991). These third-generation 
LTD4/LTE 4 receptor antagonists are several orders of magnitude more 
potent and display a several hundred-fold improvement in their selectivity 
for LTD4/LTE 4 receptors than the first antagonist, FPL 55712, developed 
in 1973 against slow-reacting substance of anaphylaxis (Augstein et al. 
1973). Affinities of these antagonists were determined in the low nano- 
molar concentration range for the LTD4/LTE 4 receptor in human airways 
and guinea pig trachea (Aharony and Krell 1991). Doses that are 50% ef- 
fective in vivo after intravenous administration in the guinea pig are 
46 nmol/kg for the indole-based ICI 204,219, 2 nmol/kg for the quinoline- 
based analog MK-571, and 550 nmol/kg for the LTD4/LTE 4 analog SK&F 
104353 (Aharony and Krell 1991). These compounds act as competitive 
antagonists, are highly effective in man, and contribute to a definition of 
LTD4-mediated pathophysiological processes. 
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3 Transport of Leukotrienes During Biosynthesis and Excretion 

Transport controls not only the release of LTC 4 (Lam et al. 1989; Schaub 
et al. 1991) and LTB 4 (Lam et al. 1990) from leukotriene-generating cells 
but also the removal of these mediators from the blood circulation in vivo. 
The liver is the most active organ for uptake, metabolic inactivation, and 
biliary excretion of leukotrienes (Appelgren and Hammarstr(3m 1982; 
Keppler et al. 1985; Hagmann et al. 1989; Wettstein et al. 1989). In addi- 
tion, transport during renal excretion and during the limited intestinal reab- 
sorption of cysteinyl leukotrienes contributes to the control of leukotriene 
concentrations in body fluids. 

3.1 The Export Carder Releasing LTC 4 After Its Biosynthesis 

The release of LTC 4 has been studied in cultured human eosinophils in- 
cubated with exogenous LTA 4 (I,am et al. 1989). This transport is satu- 
rable, temperature-dependent, and inhibited by intracellular LTC 5, suggest- 
ing a carrier mediated process. The mechanism underlying the export of  
LTC 4 has been elucidated in plasma membrane vesicles prepared from 
murine mastocytoma cells and characterized as a primary-active, ATP-de- 
pendent process with apparent K M values of 48 gM for ATP and 110 nM 
for LTC 4 (Schaub et al. 1991). Among the cysteinyl leukotrienes, LTC 4 is 
the best substrate for this ATP-dependent export carrier (Fig. 2). The rela- 
tive transport rates at a concentration of 10 nM are 1.00, 0.31, 0.12, and 
0.08 for LTC 4, L T D  4, LTE  4, and N-acetyl-LTE 4, respectively (Schaub 
et al. 1991). LTC4 transport is competitively inhibited by the glutathione S- 
conjugate S-(2,4-dinitrophenyl)glutathione, and by several other amphi- 
phitic anions including LTD4/LTE 4 receptor antagonists (Schaub et al. 
1991). Primary-active ATP-dependent transport is insignificant with LTB 4 
as a substrate. Therefore, inhibition of the LTC 4 export carrier in leuko- 
triene-synthesizing cells by structural analogs and LTD4/LTE 4 receptor 
antagonists may serve as a novel pharmacological approach to interfere 
selectively with L T C  4 production without influencing LTB 4 generation. 
Isolation and molecular characterization of the LTC 4 export carrier from 
leukotriene-generating cells, such as mast cells, eosinophils, and monocy- 
tes, will answer the question whether this carrier belongs to the family of 
the ATP-dependent glutathione conjugate export carrier originally describ- 
ed in the erytttrocyte plasma membrane (Kondo et al. 1980). 
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3.2 Leukotriene Uptake into Hepatocytes 

Leukotrienes released into the blood circulation, with or without prior or 
subsequent interaction with leukotriene receptors, undergo rapid elimi- 
nation from blood predominantly due to uptake by the liver (Appelgren 
and Hammarstr6m 1982; Hagmann et al. 1984; Denzlinger et al. 1985; 
Huber and Keppler 1990; Hagmann and Korte 1990). Albumin serves as 
transport protein in the blood circulation (Falk et al. 1989). Uptake by he- 
patocytes has been demonstrated both for cysteinyl leukotrienes (Ormstad 
et al. t982; Uehara et al. 1983; Weckbecker and Keppler 1986; Leier et al. 
1992) and for LTB 4 (Hagmann and Korte 1990; Leier et al. 1992). Uptake 
of LTC 4, LTD 4, LTE 4, and N-acetyl-LTE 4 across the sinusoidal (basolate- 
ral) membrane into hepatocytes is independent of a Na+-gradient and a K +- 
diffusion potential (Leier et al. 1992). The uptake may be driven by high- 
affinity binding to intracellular proteins and by the unidirectional, ATP-de- 
pendent transport across the canalicular (apical) membrane into bile 
(Fig. 4; Ishikawa et al. 1990). At a concentration of 10 ruff, the relative up- 
take rates into rat hepatocytes for LTC 4, LTD 4, LTE 4, and LTB 4 are 1.0, 
1.3, 1.6 and 1.6, respectively. The K M values for the leukotfienes range 
between 100 and 200 nM (Leier et al. 1992). Leukotriene-binding proteins 
possibly involved in hepatocellular transport were identified by the method 
of direct photoaffinity labeling in the deep-frozen state using the 3H- 
labeled leukotriene itself as the photolabile ligand (Falk et al. 1989; Mtiller 
et at. 1991b, Leier et al. 1992). Liver membrane subfractions enriched with 
sinusoidal plasma membranes contain a 48-kDa polypeptide labeled both 
with [3H]LTE4 and [3H]LTB4. This polypeptide is not labeled by cysteinyl 
leukotrienes in hepatoma cells which are deficient in cysteinyl leukotriene 
uptake (MOiler et al. 1991b; Leier et al. 1992). There is no convincing 

fATP I LTc4 LTD4 ~-..~ 
Canalicular- ~-",~/ t LTE4"--~_~ / 

"excretion ¢ ~ ' ~  LTE ~ NAc~ ~ 
into bile r ~  ~ADP I ~-/fl-oxid. 

~,,,~. F;i- L LTE4(NAc) 

m~ 

S 
r LTC4 

inusoidat | TD ,, Albumin-bound 
| L 4 transport in blood uptake L LTE4 

Fig. 4. Transport of cysteinyl leukotrienes-through hepatocytes. Uptake across the 
sinusoidal membrane may be followed by intracellular degradation (Keppler et al. 1989; 
Jedlitschky et al. 1991) and ATP-dependent export across the canalicular membrane into 
bile (Ishikawa et al. 1990). The latter process may be rate-limiting in overall hepatobiliary 
cvsteinvl leukotriene elimination 
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evidence, however, that his 48-kDa polypeptJde represents the transporter 
resporksible for leukotriene uptake. It may rather be an intracellular, 
membrane-associated polypeptide binding the leukotrienes (Leier et al. 
1992) as well as related amphiphilic substances (Kurz et al. 1989). The 
dihydroxy fatty acid LTB 4 differs from the cysteinyl leukotrienes by its 
entry into hepatoma cells, possibly as a result of its facilitated diffusion 
(Leier et al. 1992). Kinetic studies in hepatocytes employing inhibitors in- 
dicate the existence of distinct uptake systems for the cysteinyl leukotrie- 
nes and LTB 4 in the sinusoidal membrane. The substrate specificity of  the 
transporters involved in leukotriene uptake across the sinusoidal hepa- 
tocyte membrane will be defined more precisely after reconstitution of the 
purified transporter in liposomes. The interaction of both cysteinyl leuko- 
trienes and LTB 4 with hepatocytes does not lead to detectable receptor- 
mediated signal transduction if the mediators are added in the physiologi- 
cal nanomolar concentration range. This indicates that the hepatocyte up- 
take systems are transporters and not receptors for the leukotrienes. 

3.3 The Cysteinyl Leukotriene Export Carrier 
in the Hepatocyte Canalicular Membrane 

During the vectorial transport across the hepatocyte some of the leuko- 
triene metabolites retain their structure and some undergo oxidative degra- 
dation from the m-end (Figs. 4, 5). Products of co- and 13-oxidation of  
LTE4, N-acetyl-LTE 4, and LTB 4, as well as unmodified LTC 4, LTD 4, 
LTE4, and N-acetyl-LTE 4, are substrates for the leukotriene export carrier 
in the canalicular (apical) membrane of hepatocytes (Ishikawa et al. 1990). 
The mechanisms of this transport has been analyzed by use of plasma 
membrane vesicles enriched in canalicular membranes. The inside-out ve- 
sicles incubated in the presence of labeled cysteinyl leukotrienes and ATP 
showed primary-active, ATP-dependent uptake, corresponding to ATP-de- 
pendent export across the canalicular membrane into bile (Ishikawa et al. 
1990). Primary-active, ATP-dependent transport seems to be domain-spe- 
cific with a location in the canalicular but not in the sinusoidal hepatocyte 
membrane (Fig. 4). This is indicated by transport studies in vesicle prepa- 
rations from different membrane domains (Ishikawa et ai. 1990) and by 
photoaffinity labeling with the 35S-labeled ATP analog ATP-7-S of canali- 
cular and sinusoidal membranes (Mtiller et al. 1991a). Among the cystei- 
nyl leukotrienes, LTC 4 is the best substrate for the canalicular export car- 
rier. Apparent K M values are 0.25, 1.5, and 5.2 gM for LTC4, LTD 4, and 
N-acetyl-LTE 4, respectively, whereas the K N value for the cysteine S-con- 
jugate, L T E  4, is more than 10 gM (Ishikawa et al. 1990). In addition, m- 
carboxy-LTB 4, but not  LTB 4 itself, is a substrate for ATP-dependent trans 



Leukotrienes: Biosynthesis, Transport, Inactivation, and Analysis 13 

port across the canalicular membrane. Mutual competition among the cy- 
steinyl leukotrienes and between leukotrienes and several glutathione S- 
conjugates and glucuronate conjugates suggests a common export carrier 
(Ishikawa et al. 1990; Akerboom et al. 1991). The term leukotriene export 
carrier is preferred since LTC 4 is the endogenous substrate with the highest 
known affinity for this carrier. As indicated by the transport of LTD 4 and 
N-acetyl-LTE 4 via this ATP-dependent carrier, the glutathione moiety is 
not a structural determinant of the substrate properties, although it may be 
a property providing higher affinity for the active site of the carrier. ATP- 
dependent glutathione S-conjugate transport has been originally described 
in erythrocyte inside-out membrane vesicles (Kondo et al. 1980) and 
subsequently observed in other tissues (Kobayashi et al. 1988, 1990; 
Ishikawa et al. 1989; Akerboom et al. 1991). The carriers expressed in dif- 
ferent tissues may be similar in substrate specificity but are distinct as evi- 
denced by the hereditary deficiency of the leukotriene export carrier in li- 
ver (Huber et al. 1987) and its simultaneous presence in erythrocytes 
(Board et al. 1992). 

The ATP-dependent leukotriene export carrier in the canalicular mem- 
brane is apparently absent or inactive in a mutant strain of rats in which 
cysteinyl leukotriene excretion into bile is reduced to less than 2% of nor- 
mal (Huber et al. 1987; Ishikawa et al. 1990). These mutant rats are par- 
tially deficient in the hepatobiliary excretion of several other non-bile salt 
amphiphilic organic anions, such as bilirubin glucuronide and dibromo- 
sulfophthalein (Jansen et al. 1985). The defect in this TR- mutant rat strain 
is considered analogous to the one in Dubin-Johnson syndrome in man and 
in Corriedale sheep (Jansen et al. 1985; Kitamura et al. 1992). Deficiency 
of the leukotriene export carrier in the canalicular membrane is compensat- 
ed by metabolic inactivation and degradation of the leukotrienes in the 
hepatocyte resulting in an increased renal excretion of leukotriene 
catabolites (Huber et al. 1987; Keppler et al. 1991). 

Inhibition of ATP-dependent transport of LTC 4 in liver is observed in 
the presence of various glutathione S-conjugates in the micromolar con- 
centration range (Ishikawa et al. 1989). Moreover, structural analogs of 
LTD 4 and LTE 4, developed as LTD4/LTE 4 receptor antagonists and devoid 
of a glutathione moiety and a fatty acid side chain, are not only potent in- 
hibitors of LTC 4 transport in mastocytoma cells (Schaub et al. 1991) but 
also of the export carrier in the canalicular membrane. Cyclosporin A in- 
terferes with the hepatobiliary excretion of cysteinyl leukotrienes (Hag- 
mann et al. 1989). Recent studies demonstrate 50% inhibition of ATP-de- 
pendent LTC4 transport across the rat liver canalicular membrane at a cy- 
closporin A concentration of 4.5 JiM. This inhibition by cyclosporin A is 
analogous to the inhibition of the ATP-dependent multidrug export carrier 
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(p-glycoprotein) by this immunosuppressant (Foxwell et al. 1989; Speeg 
et al. 1992). 

3.4 Elimination and Transport In Vivo 

The pathways of elimination of leukotrienes in the intact organism were 
originally studied by autoradiographic (Appelgren and Hammarstr0m 
1982) and invasive techniques, mostly by use of 3H-labeled leukotrienes 
(Hagmann et al. 1984; Denzlinger et al. t985, 1986; Hammarstr0m et al. 
1985; Huber et al. 1990; Maltby et al. 1990). Few studies addressed the 
elimination and in vivo degradation of LTB 4 (Serafin et al. 1984; Hag- 
mann and Korte 1990). More extensive investigations dealt with the elimi- 
nation of different cysteinyl leukotrienes (Hagmann et al. 1984, 1986; 0r-  
ning et al. 1985, 1986; Sala et al. 1990; Keppler et al. 1991, 1992). Once 
released into the blood circulation, the leukotrienes are selectively bound 
to albumin (Falk et al. 1989) and eliminated predominantly by hepatobili- 
ary excretion. Using N-acetyl-LTE 4 as a representative tracer, half-lives in 
blood during the initial elimination period were 38 s in the rat and 4 min in 
man (Keppler et al. 1992), The advantage of using N-acetyl-LTE 4, radio- 
actively labeled in the N-acetylcysteine moiety, is the metabolic stability of 
the label as opposed to the extensive loss of tritium from leukotrienes la- 
beled in the arachidonate-derived fatty acid moiety during [3-oxidation 
from the co end (Keppler et al. 1989; Jedlitschky et al. 1991). N-Acetyl- 
LTE 4 is also an endogenous metabolite of LTC 4 in human urine (Huber 
et al. 1989; Maltby et al. 1990) and in rodent bile (Hagmann et al. 1986). 
Moreover, N-acetyl-LTE 4 is eliminated and transported on the same routes 
and at comparable rates as the other cysteinyl leukotrienes, LTC 4, LTD 4, 
and LTE 4. For administration of the labeled compound in vivo it is ad- 
vantageous that the biological activity of N-acetyl-LTE 4 is low when com- 
pared to LTD 4 and LTC 4 (Lewis et al. 1981; Samhoun et al. 1989). Within 
1 h, 80% of intravenously administered N-acetyl-LTE 4 is excreted in the 
rat with bile, either intact or after partial oxidative degradation from the 
co end of the fatty acid chain (Jedlitschky et al. 1991). At the same time, 
renal excretion in the rat amounts to about 2%. In man and in the monkey 
cysteinyl leukotriene excretion into urine represents a much higher pro- 
portion than in rodents and amounts to about 50% of the hepatobiliary 
excretion (Denzlinger et al. 1986; Maltby et al. 1990; Keppler et at. 1992). 

Positron emission tomography using carbon-11 labeled, positron-emit- 
ting N-[llC]acetyl-LTE4 enables noninvasive analyses of elimination kine- 
tics, organ distribution, and transport of this cysteinyl leukotriene (Keppler 
et al. 1991). In the rat, the initial distribution phase was characterized by a 
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rapid disappearence of 11C radioactivity from the blood circulation. This 
was accompanied by an increase in the leukotriene concentration in liver 
reaching its maximum 4 min after intravenous injection. In the cynomolgus 
monkey this maximum was reached after 12 min. As a consequence of 
hepatobiliary excretion, increasing amounts of N-[11C]acetyl-LTE4 and its 
o)-/13-oxidized metabolites were detected in the intestines. Only negligible 
amounts of the leukotrienes were monitored in the urinary bladder of the 
rat within 50 min, Renal excretion was significant, however, in the mon- 
key, which is in accordance with previous invasive tracer studies in this 
species (Denzlinger et al. 1986). Kinetic analyses indicated a mean transit 
time of the cysteinyl leukotriene through the liver of 17 min in the rat and 
of 34 min in the monkey (Keppler et al. 1991). In a mutant rat strain with a 
hereditary defect of the hepatobiliary transport of cysteinyl leukotrienes 
across the hepatocyte canalicular membrane (Huber et al. 1987; Ishikawa 
et al. 1990) elimination of leukotriene radioactivity from the blood circu- 
lation was retarded, the mean transit time or storage period in the liver was 
extended to 54 rain, and leukotriene excretion into the intestines was be- 
low detectability. This impaired hepatobiliary elimination was compensat- 
ed by transport of co-/[3-oxidized metabolites from the liver back into 
blood with subsequent renal excretion. This was monitored by the sharp 
rise in 11C radioactivity in the urinary bladder of mutant rats. A similar 
shift from hepatobiliary to renal cysteinyl leukotriene elimination was ob- 
served in rats with extrahepatic cholestasis due to surgical ligation of the 
bile duct. Leukotrienes labeled with a short-lived, positron-emitting radio- 
isotope thus provide quantitative insight into the pathways of their elimi- 
nation and transport in vivo and into the relative contribution of liver and 
kidney to these processes under normal and under pathopysiological con- 
ditions. 

4 Metabolic Deactivation and Inactivation of Leukotrienes 

Enzyme-catalyzed chemical modification of the leukotrienes determines 
their biological activity. Removal of the y-glutamyl moiety from LTC 4 
yields the biologically most potent cysteinyl leukotriene, LTD 4 (Fig. 2). 
On the other hand, modification of the cysteinylglycine moiety of L T D  4 

and o)-oxidation followed by l-oxidation of L T E  4, N-acetyl-LTE 4, and 
L T B  4 result in deactivation and inactivation of these leukotrienes (Fig. 5). 
Inactivation of potent mediators is equally important as their biosynthesis 
since the relative rates of synthesis and inactivation determine the concen- 
tration of the biologically active leukotrienes at the receptor. 
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4.1 Deactivation of LTD 4 in the Mercapturate Pathway 

The rank order of molar potencies of the cysteinyl leukotrienes in most 
assay systems is LTD4>LTC4>LTE4>N-acetyI-LTE 4 (Lewis et al. 1981; 
Samhoun et al. 1989). LTD 4 is irreversibly hydrolyzed to LTE 4 and gly- 
cine (Fig. 2). The reaction is catalyzed by a dipeptidase (Bernstr0m and 
Hammarstr0m 1981), which has been purified from microvillus membra- 
nes (Kozak and Tate 1982) and characterized as an ectoenzyme (Huber 
and Keppler 1987). The dipeptJdase is associated in the membrane with 
other enzymes of the mercapturate pathway (Hughey et al. 1978). Removal 
of the glycine moiety from LT-D 4 leads to a considerable loss of biological 
activity by about two orders of magnitude (Samhoun et al. 1989). Degra- 
dation of the glutathione conjugate LTC 4 to L T D  4, L T E  4, and N-acetyl- 
LTE 4 follows the mercaplurate pathway, originally known as a route ot  
detoxification of xenobiotics (Hagmann et al. 1986; Huber and Keppler 
1988). In this pathway, the cysteinyl leukotrienes are endogenous sub- 
strates in the nanomolar concentration range (Denzlinger et al. 1985). In- 
hibition of the deactivation of LTD 4 to LTE  4, both on cultured cells and in 
the rat, is induced by L-penicillamine (Huber and Keppler 1987). This in- 
terference also prevents the generation of the mercapturate, N-acetyl-LTE 4, 
and of o~oxidized polar metabolites of LTE  4 and N-acetyl-LTE 4. 

N-Acetyl-LTE 4 is formed by intracellular N-acetylation of L T E  4 with 
acetyl-coenzyme A (CoA). The enzyme catalyzing this reaction is present 
in liver, kidney, spleen, skin, and lung of the rat (Bernstr6m and Ham- 
marstr6m 1986). Endogenous N-acetyl-LTE 4 was originally identified in 
rat bile (Hagmann et al. 1985, 1986) and feces (0rning et al. 1986) as the 
predominant LTC 4 catabolite. In human urine, but not in the bile, this mer- 
capturate is present as a minor metabolite amounting to about 10% of 
L T E  4 (Huber et al. 1989, 1990; Sala et al. 1990; Maltby et ai. 1990). 
N-acetyl-LTE 4 retains at least 30% of activity relative to I,TE 4 (Lewis 
et al. 1981) and may be equipotent as LTE 4 in some assays (Samhoun et al. 
1989). Therefore, catabolism of LTC 4 in the mercapturate pathway is asso- 
ciated with biological activation to L T D  4, followed by partial deactivation 
to L T E  4 and N-acetyl-Lq~; 4. Complete inactivation of the cysteinyl leuko- 
trienes is only achieved by oxidation at the m end of the fatty acid moiety 
(Samhoun et al. 1989). 

4.2 Oxidative Inactivation of Leukotrienes 

e-Oxidation of LTB 4 to m-hydroxy-LTB 4, m-aldehyde-LTB4, and e-car- 
boxy-LTB 4, which is associated with a reduction of biological activity, has 
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Fig. 5. Compartmentation of inactivation and degradation of LTE 4 and LTB 4 in the hepato- 
cyte. Products of peroxisomol I]-oxidation may be dinor, tetranor, and hexanor metabolites 
of the LTE4, N-acetyl-LTE4, or LTB 4 [o)-COOH-(C2)n-nbr-leukotriene]. (Reproduced with 
permission from Jedlitschky et al. 1991) 

been observed in leukocytes (Hansson et al. 1981; Powell 1984; Soberman 
et al. 1988; Lewis et al. 1990) as well as in hepatocytes (Harper et al. 
1986; Baumert et al. 1989; Shirley and Murphy 1990; Sumimoto et al. 
1990; Jedlitschky et al. 1990; Shirley et al. 1992). By identification of 
co-carboxy-dinor-LTB 4 and c0-carboxy-tetranor-LTB 3 in hepatocyte sus- 
pensions, these cells were shown to 13-oxidize c0-carboxy-LTB 4 from the 
mend (Harper et al. 1986; Jedlitschky et al. 1991). Ethanol at moderate 
concentrations interferes with the further catabolism of c0-hydroxy-LTB 4 
(Baumert et al. 1989). As a result, not only LTB 4 and co-hydroxy-LTB 4 
(Baumert et al. 1989) but also 3-hydroxy-LTB 4 increases in hepatocytes 
(Shirley et al. 1992). The latter are potent calcium-mobilizing and chemo- 
tactic metabolites (Shirley et al. 1992). 

The liver converts LTE 4 and N-acetyl-LTE 4 to the respective c0-hy- 
droxy and c0-carboxy metabolites (0rning 1987; Ball and Keppler 1987; 
Stene and Murphy 1988). Further degradation by l-oxidation from the 
co end yields co-carboxy-dinor, -tetranor, and -hexanor derivates of LTE 4 
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and N-acetyl-LTE 4 (Stene and Murphy 1988; Sala et al. 1990; Huber et al. 
1990). All these co-carboxy derivates of LTE 4 and N-acetyl-LTE 4 are bio- 
logically inactive (Samhoun et al. 1989). 

Additional pathways for the catabolism of cysteinyl leukotrienes have 
been described on the basis of in vitro experiments. These include the de- 
gradation of LTC 4, LTD 4, and LTE 4 to 6-trans-LTB 4 diastereoisomers and 
the subclass-specific S-diastereoisomeric sulfoxides by myeloperoxidase 
from activated human polymorphonuclear leukocytes and monocytes (Lee 
et al. 1983). Additionally, cysteinyl leukotrienes may be inactivated by 
hydroxyl radicals yielding 6-trans-isomers of LTB 4 (Henderson et al. 
1982). These pathways for inactivation of cysteinyl leukotrienes have been 
outlined repeatedly (Lewis et al. 1990), however, there is no evidence for 
their significance in the intact organism where the metabolites recovered 
from injected LTC 4, LTD 4, LTE 4, or N-acetyl-LTE 4 in bile and urine ac- 
count for most of the administered leukotrienes and exclude a detectable 
contribution from myetoperoxidase-catalyzed degradation in vivo (Huber 
et al. 1987; Jedlitschky et al. 1991). 

4.3 Peroxisomal Degradation by 13-Oxidation from the co End 

The peroxisomal [3-oxidation pathway for very long-chain fatty acids in- 
volves acyl-CoA oxidase (EC 1.3.99.3), the bifunctional or rather trifunc- 
tional protein displaying enoyl-CoA hydratase (EC 4.2.1.17), 3-hydroxy- 
acyl-CoA dehydrogenase (EC 1.1.1.35), and A 3, A2-enoyl-CoA isomerase 
(EC 5.3.3.8) activity, and the peroxisomal 3-ketoacyl-CoA thiolase (EC 
2.3.1.16), as well as auxiliary enzymes such as 2,4-dienoyl-CoA reductase 
(EC 1.3.1.34; Osmundsen et al. 1991). The increased degradation of leu- 
kotrienes in the [3-oxidation pathway after treatment of rats with clofibrate, 
an inducer of peroxisome proliferation, led to the suggestion that 
[3-oxidation of leukotrienes may be localized in peroxisomes (Keppler 
et al. 1989). Both the long-chain structure of the teukotrienes and the struc- 
tures of their degradation products by [3-oxidation in rat hepatocytes (Shir- 
ley and Murphy 1990) and in human urine (Sala et al. 1990; Huber et al. 
1990) are in line with peroxisomal leukotriene breakdown. It is of interest 
that the leukotrienes, in contrast to the prostaglandins, are not degraded 
from the carbon-l-carboxyl group but from the co end by 13-oxidation of 
the co-carboxy metabolites derived from LTB 4, LTE4, and N-acetyl-LTE 4. 
Direct evidence for an exclusive degradation of cysteinyl leukotrienes in 
peroxisomes has been obtained by use of isolated liver peroxisomes and 
direct photoaffinity labeling of the peroxisomal enzymes of [3-oxidation 
with co-carboxy-N-[3H]acetyl-LTE4 (Jedlitschky et al. 1991). In addition, 
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isolated peroxisomes catalzye the [3-oxidation from the co end of 
¢o-carboxy-LTB 4 yielding the dinor and the tetranor catabolites (Jedlitsch- 
ky et al. 1991). In vitro experiments indicate that the degradation of LTB 4 
can also proceed in liver mitochondria, as indicated in Fig. 5. It is unlikely, 
however, that the mitochondrial [3-oxidation of ¢o-carboxy-LTB 4 plays a 
major role in the intact organism since LT B 4 degradation is severly 
impaired in patients with Zellweger syndrome, a disorder of peroxisomal 
biogenesis (Mayatepek et al. 1992). In this inherited disease the defect of 
peroxisomal leukotriene degradation results in increased levels of the 
biologically active, proinflammatory mediators LTE 4 and LTB 4. In 
addition, the concentrations in urine of c0-carboxy-LTE 4 and ¢0-carboxy- 
LTB4, which are the immediate substrates for peroxisomal [3-oxidation, are 
manifold increased (Mayatepek et al. 1992). These findings in humans 
with peroxisome deficiency underline the essential role of peroxisomes in 
the catabolism of leukotrienes. 

5 Analysis of Cysteinyl Leukotrienes and LTB 4 

Quantitative determinations of the leukotrienes can be accomplished by 
radioimmunoassays, high-performance liquid chromatography (HPLC), 
mass spectrometry after gas chromatography, bioassays, or combinations 
of these techniques. Separation of leukotriene metabolites by HPLC 
(Borgeat et al. 1990) often serves as initial step prior to detection with high 
sensitivity. For unequivocal identification gas chromatography/mass spec- 
trometry is the method of choice (Murphy 1984; Mathews 1990; Murphy 
and Sala 1990). 

5.1 Methods for Determination in Biological Fluids 

Difficulties in leukotriene analysis include (a) the short half-life of these 
mediators in vivo and in most biological fluids, (b) their presence in low 
nanomolar or picomolar concentration, (c) their susceptibility to oxidative 
degradation during sample preparation, and (d) the artificial generation of 
leukotrienes from cells during sampling particularly the leukotriene release 
from blood leukocytes during attempts to measure blood plasma leukotrie- 
nes (Denzlinger et al. 1986). 

Most measurements of LTB 4 in biological fluids have employed sensi- 
tive radioimmunoassays after verification of the identity of substance by 
HPLC or mass spectrometry" (Tateson et al. 1988; Lehr et al. 1991; Ma- 
yatepek et al. 1992). 



20 D. Keppler 

The endogenous cysteinyl leukotrienes have been analyzed in fluids 
into which these substances are excreted and present at sufficient concen- 
trations, particularly in bile (Hagmann et al. 1984, 1985; Denzlinger et al. 
1985, 1986; Keppler 1988) and urine (Denzlinger et al. 1986; Keppler 
et al. 1988; Huber et al. 1989; Tagari et al. 1989; Taylor et al, 1989; Ni- 
coU-Griffith et al. 1990; Denzlinger et al, 1990; Fauler et al. 1991). These 
determinations have been based on tracer studies which have defined spe- 
cies-charactericstic index metabolites for systemic cysteinyl leukotriene 
production (Keppler et al. 1988). In humans, the measurement of urinary 
L T E  4 reflects about 5% of the systemic LTC 4 production (Maltby et al. 
1990); in the rat, N-acetyl-LTE 4 represents the index metabolite of choice 
to be analyzed in bile and corresponding to about 13% of systemic LTC 4 
generation (Huber and Keppler 1987) and in the guinea pig biliary L T D  4 

amounts to 20%-50% of LTC 4 administered into the systemic blood cir- 
culation (A. Keppler et al. 1987; Guhlmann et al. 1989). In each case, 
HPLC separation of the respective index metabolite in urine or bile should 
precede the quantitative analysis by immunoassay or mass spectrometry, 
and the results should be corrected for the recovery of internal standards. 
The percentages of cysteinyl leukotrienes eliminated into bile and urine are 
influenced by the relative transport capacities of these organs as well as by 
the enzyme activities degrading the cysteinyl leukotrienes in the vascular 
bed, hepatocytes, and kidney. Nevertheless, these determinations provide 
useful information on the role of leukotrienes under pathophysiological 
conditions and on the action of inhibitors of their synthesis, whereas 
analyses in blood are less meaningful because of the short half-life of these 
mediators in the systemic circulation and the risk of their artificial ex vivo 
synthesis and release from blood cells (Denzlinger et al. 1986; Heavy et al. 
1987; Keppler 1988). 

5.2 Generation of Cysteinyl Leukotrienes In Vivo 
Under Pathophysiological Conditions 

Pathophysiological conditions associated with enhanced systemic gener- 
ation of cysteinyl leukotrienes have been described in experimental ani- 
mals and in humans. In most instances, local release of the mediators leads 
to elimination with the blood circulation followed by biliary and renal ex- 
cretion of detectable quantities. Under a few experimental conditions, such 
as in the anaphylactic shock in the guinea pig (A. Keppler et al. 1987; 
Guhlmann et al. 1989), a causal relationship has been established between 
the quantitiy of leukotriene release and the clinical symptoms. 
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In humans, biliary LTE 4 is increased in acute pancreatitis (Keppler 
1988). Enhanced urinary LTE 4 excretion is associated with fulminant he- 
patitis, liver cirrhosis, and hepatorenal syndrome (Huber et al. 1989; 
Moore et al. 1990), antigen challenge in asthma patiens (Taylor et al. 1989; 
Tagari et al. 1989, 1990; Christie et al. 1991), adult respiratory distress 
syndrome and burns (Fauler et al. 1991; Westcott et al. 1991), systemic lu- 
pus erythematosus (Hackshaw et al. 1992), and treatment with certain cy- 
tokines, such as granulocyte-macrophage colony-stimulating factor (Denz- 
linger et al. 1990), and tumor necrosis factor-or. In addition to urinary 
LTE4, both L T E  4 and LTB 4 have been determined in significant quantities 
in sputum from patients with cystic fibrosis and asthma (Piper et al. 1991). 
In the monkey, intoxication with staphylococcal enterotoxin B (Denzlinger 
et al. 1986) and endotoxin from Salmonella abortus equi elicited increased 
biliary and urinary LTE 4 excretion. 

Systemic anaphylaxis leads to an immediate release of relatively large 
amounts of cysteinyl leukotrienes detected as LTD 4 in guinea pig bile (A. 
Keppler et al. 1987; Guhlmann et al. 1989), or as N-acetyl-LTE 4 in rat bile 
(Foster et al. 1988), or as LTE 4 in sheep lymph during cyclooxygenase 
blockade (Robinson et al. 1986). Biliary cysteinyl leukotrienes also in- 
crease after immunological challenge of the isolated rat or guinea pig liver 
(Hagmann et al. 1991). 

In the rat, where 85%-90% of the systemic LTC 4 production is reflect- 
ed by the biliary excretion of metabolites, various pathophysiological 
conditions have been studied by analysis of N-acetyl-LTE 4 in bile. These 
disease states include endotoxin shock (Hagmann et al. 1984, 1985, 1986; 
D. Keppler et al. 1987), different types of tissue trauma such as surgical 
trauma, bone fracture, burn injury (Denzlinger et al. 1985), shock induced 
by platelet-activating factor (Huber and Keppler 1987) and by tumor 
necrosis factor-or (Huber et al. 1988), and fulminant experimental hepatitis 
(Hagmann et al. 1987). 

6 Leukotriene-Mediated Disease Processes and Their Prevention 

The biological actions of L T C  4, L T D  4 LTE 4, and LTB 4, as well as actions 
of some of the metabolites, such as N-acetyl-LTE 4 and o~-hydroxy-LTB4, 
have been well defined (Dahl6n et al. 1981; Lewis and Austen 1984; Piper 
1984; Feuerstein 1985; Drazen and Austen 1987; Samuelsson et al. 1987; 
Guhlmann et al. 1989; Rola-Pleszczynski 1989; Ford-Hutchinson 1990; 
Lehr et al. 1991; Shaw and Krell 1991; Shirley et al. 1992). Moreover, 
analysis of leukotriene concentrations in biological fluids and tissues have 
established that the concentrations and amounts of these mediators under 
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some conditions are sufficient to elicit pathophysiologicat responses in 
humans and experimental animals (A. Keppler et al. 1987; Keppler et al. 
1988; Guhlmann et al. 1989; Taylor et al, 1989). Of particular importance 
are the recent results from clinical studies with receptor antagonists and 
inhibitors of leukotriene biosynthesis. The development of both types of 
compounds has reached a high degree of selectivity in their actions and 
sufficient bioavailability (Gillard et al. 1989; Aharony and Krell 1991; 
Ford-Hutchinson 1991b; Jones etal. 1991; Lewis etal. 1991; Piper and 
Krell 1991; Herron et al. 1992). Thus, the criteria to define and the means 
to treat leukotriene-mediated disease processes are available. Anaphylactic 
shock in the sensitized guinea pig may serve as an example where selec- 
tive inhibition of leukotriene biosynthesis in vivo (by MK-886) prevents 
the generation of otherwise lethal amounts of endogenous LTC 4, and 
where the above mentioned criteria have been fulfilled (Guhlmann et al. 
1989). 

Asthma is the human disease in which the most convincing evidence 
has been presented to implicate the cysteinyl leukotrienes as key mediators 
(Piper and Krell 1991; Lewis et al. 1991). This conclusion is based on the 
bronchoconstrictor activity of inhaled LTC 4, LTD 4, and LTE 4 (Drazen 
and Austen 1987), on the generation of cysteinyl leukotrienes during the 
asthmatic attack (Taylor et al. 1989), and on the results from clinical stu- 
dies with third-generation LTD4/LTE 4 receptor antagonists (Lewis et al. 
1991). In other inflammatory diseases, local or systemic leukotriene pro- 
duction has been measured and suggests a role in pathogenesis; however, 
the importance remains to be proven by successful clinical intervention or 
prevention by use of leukotriene biosynthesis inhibitors, LTD4/LTE 4 re- 
ceptor antagonists, and/or LTB 4 receptor antagonists. The leukotrienes 
may act within a network of mediators involving cytokines and other ara- 
chidonate metabolites. Diseases in which inhibition of leukotriene synthe- 
sis or action may prove to be beneficial include, in addition to asthma and 
anaphylaxis, psoriasis, adult respiratory distress syndrome, neonatal pul- 
monary hypertension, allergic rhinitis, gout, rheumatoid arthritis, inflam- 
matory bowel disease, acute and fulminant hepatitis, hepatorenal syn- 
drome, glomerulonephritis, and possibly sepsis. The use of selective leu- 
kotriene synthesis inhibitors and receptor antagonists may result not only 
in therapeutic progress but also in a deeper and more detailed understan- 
ding of the role of leukotrienes under normal and pathophysiological con- 
ditions. 
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