
Reactive Types

Jean-Pierre Talpin

IRISA (INRIA-Rennes & CNRS URA 227)
Campus de Beaulieu, 35000 Rennes, France

E-malh talpin@irisa.fr

Abstract . Synchronous languages, such as SIGNAL, are best suited for the
design of dependable real-time systems. Synchronous languages enable a very
high-level specification and an extremely modular implementation of complex
systems by structurally decomposing them into elementary synchronous pro-
cesses. Separate compilation in reactive languages is however made a difficult
issue by global safety requirements.

We give a simple and effective account to the separate compilation of re-
active systems by introducing a specification as type paradigm for reactive
languages: reactive types. Just as data-types describe the structure of data in
conventional languages, reactive types describe the structure of interaction
in synchronous languages. We define an inference system for determining re-
active types in the SIGNAL language and show how to reconstruct adequate
compile-time information on reactive programs by means of such specifica-
tions.

1 I n t r o d u c t i o n

A reactive system is a computer system which continuously reacts to its environment.
Many industrial systems are reactive in nature: process control systems, monitor-
ing systems, signal processing systems, communication protocols. Reactive systems
are commonly characterized by critical requirements such as fast reaction time or
bounded memory usage.

Classical design tools for implementing reactive systems, such as real-time oper-
ating system or general-purpose concurrent languages (e.g. ADA), neither provide a
global and formal view of the system (separated into tasks or services) nor preserve
its determinism.

Synchronous languages, such as SIGNAL [3], LUSTRE [5] or ESTEREL [4], are
specifically designed to ease the development of reactive systems by providing both a
formal view and a logical notion of concurrency preserving determinism: synchronous
concurrency, where operations and communications are instantaneous.

In a synchronous language, concurrency is meant as a way to logically decom-
pose the description of a system into a set of elementary communicating processes.
Interaction between concurrent components within the program is conceptually per-
formed by broadcasting events.

In practice, a synchronous program is usually translated into a circuit or into a
monolythic automaton. The hypothesis of synchrony is translated into the require-
ment that the program reacts rapidly to its environment.

596

As a result, synchronous languages allow a very high-level specification and an
extremely modular implementation of complex systems by structurally decomposing
their functional components into elementary processes. Although modularity is a key
advantages of synchronous languages, separate compilation is made a difficult issue
by the requirements of proving global safety properties of the system.

To enable separate compilation of the functional components of reactive systems
while preserving their global integrity, we introduce the notion of reactive type. Just
as data-types describe the structure of data in conventional languages, reactive types
describe the structure of interaction in synchronous languages.

In conventional languages, function types are the media enabling separate compi-
lation of procedures in a program. Similarly, reactive types can be used as a medium
for separately compiling reactive processes and assembling them to form complex
systems.

In this paper, we present an inference system which associates SIGNAL programs
to reactive types. We prove its correctness w.r.t, the dynamic semantics of SIGNAL
and show how to reconstruct adequate corapile-time information on programs by
means of reactive types.

2 A n Overv iew of SIGNAL

SIGNAL is an equational synchronous programming language: a SIGNAL program is
modularly organized into processes consisting of simultaneous equations on signals.
In SIGNAL, a~l equation is an elementary and instantaneous operation on input
signals which defines an output. A signal is a sequence of values defined over a
totally ordered set of instants. At any given instant, a signal x is either present or
absent (its clock ~ denotes the instants at which it is present).

Syntax A process p is either an elementary equation, the synchronous compositioff
p [p' of two processes p and / or the declaration p/x of a local signal x in a
process p. An equation instantaneously maps a signal x to a value v (e.g. an event,
a boolean, an integer), to the previous value "y $1" of a signal y, to a synchronous
operation f(y, z) on the signals y and z (e.g. an operation on booleans, on numbers),
by merging two signals y and z or by sampling a signal y under a condition z.

p ::= (p ~ p') synchronous composition
] p/x encapsulation or scoping
I x := v constant declaration

x := f(y, z) synchronous operation
I z := y when z down-sampling
I x := y default z deterministic merge

x := y$1 init v delay operation

Fig. 1. Syntax of processes p in SIGNAL

597

D y n a m i c S e m a n t i c s The dynamic semantics of SIGNAL, wri t ten p -~ pt, presented in
[3], out l ined in the figure 2, describes how a process p evolves over t ime. A t rans i t ion
in the dynamic semantics defines an instant . Each instant is character ized by a set e
of s imul taneous events and by an instantaneous t rans i t ion from a s ta te p to a s ta te
p~. The environment e associates a signal x to a value v when it is present (wri t ten
x (v)) or to .L when it is absent (wri t ten x(.L)).

p-~p" p' ~p'" ene' p " (~
p I p' ~-~p" I p'" p/=-~p'/=

:r, : : v

x :=] (y , z)

= : = f (y , z)

x : : y $ 1 init v

x : : y $ t init v

x := y when z

z(~) z(.L) ~(~) z(J_)
----+ x : = v x : : y when z > x : = y when z

~(• ~(• ~(• ~(,,) ~(,,) =(o
~c:= f (y , z) x : = y when z) x : = y when z

=(.L) ~(~) z(f)
=(I(~'~')) ~(~) =(~'~ x : = f (y , z) x : = y when z) x : = y when z

=(~) ~('L I =(• v(.J-) .(.L)
x : = y $ 1 i n i t v x : = y defaul t z) x : = y default z

~(~) ~(~') ~(~) ~(~)
) x : = y $ 1 inlt v ~ x : : y default z) x : = y default z

=(• ~(• =(~) y(.L) z(v)
) x : : y w h e n z x : = y d e f a u l t z ; x : = y d e f a u l t z

Fig . 2. Dynamic semantics of SIGNAL

Paral le l composi t ion p [pt synchronizes the events e and e ' p roduced by p and
p ' . The re la t ion e N e' is defined iff e (x) = e ' (x) for all x in d o m (e) N d o m (e ')) .

A synchronous opera t ion x := f (y , z) ins tantaneously computes the value of f
by y and z and ou tputs it to the signal x. A delay x := y $1 init v stores the value
v ~ of y and ou tpu t s the previous value v to x.

A merge x :-- y default z outputs the value of y to x when y is present or the
value of z otherwise. A sampling x :-- y when z ou tputs y to x when z is present and
true. When all the inputs of an equation are absent , a t rans i t ion takes place but no
value is given to i ts output .

E x a m p l e 1. As a first example, we consider the s t ream of posit ive integers nat as the
synchronous composi t ion of two equations. The first equat ion defines the local signal
y ini t ia l ly as 0 and then as the previous value of x. The second equat ion defines x as
y plus 1.

process nat (out integer x) =

(y := x $ 1 init 0

l x : = y + 1
) / y

At each ins tant n, bo th equations are executed s imultaneously (this explains why
x,, is defined by xn-1 + 1 and not by x := x + 1 as in a conventional p rogramming
language) . Notice tha t the ra te of the execution of the p rogram is not cons t ra ined
by an ex te rna l input signal. The schedule of i ts execution will ac tual ly depend on
the use of x in the environment.

598

Data-Flow Graphs As outlined in the previous example, the compilation of SIGNAL
requires the static resolution of temporal relations between signals. In order to ensure
the respect of synchronization constraints expressed in programs.

c ::= ~ I ~\Y t [=] I c A ~ I ~ v ~ doc k

U g: :=01 (~=c) I (:c--~y) l g g 13x.ggraph

Fig. 3. Clocks c and conditional data-flow graphs g

The control model of a SIGNAL program is represented by a set of temporal
relations ~ -- c between signal clocks ~ and expression clocks c. The clock ~ denotes
the instants when x is present. The clock Ix] denotes the presence of a boolean signal
x with the value true. The clock ~ \ ~ denotes the instants where x is present and y
absent. The formula c A d and c V d denote the conjunction and disjunction of the

instants c and d.
The data-flow model of a program is represented by a graph composed of arrows

x 4 y. An arrow x 24 y denotes a dependency from x to y a t the clock c.
References to local signals x in a graph g are bound by existential quantification

3x.g. We write fv(g) and by(g) for the free and bound signals of g. We write 3y.g =
3x.(g[x/y]) and (3x.g') U g = 3x.(g U g') iff x r fv(g) U by(g). We identify 3y.(3x.g)
and 3x.(3y.g).

Clock Calculus The analysis which determines the conditional data-flow graph g of a
SIGNAL program is called the clock calculus (introduced in [3], outlined in the figure
4). Using the graph g produced by clock calculus, the SIGNAL compiler generates an
optimal compile-time scheduling of the actions specified in the source program by
hierarchizing the temporal relations in g and by ruling the execution of the program
using its master clock [2]. Using the graph g, causal dependencies in the source
program can easily be detected as constrained boolean conditions on signals (e.g.

[x] = ~) or cyclic data dependencies (e.g. x 4 x).

\ ~ = y , x = z]

p=C,g
p/x ~ 3x.g

Fig. 4. Clock calculus p =:~ g

) x:=ywhen z=:~ =~A[z]

x:=ydefault z=~ ~ = g V ~ ,]

p=~g p~=:~g~
U i p~p* =~g g

599

Example 2. In the case of the process nat, for instance, the clock calculus determines
the temporal relation between x and y: ~ = ~ (i.e. x and y are synchronous) and the
data dependency y --+ x (i.e. the computation of x depends on the value of y). Notice
that no external constraint exists on the signal x.

process nat (out integer x) =

(y := x $ I init 0 ~:

[x : = y + 1 y - - - + x
) / y 3y

Separate Compilation As the conditional data-flow graph of a SIGNAL program is
the essential medium for checking its safety and compiling it, separate compilation
is made a difficult issue by the requirements of proving global safety properties. To
illustrate this issue, let us consider a typical situation raised in the following process
definition. Let copy be the process which assigns the value of its input signals a and
b to its output signals x and y: (x:=a [y:=b).

process copy (in a, b; out x, y) =

(X := a a - - ~ x
] y := b b--+y
)

To compile it, the SIGNAL compiler has the choice between scheduling either
x:--a; y:--b or y:=b; x:=a. However, the appropriate choice depends on the way the
process is invoked. For instance, in the case below, only the first scheduling (i.e.
u:=w; v:=u) is correct (the second dead-locks).

(u ,v) := copy(w,u) w - - - + u - + v

Fortunately, this problem can be solved by determining the data dependencies
a--~ x and b-+ y between (a,b) and (x,y) where copy is defined and the actual data
dependencies w --~u and u -+v between u, v and w where copy is used. In a situation
of separate compilation that information is however not directly accessible by the
textual definition of the process copy. In this case, the explicit declaration of the
temporal and data-flow relations between signals appears to be necessary for solving
the issue of separate compilation.

3 R e a c t i v e T y p e s

A common justification of typing in conventional programming languages is that
"well-typed programs do not go wron]' [Milner]. Our reactive type system provides
simple and effective means for making similar statements on reactive systems. Just as
data-types abstract the representation of data, reactive types abstract the interaction
structure of processes. The definition of our reactive type system incorporates both
a calculus for reasoning on the interaction structure of SIGNAL programs and a way
to check basic safety requirements.

600

In the type system of the figure 5, a signal x is an atomic reactive type. A constant
has type _L. A delay operation on a signal of type t has type St. The down-sampling
of a signal of type t by a signal of type t ' has type t ~3 t'. The deterministic merge
between two signals of types t and t ' has type t �9 t '. An equation of input type t
and of output signal x has type t -~ x. The recursive (resp. local) definition of x in
t is written px.t (resp. 3x.t). The synchronization of two signals of types t and t ~ is
writ ten t x t ', its composition t | t ~.

t ::= .l_ constant t t ~ x equation
I x signal] px.t recursion
I 5t delay I 3x.t scoping
I t @ t' sample I t • t ' synchronization
I t ~ t t merge I t | t ~ composition

Fig. 5. Reactive types t

In the figure 6, we define the inference system for reactive types. It is writ ten p: t
and associates a SIGNAL process p to its reactive type t.

x : = v : l - - + x

x : = y $ 1 : (6 Y) ' - + x
x : = y w h e n z : (y e z) - - + x

x : = y d e f a u l t z : (y ~ z) - + x
z : = f (y , z) : (= x (y x z)) ~ ((y | z) -~ x)

Fig. 6. Inference system p: t

p:t p':t'
p] p ' : t |

p:t

"plx : 3z . t

In order to identify reactive types which denote identical interaction structures
(formally, in the sense of definition 2 and of theorem 3), we equip our type system
with algebraic rules. Types constructed with 6, | and • are sets with neutral element

I and satisfy the distribution rules of the figure 7.

6• =_L

~(t e e) = (,~) e (~t')

t x (t ' x .L) = t x (t' x t ') = t x t'

(t x (t' | t")) = (~ x (t ' x t "))

t r (t' | = (t r t') | (t e t ")
t e (t' e t ") = (t e t ') | (t e t ")

~(t �9 t') = (~t) �9 (~t') ~(t e t') = (~t) | (~t')

t | (t' x _L) = t | (t' x t') = t

(t x (t' • t")) = (t x t") | (t' • t") | (t x t")

(e|174 t e t = t

(t , | 1 6 2 1 7 4 • 1 7 7 1 7 7

Fig. 7. Distribution~of St, t | t' and t • t ~

601

The signal x referenced in a type px.t or 3x.t is bound to t. Bound signals x
satisfy the scoping rules of the figure 8. We write fv(t) (resp. by(t)) for the set of free
(resp. bound) signals of a type t. We write t~ = t |215174 (t' • t") for the
completion o f t w.r.t, x [to show, e.g., tha t y x z = 3x.((_l_ --+ x) | x y) | x z))].

r Iv(t) z r fv(t)
pz.t = t[px.t/x] px.t = t py.t = px.(t[x/y])

3x.(t | ~x))= tx [pz . t ' / x] x~ f v (t) xCfv(t)
3~.t = t 3y. t = 3 x . (@ / u])

Fig. 8. Scoping properties of reactive types t

z r fv(t)
t | (p..t') = p . . (t | t')

z r fv(t)
t | (3 . . t ') = 3 . . (t |

The algebraic properties of reactive types give rise to the definition of a normal
form (definition 1). Every type t obtained from the inference system p: t of the figure
6 can be represented in normal form.

D e f i n i t i o n 1. The normal form of a reactive type is t : := t" x t" I t' --r x I t | where
t' and t" are of the form t ' : := _k I t" | t" and t" : := x I 5x I t" 63 t" I t" @ t" I px.t".

Example 3. To demonstrate the use of our reactive type system, let us consider a
definition of the explicit synchronization of two signals x and y in SIGNAL.

process synchro (in x; out y) = (x x y) • z

(z := ((x = x) = (y = y)) (x |
) / z 3z

The inference system of the figure 6 determines the interaction structure of the
process synchro: 3z.((x x y) x z) | ((x | y) --+ z)). The algebraic rules of our reactive
type system allow us to define its normal form as 3z.(((x • y) • z) | ((x | y) -+
~)) = (x x y) x (p~. (x | y)) = (x x y) x (x | ~) = x x y.

Safety The safety of a process p of reactive type t can be checked using the function
.4. A~ (t) checks that their is no cycles from the input type t and the output signal x
of an equation. The function A(t) checks for the absence of cycles in t. The function
C(t) checks tha t the synchronizations in t do not incur causal dependencies.

A~(-) A.(~t) x # y ~ (t) A.(t) ~ (t ') ~.(t) A.(t') A.(t) ~ (t)
A,(y) .4 , (te t ') .a , (te t ') .4 , (t | A,(py.t)

.a(t) .A=(t) .4(t'[t/=]) C(t) C(t x t') C(t") t' # t" e t
.~(3=.t) ~ ((t --r z) | t') .4(t) c ((t x t') | t") c(t x t')

Fig. 9. Property .A.(t)

602

Example ~. To give an example of causal dependency and illustrate the combined
use of our inference system and of the functions .4 and C, we consider the process
sample which computes a value w given two inputs u and v and a condition on them.

process sample (in integer u, v; out integer w) =

(x :=u<v
y := u when x

lw:=v+y
) / logical x; integer y

The process sample uses two local signals x and y. Its reactive type declares the
signals synchronous to w and the interaction structure leading to w:

((~, x v) x ~) | ((v e (,., e (,., | v))) ~ w)

The function C detects that the process sample requires: u x (u (9 u). By recon-
structing the clock relations of the process sample (as shown in the figure 10), one
observes that the constraints ~2 = 9 and ~2 A Ix] = 9 (where ~ = ~2 V 9) cannot be
satisfied simultaneously. This means that the process sample deadlocks if u and v are
present and if the condition x is simultaneously false.

Graph Reconstruction In a conventional programming language, typing is a medium
which enables the separate compilation of the functions in a program. Types allow to
determine the representation of data in a program at compile-time. In a synchronous
language, clock relations and data-flow dependencies allow to determine the appro-
priate scheduling of the actions specified as a system of simultaneous equations. This
information can be reconstructed given the reactive type of a process.

[• = 3=.(~,0)

[t] , = 3~1 (~,g)

Lo=.~j~ = 3=, =1 . . (~, (~ = ~) u g \ g=)

[=1, = (~, = -% y) [~x]~ = (~, O)

Y = 3x l (c,g) [t ' ly = 3xn+z (c ,g)

--* []~ = 3=,+1 (c ,g') [t l , = 3=1 (c, g) t '
" (z ~ t e e] ~ = 9x, x l (c A [x] , ~ U # ' U (% = c ') U ~Y)._~o" ~ .)

[f ly = 3xz (c, g) [t '] , = 3 x . + z (, g)
- - I~" _ _ t)
It e t] , - 3=1. ~ . (~ v ~ ,9 u~ ' u (=~ o,, �9 = ~ y E g r

~=g -~=gt
U ' t | g

[%]= = 3=, (c,9) [e L = 3 = . + , (c',g')
§

t x t' = 3x.(~ = c,~ = c') u ~ u ~'

I t] . = 3=, (c,9)

t - , ~ = (~ = c) u 9

Fig. 10. Graph of a reactive type t in normal form

603

In the figure 10, the term [t]~ = 2xL.n.(c,g) associated to an expression type t
consists of a sequence of bound signals xl..~ (introduced during the reconstruction),

of a clock c (the clock of the expression) and of a graph g. We write ~' for the
conditional data-flow graph reconstructed from the reactive type t of a SIGNAL
process. We write ~) for the set of clock equations & = c in a graph g. We write
gX = { x - ~ y e g} and g~ = { y - ~ x E g}.

4 Formal Properties

Adequacy We show that the reconstruction of the clock and data dependency rela-

tions t of a reactive type t is adequate with respect to the clock calculus of SIGNAL
(figure 4) in that it is equivalent (in the sense of the definition 2) to the graph g
inferred from a SIGNAL process.

Def in i t ion 2. g _~ g' iff there exists a renaming of by(g) and bv(g') s.t. ~ r g' and

s.t. there exists x - ~ y E ~7 (resp. ~) s.t. g =*, (c = c') for all x-L~y E ~ (resp. ~) .

In the above defin!tion, we write ~ ~=~ g' iff ~ =~ g' and g' =~ g- We write ~ ~ g'
iff for all (~ = c) E g', g ~ (~ = c). We write y for the transitive closure gib,(g)
of the data-flow dependencies in the graph g w.r.t, its bound signals. We write g]~
for the closure of the graph g with respect to x (notice that gix does not necessarily
eliminates all references to x, e.g., when ~ = c E g).

c A c e

c n

The theorem 3 says that the conditional dependency graph - t reconstructed
from the type t of a process p is equivalent to the transitive closure of the graph g
determined by the standard clock calculus of SIGNAL.

T h e o r e m 3 (A d e q u a c y) . I f p : t and p ~ g then g ~_ "~.

Proof. The proof is by induction on the structure of p using the rules defined in the
figures 4 and 6. It uses the fact that the equivalence rules defined in the figure 7 and

8 preserve the definition 2 (i.e. if t = t' then - t _~ t ') .

Soundness The soundness of our reactive type system with respect to the dynamic
semantics of SIGNAL is formulated as a subject reduction theorem. It says that the
reactive type of a process is preserved during execution. We write "e : t w.r.t, p"
when the events e axe consistent with the type t of a process p. We write out(p) for
the output signals of p and in(p) for fv(p) \ out(p).

Def in i t i on4 . e : t w.r.t, p iff, for all x(v) E eout(p), t' --+ x E t and, for all x(v) E
ei~(p), there exists (t' • t") E t or t' -+ y E t s.t. x E fv(t~).

T h e o r e m 5 (Soundness) . I f p 4 p ~ and p: t then e : t w.r.t, p and p~:t.

Proof. The proof is by induction on the structure of p using the rules defined in the
figures 2 and 6. It uses the fact that the equivalence rules defined in the figure 7 and
8 preserve the property of the definition 4.

604

Subtyping An account to the expressiveness of reactive types is that a notion of
refinement can be introduced in our inference system in terms of a subtyping relation.
Refinement is an important feature of the programming methodology of SIGNAL. It
can be defined by the relation g __ g~ as follows.

Def in i t i on 6. For any graph g, g E gU(x -% y) and g E_ gU(2 = c) iffgU(k = c) ~ g.

A graph g satisfies g _ g~ if it has less clock constraints and less data dependencies
than gq By inducing less clock and data dependencies, the specification g preserves
the safety requirements related to the specification gq In particular, it ensures that
no boolean condition Ix] in g~ is constrained and that no data dependency in g~ is
turned into a causal dependency (i.e a cycle x -% x).

In our inference system, subtyping can be introduced by means of an additional
rule: if the process p has type t and t _ t ~, then p also has type t ~. The subtyping
relation is defined by:

Def in i t i on 7. t E t ~ if[there exists t" s.t. t r = t | t" and A(t').

Example 5. To illustrate the use of subtyping, let us reconsider the example of the
process copy. The definition of copy has type t = (a --+ x) | (b --4 y) and its use has
type t ' = (w ~ u) | (w --4 v).

process copy (in a, b; out x, y) = (x: :a I y:--b) (a-+x)|
(u,v) :-- copy(w,u) (w + u) | (u -~ v)

In order to separately compile the process copy in such a way to support the
scheduling required by its usage in the statement (u,v) := copy(w,u) of the program,
one may use the subtyping relation t ~ __. t" in order to give the type t" -- t ~ | (x --4 b)
explicitly to the definition of copy. This would enforce copy to be compiled as x:--a;
y:=b and to be compatible with its use. To probe further by making an analogy
to data-types, the process copy can be given polymorphic type Va, cd.(a • a ~) --4
(a • a t) (using a polymorphic type inference algorithm such as that presented in [9]).
Similarly, the explicit assignment of the "less generaF type (int • bool) ~ (]nt x bool)
to copy enforces x and a (resp. y and b) to be represented as integers (resp. boolean)
by the SIGNAL compiler and to be used as such in the rest of the program.

5 R e l a t e d W o r k

The definition of type systems for describing interaction in synchronous program-
ming languages has been the subject of recent investigations. In [6], T. Jensen gives
a model of SIGNAL using abstract interpretation and shows how to derive the clock
calculus of [3] from this interpretation. In [1], S. Abramsky & al. give a categori-
cal model of synchronous interaction in SIGNAL and LUSTRE and propose a related
type system. In contrast to reactive types both type systems do not satisfy an ad-
equacy theorem (in the sense of theorem 3): they do not permit to reconstruct all
the compile-time information the SIGNAL compiler requires. Nonetheless, we believe
tha t reactive types could be given an interpretation in the interaction category.

605

6 C o n c l u s i o n

We have introduced a notion of reactive type for synchronous languages. Just as
data-types describe the structure of data in conventional languages, reactive types
describe the structure of interaction in reactive languages. We have introduced an
inference system to associate SIGNAL programs to reactive types in the same way
types are associated to functions in the lambda-calculus. Using reactive types, we
have shown how to reconstruct the information needed for compiling SIGNAL pro-
grams and stated the correctness of our inference system with respect to the dynamic
semantics of SIGNAL. We have introduced a notion of subtyping, which allows the
gradual specification of SIGNAL programs using reactive types. Although our presen-
tation was focused on SIGNAL, we believe that reactive types could equally be used
in other synchronous languages, such as LUSTRE Or ESTEREL, to type synchronous
interaction.

References

1. S. Abramsky, S. Gay and R. Nagarajan. Interaction categories and the foundations
of typed concurrent programming. In Proceedings of the 1994 Marktoberdorf Summer
School. NATO ASI Series, Springer Verlag, 1995.

2. T. P. Amagbegnon, L: Besnard and P. Le Guernic. Implementation of the data-flow
synchronous language SIGNAL. In Proceedings of the 1995's ACM Conference on Pro-
gramming Language Design and Implementation, p. 163-173. ACM, 1995.

3. A. Benveniste, P. Le Guernic and C. Jacquemot. Synchronous programming with events
and relations: the SIGNAL language and its semantics. Science of Computer Programming,
16:103-149, 1991.

4. G. Berry and G. Gonthier. The ESTEnEL synchronous programming language: design,
semantics, implementation. In Science of Computer Programming, 19:87-152, 1992.

5. N. Halbwachs, P. Caspi, P. Raymond and D. Piland. The synchronous data-flow pro-
gramming language LUSTRE. In Proceedings of the IEEE, 79(9), p. 1305-1320. IEEE
Press, September 1991.

6. T. :lensen. Clock analysis of synchronous data-flow programs. In Proceedings of the
19f15's ACM Conference on Partial Evaluation and Program Manipulation. ACM, 1995.

7. M. Le Borgne. Syst~mes dynamiques polynomiaux sur les corps finis. Ph.D. Thesis,
Universit~ de Rennes I, September 1991.

8. O. Maffe~s and P. Le Guernic. Distributed implementation of SIGNAL: scheduling and
graph clustering. In 3rd. International Symposium on Formal techniques in Real-Time
and Fault-Tolerant Systems, p. 547-566. LNCS no. 863, Springer Verlag, 1995.

9. D. Nowak, J.-P. Talpin, T. Gautier, and P. Le Guernic. An ML-like module system for
the synchronous language Signal. Submitted for publication, December 1996.

606

A Last Example

In this appendix, we consider a reasonably scaled SIGNAL process which makes
extensive use of constants, of down-sampling and of feed-back loops using delayed
signals.

process level (in event fill; out logical empty) =

(synchro (when m = O, fill)

I n := (10 when fill) default (m - I)

I m : - - n $ 1
t empty := when (n = O) d e f a u l t (n o t f i l l)
) / integer n, m init 0

The process level models a system similar to a water reservoir. The input event fill
signals that the resource is filled. The local integer variable n measures the current
level of water. At each fill event, the level is set to the maximum 10. Then, the level
gradually decreases until it reaches 0. In this case, the system outputs the value true
to the signal empty. Let us define S for fill and e for empty. Then, the process level
has reactive type:

3n.((((2- • f) @ 6n) --+ n) | (f x (.l_ e 6n)) | ((J_ e n) ~ f) --+ e

As a matter of comparison, the transitive closure of the graph inferred by the
clock calculus of SIGNAL (figure 4) for the process level is:

[/= e, ̂ [,21)
/ = (64cA [c5]) v] s.t. 62 = r -- rTz = (r A /) V rh

