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Abstract .  Synchronous languages, such as SIGNAL, are best suited for the 
design of dependable real-time systems. Synchronous languages enable a very 
high-level specification and an extremely modular implementation of complex 
systems by structurally decomposing them into elementary synchronous pro- 
cesses. Separate compilation in reactive languages is however made a difficult 
issue by global safety requirements. 

We give a simple and effective account to the separate compilation of re- 
active systems by introducing a specification as type paradigm for reactive 
languages: reactive types. Just as data-types describe the structure of data in 
conventional languages, reactive types describe the structure of interaction 
in synchronous languages. We define an inference system for determining re- 
active types in the SIGNAL language and show how to reconstruct adequate 
compile-time information on reactive programs by means of such specifica- 
tions. 

1 I n t r o d u c t i o n  

A reactive system is a computer system which continuously reacts to its environment. 
Many industrial systems are reactive in nature: process control systems, monitor- 
ing systems, signal processing systems, communication protocols. Reactive systems 
are commonly characterized by critical requirements such as fast reaction time or 
bounded memory usage. 

Classical design tools for implementing reactive systems, such as real-time oper- 
ating system or general-purpose concurrent languages (e.g. ADA), neither provide a 
global and formal view of the system (separated into tasks or services) nor preserve 
its determinism. 

Synchronous languages, such as SIGNAL [3], LUSTRE [5] or ESTEREL [4], are 
specifically designed to ease the development of reactive systems by providing both a 
formal view and a logical notion of concurrency preserving determinism: synchronous 
concurrency, where operations and communications are instantaneous. 

In a synchronous language, concurrency is meant as a way to logically decom- 
pose the description of a system into a set of elementary communicating processes. 
Interaction between concurrent components within the program is conceptually per- 
formed by broadcasting events. 

In practice, a synchronous program is usually translated into a circuit or into a 
monolythic automaton. The hypothesis of synchrony is translated into the require- 
ment that the program reacts rapidly to its environment. 
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As a result, synchronous languages allow a very high-level specification and an 
extremely modular implementation of complex systems by structurally decomposing 
their functional components into elementary processes. Although modularity is a key 
advantages of synchronous languages, separate compilation is made a difficult issue 
by the requirements of proving global safety properties of the system. 

To enable separate compilation of the functional components of reactive systems 
while preserving their global integrity, we introduce the notion of reactive type. Just 
as data-types describe the structure of data in conventional languages, reactive types 
describe the structure of interaction in synchronous languages. 

In conventional languages, function types are the media enabling separate compi- 
lation of procedures in a program. Similarly, reactive types can be used as a medium 
for separately compiling reactive processes and assembling them to form complex 
systems. 

In this paper, we present an inference system which associates SIGNAL programs 
to reactive types. We prove its correctness w.r.t, the dynamic semantics of SIGNAL 
and show how to reconstruct adequate corapile-time information on programs by 
means of reactive types. 

2 A n  Overv iew of SIGNAL 

SIGNAL is an equational synchronous programming language: a SIGNAL program is 
modularly organized into processes consisting of simultaneous equations on signals. 
In SIGNAL, a~l equation is an elementary and instantaneous operation on input 
signals which defines an output. A signal is a sequence of values defined over a 
totally ordered set of instants. At any given instant, a signal x is either present or 
absent (its clock ~ denotes the instants at which it is present). 

Syntax A process p is either an elementary equation, the synchronous compositioff 
p [ p' of two processes p and / or the declaration p/x of a local signal x in a 
process p. An equation instantaneously maps a signal x to a value v (e.g. an event, 
a boolean, an integer), to the previous value "y $1" of a signal y, to a synchronous 
operation f(y, z) on the signals y and z (e.g. an operation on booleans, on numbers), 
by merging two signals y and z or by sampling a signal y under a condition z. 

p ::= (p ~ p') synchronous composition 
] p/x encapsulation or scoping 
I x := v constant declaration 

x := f(y, z) synchronous operation 
I z := y when z down-sampling 
I x :=  y default z deterministic merge 

x := y$1 init v delay operation 

Fig. 1. Syntax of processes p in SIGNAL 
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D y n a m i c  S e m a n t i c s  The dynamic  semantics of SIGNAL, wri t ten  p -~  pt, presented  in 
[3], out l ined in the  figure 2, describes how a process p evolves over t ime.  A t rans i t ion  
in the  dynamic  semantics  defines an instant .  Each instant  is character ized by a set e 
of s imul taneous  events and by an instantaneous t rans i t ion  from a s ta te  p to  a s ta te  
p~. The  environment  e associates a signal x to a value v when it  is present  (wri t ten  
x ( v ) )  or to  .L when it is absent  (wri t ten x(.L)). 

p-~p" p' ~p'" ene' p " (~  
p I p' ~-~p" I p'" p/=-~p'/= 

:r, : :  v 

x := ] (y ,  z) 

= : = f ( y , z )  

x : : y $ 1  init v 

x : : y $ t  init v 

x := y when z 

z(~) z(.L) ~(~) z(J_) 
----+ x : = v  x : : y  when z > x : = y  when z 

~(• ~(• ~(• ~(,,) ~(,,) =(o 
~c:= f ( y , z )  x : = y  when z ) x : = y  when z 

=(.L) ~(~) z(f) 
=(I(~'~')) ~(~) =(~'~ x : = f ( y , z )  x : = y  when z ) x : = y  when z 

=(~) ~('L I =(• v(.J-) .(.L) 
x : = y $ 1 i n i t v  x : = y  defaul t  z ) x : = y  default z 

~(~) ~(~') ~(~) ~(~) 
) x : = y $ 1  inlt v ~ x : : y  default z ) x : = y  default z 

=(• ~(• =(~) y(.L) z(v) 
) x : : y w h e n  z x : = y d e f a u l t z  ; x : = y d e f a u l t z  

Fig .  2. Dynamic semantics of SIGNAL 

Paral le l  composi t ion p [ pt synchronizes the events e and e ' p roduced  by  p and  
p ' .  The  re la t ion e N e'  is defined iff e ( x )  = e ' ( x )  for all x in d o m ( e )  N d o m ( e ' ) ) .  

A synchronous opera t ion  x := f ( y ,  z )  ins tantaneously  computes  the  value of f 
by y and z and ou tputs  it  to the signal x. A delay x :=  y $1 init v stores the  value 
v ~ of y and ou tpu t s  the previous value v to x. 

A merge x :-- y default z outputs  the  value of y to  x when y is present  or the  
value of z otherwise.  A sampling x :-- y when z ou tputs  y to  x when z is present  and  
true.  When  all the  inputs  of an equation are absent ,  a t rans i t ion  takes place but  no 
value is given to  i ts output .  

E x a m p l e  1. As a first example,  we consider the s t ream of posit ive integers nat as the  
synchronous composi t ion of two equations.  The first equat ion defines the  local signal 
y ini t ia l ly  as 0 and then as the previous value of x. The  second equat ion defines x as  
y plus 1. 

process nat (out integer x) = 

( y := x $ 1 init 0 

l x : = y + 1  
) / y  

At  each ins tant  n, bo th  equations are executed s imultaneously (this explains  why 
x,, is defined by xn-1 + 1 and not  by x :=  x + 1 as in a conventional p rogramming  
language) .  Notice tha t  the  ra te  of the  execution of the  p rogram is not  cons t ra ined  
by an ex te rna l  input  signal. The  schedule of i ts execution will ac tual ly  depend  on 
the  use of  x in the  environment.  
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Data-Flow Graphs As outlined in the previous example, the compilation of SIGNAL 
requires the static resolution of temporal relations between signals. In order to ensure 
the respect of synchronization constraints expressed in programs. 

c ::= ~ I ~\Y t [=] I c A ~ I ~ v ~ doc k  

U g: :=01  (~=c) I (:c--~y) l g g 13x.ggraph 

Fig. 3. Clocks c and conditional data-flow graphs g 

The control model of a SIGNAL program is represented by a set of temporal 
relations ~ -- c between signal clocks ~ and expression clocks c. The clock ~ denotes 
the instants when x is present. The clock Ix] denotes the presence of a boolean signal 
x with the value true. The clock ~ \ ~  denotes the instants where x is present and y 
absent. The formula c A d and c V d denote the conjunction and disjunction of the 

instants c and d. 
The data-flow model of a program is represented by a graph composed of arrows 

x 4 y. An arrow x 24 y denotes a dependency from x to y a t  the clock c. 
References to local signals x in a graph g are bound by existential quantification 

3x.g. We write fv(g) and by(g) for the free and bound signals of g. We write 3y.g = 
3x.(g[x/y]) and (3x.g') U g = 3x.(g U g') iff x r fv(g) U by(g). We identify 3y.(3x.g) 
and 3x.(3y.g). 

Clock Calculus The analysis which determines the conditional data-flow graph g of a 
SIGNAL program is called the clock calculus (introduced in [3], outlined in the figure 
4). Using the graph g produced by clock calculus, the SIGNAL compiler generates an 
optimal compile-time scheduling of the actions specified in the source program by 
hierarchizing the temporal relations in g and by ruling the execution of the program 
using its master clock [2]. Using the graph g, causal dependencies in the source 
program can easily be detected as constrained boolean conditions on signals (e.g. 

[x] = ~) or cyclic data  dependencies (e.g. x 4 x). 

\ ~ = y , x = z  ] 

p=C,g 
p/x ~ 3x.g 

Fig. 4. Clock calculus p =:~ g 

) x:=ywhen z=:~ =~A[z]  

x:=ydefault z=~ ~ = g V ~  ,] 

p=~g p~=:~g~ 
U i p~p* =~g g 
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Example 2. In the case of the process nat, for instance, the clock calculus determines 
the temporal relation between x and y: ~ = ~ (i.e. x and y are synchronous) and the 
data dependency y --+ x (i.e. the computation of x depends on the value of y). Notice 
that no external constraint exists on the signal x. 

process nat (out integer x) = 

( y := x $ I init 0 ~: 

[ x : =  y + 1 y - - - + x  
) / y  3y 

Separate Compilation As the conditional data-flow graph of a SIGNAL program is 
the essential medium for checking its safety and compiling it, separate compilation 
is made a difficult issue by the requirements of proving global safety properties. To 
illustrate this issue, let us consider a typical situation raised in the following process 
definition. Let copy be the process which assigns the value of its input signals a and 
b to its output signals x and y: (x:=a [ y:=b). 

process copy (in a, b; out x, y) = 

( X :=  a a - - ~ x  
] y :=  b b--+y 
) 

To compile it, the SIGNAL compiler has the choice between scheduling either 
x:--a; y:--b or y:=b; x:=a. However, the appropriate choice depends on the way the 
process is invoked. For instance, in the case below, only the first scheduling (i.e. 
u:=w; v:=u) is correct (the second dead-locks). 

(u ,v )  := copy(w,u) w - - - + u - + v  

Fortunately, this problem can be solved by determining the data dependencies 
a--~ x and b-+ y between (a,b) and (x,y) where copy is defined and the actual data 
dependencies w --~u and u -+v between u, v and w where copy is used. In a situation 
of separate compilation that information is however not directly accessible by the 
textual definition of the process copy. In this case, the explicit declaration of the 
temporal and data-flow relations between signals appears to be necessary for solving 
the issue of separate compilation. 

3 R e a c t i v e  T y p e s  

A common justification of typing in conventional programming languages is that 
"well-typed programs do not go wron]' [Milner]. Our reactive type system provides 
simple and effective means for making similar statements on reactive systems. Just as 
data-types abstract the representation of data, reactive types abstract the interaction 
structure of processes. The definition of our reactive type system incorporates both 
a calculus for reasoning on the interaction structure of SIGNAL programs and a way 
to check basic safety requirements. 
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In the type system of the figure 5, a signal x is an atomic reactive type. A constant 
has type _L. A delay operation on a signal of type t has type St. The down-sampling 
of a signal of type t by a signal of type t ' has type t ~3 t'. The deterministic merge 
between two signals of types t and t '  has type t �9 t '. An equation of  input  type t 
and of output  signal x has type t -~ x. The recursive (resp. local) definition of x in 
t is written px.t  (resp. 3x.t).  The synchronization of two signals of types t and t ~ is 
writ ten t x t ', its composition t | t ~. 

t ::= .l_ constant t t ~ x equation 
I x signal ] px.t recursion 
I 5t delay I 3x.t scoping 
I t @ t'  sample I t • t '  synchronization 
I t ~ t t merge I t | t ~ composition 

Fig. 5. Reactive types t 

In the figure 6, we define the inference system for reactive types. It  is writ ten p:  t 
and associates a SIGNAL process p to its reactive type t. 

x : = v :  l - - + x  

x : = y $ 1 : ( 6 Y ) ' - + x  
x : = y w h e n  z : ( y e z ) - - + x  

x : = y d e f a u l t z :  ( y ~ z ) - + x  
z : =  f (y ,  z) : (= x (y x z)) ~ ((y | z) -~ x) 

Fig. 6. Inference system p: t 

p:t  p':t' 
p ] p ' : t |  

p:t  

"plx : 3z . t  

In order to identify reactive types which denote identical interaction structures 
(formally, in the sense of definition 2 and of theorem 3), we equip our type  system 
with algebraic rules. Types  constructed with 6, | and • are sets with neutral  element 

I and satisfy the distribution rules of the figure 7. 

6• =_L 

~(t e e )  = (,~) e (~t') 

t x (t '  x .L) = t  x (t' x t ' )  = t  x t' 

(t x (t' | t" ) )  = (~ x (t '  x t " ) )  

t r (t' |  = (t r t') | ( t e t " )  
t e (t' e t " )  = (t e t ' )  | (t e t " )  

~(t �9 t') = (~t) �9 (~t') ~(t e t') = (~t) | (~t') 

t | (t' x _L) = t | (t' x t') = t 

(t x (t' • t")) = (t x t") | (t' • t") | (t x t") 

(e|174 t e t = t  

( t , | 1 6 2 1 7 4  • 1 7 7 1 7 7  

Fig. 7. Distribution~of St, t | t' and t • t ~ 
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The signal x referenced in a type px.t  or 3x.t  is bound to t. Bound signals x 
satisfy the scoping rules of the figure 8. We write fv(t) (resp. by(t)) for the set of free 
(resp. bound) signals of a type t. We write t~ = t |215174 (t' • t") for the 
completion o f t  w.r.t, x [to show, e.g., tha t  y x z = 3x.((_l_ --+ x ) |  x y ) |  x z))]. 

r Iv(t) z r fv(t) 
pz.t = t[px.t/x] px.t = t py.t = px.(t[x/y]) 

3x.( t |  ~x ) )= tx [pz . t ' / x ]  x~ f v ( t )  xCfv( t )  
3~.t = t 3y. t  = 3 x . ( @ / u ] )  

Fig. 8. Scoping properties of reactive types t 

z r fv(t) 
t | (p..t')  = p . . ( t  | t') 

z r fv(t) 
t | (3 . . t ' )  = 3 . . ( t  |  

The algebraic properties of reactive types give rise to the definition of a normal 
form (definition 1). Every type t obtained from the inference system p:  t of the figure 
6 can be represented in normal form. 

D e f i n i t i o n  1. The normal form of a reactive type is t : := t" x t" I t' --r x I t |  where 
t' and t" are of the form t '  : := _k I t" | t" and t" : := x I 5x I t" 63 t" I t" @ t" I px.t". 

Example 3. To demonstrate the use of our reactive type system, let us consider a 
definition of the explicit synchronization of two signals x and y in SIGNAL. 

process synchro (in x; out y) = (x x y) • z 

( z := ((x = x) = (y = y)) ( x |  
) / z  3z 

The inference system of the figure 6 determines the interaction structure of the 
process synchro: 3z.( (x x y) x z) | ( (x | y) --+ z) ). The algebraic rules of our reactive 
type system allow us to define its normal form as 3z.(((x • y) • z) | ((x | y) -+ 
~)) = (x x y)  x (p~. (x  | y) )  = (x  x y) x (x  | ~) = x x y. 

Safety The safety of a process p of reactive type t can be checked using the function 
.4. A~ (t) checks that  their is no cycles from the input type t and the output  signal x 
of an equation. The function A(t)  checks for the absence of cycles in t. The function 
C(t) checks tha t  the synchronizations in t do not incur causal dependencies. 

A~(-) A.(~t) x # y  ~ ( t )  A.(t) ~ ( t ' )  ~.(t) A.(t') A.(t) ~ ( t )  
A,(y) .4 , ( te t ' )  .a , ( te t ' )  .4 , ( t |  A,(py.t) 

.a(t) .A=(t) .4(t'[t/=]) C(t) C(t x t') C(t") t' # t" e t 
.~(3=.t) ~ ( ( t  --r z)  | t') .4(t) c ( ( t  x t') | t")  c( t  x t') 

Fig. 9. Property .A.(t) 
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Example ~. To give an example of causal dependency and illustrate the combined 
use of our inference system and of the functions .4 and C, we consider the process 
sample which computes a value w given two inputs u and v and a condition on them. 

process sample (in integer u, v; out integer w) = 

(x :=u<v 
y := u when x 

lw:=v+y 
) / logical x; integer y 

The process sample uses two local signals x and y. Its reactive type declares the 
signals synchronous to w and the interaction structure leading to w: 

((~, x v) x ~ )  | ( (v e (,., e (,., | v ) ) )  ~ w)  

The function C detects that the process sample requires: u x (u (9 u). By recon- 
structing the clock relations of the process sample (as shown in the figure 10), one 
observes that the constraints ~2 = 9 and ~2 A Ix] = 9 (where ~ = ~2 V 9) cannot be 
satisfied simultaneously. This means that the process sample deadlocks if u and v are 
present and if the condition x is simultaneously false. 

Graph Reconstruction In a conventional programming language, typing is a medium 
which enables the separate compilation of the functions in a program. Types allow to 
determine the representation of data in a program at compile-time. In a synchronous 
language, clock relations and data-flow dependencies allow to determine the appro- 
priate scheduling of the actions specified as a system of simultaneous equations. This 
information can be reconstructed given the reactive type of a process. 

[ •  = 3=.(~,0)  

[ t ] ,  = 3~1 .... (~,g) 

Lo=.~j~ = 3=, =1 . .  (~, (~ = ~) u g \ g=) 

[=1, = (~, = -% y) [~x]~ = (~, O) 

Y = 3x l  .... (c,g) [ t ' ly  = 3xn+z . . . .  (c ,g ) 

--* [ ]~ = 3=,+1 . . . .  (c ,g')  ..... [ t l ,  = 3=1 .... (c, g) t '  
" (z  ~ t e e ] ~  = 9x, x l  . . . .  ( c A [ x ] , ~ U # ' U ( % = c ' ) U  .... ~Y)._~o" ~ . )  

[ f ly  = 3xz  . . . .  (c, g)  [ t ' ] ,  = 3 x . + z  . . . .  ( , g ) 
- -  I~" _ _  t ) 
It e t  ] ,  - 3=1. ~ . ( ~ v ~  ,9 u~ '  u (=~  o,, �9 = ~ y E g  r 

~=g -~=gt 
U ' t |  g 

[%]= = 3=,  .... (c,9) [ e L  = 3 = . + ,  . . . .  (c',g') 
§ 

t x t' = 3x.(~ = c,~ = c') u ~ u  ~' 

I t ] .  = 3=,  .... (c,9) 

t - , ~ = ( ~ = c ) u 9  

Fig. 10. Graph of a reactive type t in normal form 
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In the figure 10, the term [t]~ = 2xL.n.(c,g) associated to an expression type t 
consists of a sequence of bound signals xl..~ (introduced during the reconstruction), 

of a clock c (the clock of the expression) and of a graph g. We write ~' for the 
conditional data-flow graph reconstructed from the reactive type t of a SIGNAL 
process. We write ~) for the set of clock equations & = c in a graph g. We write 
gX = { x - ~ y  e g} and g~ = { y - ~ x  E g}. 

4 Formal Properties 

Adequacy We show that  the reconstruction of the clock and data dependency rela- 

tions t of a reactive type t is adequate with respect to the clock calculus of SIGNAL 
(figure 4) in that  it is equivalent (in the sense of the definition 2) to the graph g 
inferred from a SIGNAL process. 

Def in i t ion  2. g _~ g' iff there exists a renaming of by(g) and bv(g') s.t. ~ r g' and 

s.t. there exists x - ~ y  E ~7 (resp. ~) s.t. g =*, (c = c') for all x-L~y E ~ (resp. ~) .  

In the above defin!tion, we write ~ ~=~ g' iff ~ =~ g' and g' =~ g- We write ~ ~ g' 
iff for all (~ = c) E g', g ~ (~ = c). We write y for the transitive closure gib,(g) 
of the data-flow dependencies in the graph g w.r.t, its bound signals. We write g]~ 
for the closure of the graph g with respect to x (notice that  gix does not necessarily 
eliminates all references to x, e.g., when ~ = c E g). 

c A c  e 

c n 

The theorem 3 says that  the conditional dependency graph - t  reconstructed 
from the type t of a process p is equivalent to the transitive closure of the graph g 
determined by the standard clock calculus of SIGNAL. 

T h e o r e m 3  ( A d e q u a c y ) .  I f  p : t  and p ~ g then g ~_ "~. 

Proof. The proof is by induction on the structure of p using the rules defined in the 
figures 4 and 6. It uses the fact that the equivalence rules defined in the figure 7 and 

8 preserve the definition 2 (i.e. if t = t' then - t  _~ t '  ) .  

Soundness The soundness of our reactive type system with respect to the dynamic 
semantics of SIGNAL is formulated as a subject reduction theorem. It  says that  the 
reactive type of a process is preserved during execution. We write "e : t w.r.t, p" 
when the events e axe consistent with the type t of a process p. We write out(p) for 
the output signals of p and in(p) for fv(p) \ out(p). 

Def in i t i on4 .  e : t  w.r.t, p iff, for all x(v) E eout(p), t' --+ x E t and, for all x(v) E 
ei~(p), there exists (t' • t") E t or t' -+ y E t s.t. x E fv(t~). 

T h e o r e m 5  (Soundness ) .  I f  p 4 p  ~ and p: t  then e : t  w.r.t, p and p~:t. 

Proof. The proof is by induction on the structure of p using the rules defined in the 
figures 2 and 6. It  uses the fact that the equivalence rules defined in the figure 7 and 
8 preserve the property of the definition 4. 
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Subtyping An account to the expressiveness of reactive types is that  a notion of 
refinement can be introduced in our inference system in terms of a subtyping relation. 
Refinement is an important feature of the programming methodology of SIGNAL. It  
can be defined by the relation g __ g~ as follows. 

Def in i t i on  6. For any graph g, g E gU(x -% y) and g E_ gU(2 = c) iffgU(k = c) ~ g. 

A graph g satisfies g _ g~ if it has less clock constraints and less data dependencies 
than gq By inducing less clock and data dependencies, the specification g preserves 
the safety requirements related to the specification gq In particular, it ensures that  
no boolean condition Ix] in g~ is constrained and that  no data dependency in g~ is 
turned into a causal dependency (i.e a cycle x -% x). 

In our inference system, subtyping can be introduced by means of an additional 
rule: if the process p has type t and t _ t ~, then p also has type t ~. The subtyping 
relation is defined by: 

Def in i t i on  7. t E t ~ if[ there exists t" s.t. t r = t | t" and A(t'). 

Example 5. To illustrate the use of subtyping, let us reconsider the example of the 
process copy. The definition of copy has type t = (a --+ x) | (b --4 y) and its use has 
type t '  = (w ~ u) | (w --4 v). 

process copy (in a, b; out x, y) = (x: :a  I y:--b) (a-+x)| 
(u,v) :-- copy(w,u) (w + u) | (u -~ v) 

In order to separately compile the process copy in such a way to support the 
scheduling required by its usage in the statement (u,v) := copy(w,u) of the program, 
one may use the subtyping relation t ~ __. t" in order to give the type t" -- t ~ | (x --4 b) 
explicitly to the definition of copy. This would enforce copy to be compiled as x:--a; 
y:=b and to be compatible with its use. To probe further by making an analogy 
to data-types, the process copy can be given polymorphic type Va, cd.(a • a ~) --4 
(a • a t) (using a polymorphic type inference algorithm such as that  presented in [9]). 
Similarly, the explicit assignment of the "less generaF type (int • bool) ~ (]nt x bool) 
to copy enforces x and a (resp. y and b) to be represented as integers (resp. boolean) 
by the SIGNAL compiler and to be used as such in the rest of the program. 

5 R e l a t e d  W o r k  

The definition of type systems for describing interaction in synchronous program- 
ming languages has been the subject of recent investigations. In [6], T. Jensen gives 
a model of SIGNAL using abstract interpretation and shows how to derive the clock 
calculus of [3] from this interpretation. In [1], S. Abramsky & al. give a categori- 
cal model of synchronous interaction in SIGNAL and LUSTRE and propose a related 
type system. In contrast to reactive types both type systems do not satisfy an ad- 
equacy theorem (in the sense of theorem 3): they do not permit to reconstruct all 
the compile-time information the SIGNAL compiler requires. Nonetheless, we believe 
tha t  reactive types could be given an interpretation in the interaction category. 
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6 C o n c l u s i o n  

We have introduced a notion of reactive type for synchronous languages. Just as 
data-types describe the structure of data in conventional languages, reactive types 
describe the structure of interaction in reactive languages. We have introduced an 
inference system to associate SIGNAL programs to reactive types in the same way 
types are associated to functions in the lambda-calculus. Using reactive types, we 
have shown how to reconstruct the information needed for compiling SIGNAL pro- 
grams and stated the correctness of our inference system with respect to the dynamic 
semantics of SIGNAL. We have introduced a notion of subtyping, which allows the 
gradual specification of SIGNAL programs using reactive types. Although our presen- 
tation was focused on SIGNAL, we believe that reactive types could equally be used 
in other synchronous languages, such as LUSTRE Or ESTEREL, to type synchronous 
interaction. 
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A Last Example 

In this appendix, we consider a reasonably scaled SIGNAL process which makes 
extensive use of constants, of down-sampling and of feed-back loops using delayed 
signals. 

process level (in event fill; out logical empty) = 

( synchro (when m = O, fill) 

I n := (10 when fill) default (m - I) 

I m : - - n $ 1  
t empty  := when (n = O) d e f a u l t  ( n o t  f i l l )  
) / integer n, m init 0 

The process level models a system similar to a water reservoir. The input event fill 
signals that  the resource is filled. The local integer variable n measures the current 
level of water. At each fill event, the level is set to the maximum 10. Then, the level 
gradually decreases until it reaches 0. In this case, the system outputs the value true 
to the signal empty. Let us define S for fill and e for empty. Then, the process level 
has reactive type: 

3n.((((2- • f )  @ 6n) --+ n) | ( f  x (.l_ e 6n)) | ((J_ e n) ~ f )  --+ e 

As a matter  of comparison, the transitive closure of the graph inferred by the 
clock calculus of SIGNAL (figure 4) for the process level is: 

[ /= e, ̂  [,21 ) 
/ = (64cA [c5]) v ] s.t. 62 = r -- rTz = ( r  A / )  V rh 


