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Abstract .  This paper presents an algorithm for polymorphic type in- 
ference involving the l e t  construct of ML in the context of higher order 
abstract syntax. It avoids the polymorphic closure operation of the al- 
gorithm W of Damns and Milner by using a uniform treatment of type 
variables at the meta-level. The basic technique of the algorithm fa- 
cilitates the declarative formulation of type inference as goal-directed 
proof-search in a logical frameworks setting. 

1 I n t r o d u c t i o n  

Formulations and algorithms for the assignment of principal types to untyped A- 
terms have long existed before Damns and Milner [2] extended it to involve the 
polymorphic l e t  construct of functional programming languages (ML). They 
formulated a declarative, proof-theoretic calculus for the ML type system, given 
here in Figure 1. Unfortunately, this calculus does not by itself lead directly 
to an inference algorithm that  yields principal type schemes. For this purpose 
the algorithm "W" was given. Algorithm W requires the polymorphic closure 
operation called gen (or close) in typing let-expressions. Together with the 
unification algorithm, this operation ensures maximal generality of the type 
scheme for the locMly-bound term in l e t  expressions. With respect to the orig- 
inal Damas-Milner calculus, gen effectively represents a forward-chaining step. 
Its introduction obscured the relationship between the declarative type system 
and the type-inferencing process (and a proof of completeness for W was not of- 
fered until Damns' thesis). In particular, we shall show that algorithm W entails 
an unnatural  treatment of free and bound type variables. A common practice 
is to bypass l e t  by replacing let x = M in N with N[M/x].  This replacement, 
however, is unsatisfactory because it leads to redundant inferences. The problem 
with gen becomes especially acute when one tries to formulate type inference 
in the context of logical frameworks, which are meta-theoretic environments de- 
signed to support the syntax of object-level theories in a natural manner. It is 
advantageous to formulate principal type inference, in such frameworks, as deter- 
ministic proof search (in the manner of logic programming). Numerous attempts 
have been made along these lines (eg, Pfenning [3]), all of which were limited by 
complications involving the gen operation. We aim to provide an alternative to 
algorithm W (more specifically to using polymorphic closure) which will facili- 
tate the formulation of polymorphic typing in declarative settings such as ELF 
[8], Coq [4], Isabelle [16], /kFrolog [14], among others. 
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Proj  H F z : T ,  x : T E H  

H , z : s F M : t  

a b s  H ~- ) , z . M  : s ~ 

H F M : s - + t  H F - N : s  
app H F ( M N ) : t  

H F M : S  H , x : S F - N : t  
let H F l e t x = M i n N  : t 

H t - M  : T  (anot  free in H) 

/ / - I n t r o  H F M : IIa.T 

H F M : H a . T  
H-El im H F M : T[s/a] 

(s, t represent unquantified types; S, T represent arbitrary type schemes) 

Fig. 1. The Damas-Milner Calculus [2] 

In this paper we present an algorithm for type inference that  avoids the use of 
the t en  operation. This algorithm will be presented in a meta-language based on 
the simply typed A-Calculus, which is also the language used in several logical 
frameworks and logic programming interpreters. In particular, we shall show 
how the proper scQping of type variables can be formulated using A-abstractions 
and how the polymorphism of types can be implemented with the simple rule of 
c~-conversion. 

This paper is organized as follows. In Section 2 we discuss and present the 
algorithm. In Section 3 we give some sample type inferences using the algorithm. 
Sketches of correctness proofs are given in Section 4. We then describe how the 
algorithm is implemented in a declarative setting in Section 5. In Section 6 
we discuss the significance of our technique with respect to related research in 
conjunctive typing disciplines, including those of Leivant [12], Appel and Shao 
[1], among others. 

2 F r e e ,  B o u n d ,  a n d  " F u g i t i v e "  V a r i a b l e s  

Technically, the algorithm W infers types, and not type schemes. Let ~ denote 
v, ,  �9 �9 v,~. Whenever a typing assumption f : HV-~.t is used, a "copy" of the 
type t[g-~/~--~] is created using a set of new free variables }-m-re. This occurs uni- 
formly except in the l e t  case, when type scheme inference takes place in the 
form of applying gen. The technique we use approaches type inference from the 
opposite direction. Here type scheme inference is the default. In other words, 
we shall always try to keep type variables/ /-quantif ied as much as possible. If 
the typing of a compound expression e requires two instances of a type scheme 
IIg.t ,  this is made possible by appending two copies of the quantifier prefix to 
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yield HV--~Hv~.s, where s is the type  of e. New free variables are un i formly  
replaced by new / / - b o u n d  variables.  Typ ing  conflicts are resolved post-hoc to 
prevent  over-general izat ion.  

We now present  the a lgor i thm in detail.  The  a lgor i thm takes advan tage  of 
the fact  t ha t  in practice,  only closed type  envi ronments  are needed. Wi th  closed 
envi ronments ,  all free type  variables tha t  are dynamica l ly  in t roduced during the 
type  inferencing process can be safely discharged (H-quant i f ied)  upon  successful 
comple t ion  of the process. As in Damas-Mi lner ,  only in the induct ive proofs of  
correctness need we be concerned with the more  general case of  open environ- 
ments .  

Define an extended type environment H~ to be a m a p p i n g  f rom p r o g r a m  (or 
t e rm)  variables  z to s t ructures  of  the fo rm AV-A-~.(G t),  which we shall refer to as 
eager type schemes. Here, rr is a subs t i tu t ion  on type  variables and t is a type  
such t ha t  or(t) = t. The  meta- level  binding construct  A quantifies over the type  
var iables  ~-A-~, which m a y  occur anywhere  in the subs t i tu t ion- type  pair  ((r, t) .  The  
intui t ive mean ing  of this m a p p i n g  is tha t  x m a p s  to the potential type  scheme 
II-ff-~.t if the  subs t i tu t ion  o" is applied to the current  type  envi ronment .  The  
a lgor i thm,  which we shall call WH, is given in Figure 2. 

WH(HG x) = H~(x), for program variable x. 

WH(H~; Ax.M) = let a be a new type variable, and let 

WH(H~,x ~-~ (0,a); M) =~ AF~.(a, t). 

Return d a d ~ . ( G  cr(a --+ t)). 

W~(H,;  (M N ) ) =  let 

W~(H,; M ) = ~  AF-~.(crl, tl), and WH(H,; N ) = ~  A~--~.(cr2, t2) 

such that  the bound variables ~ are distinct from F-ff~. For a new type 
variable b, let ~ be the most general unifier of tl and t2 ~ b. Let ~r = 

j oin( tg , ~2, or1). 
Return AbA~-~AF-~.(a, a(b)). 

WH(H,; let x = M in N) = let 

WH(H~; M ) = ~  AF-~.(crl, tl),  and 

W~(H~, (x ~-+ AF~-~.(~I, tl)); N ) = ~  d~-~.(cr~, t2) 

such that  ~ are distinct from F-~. Let a ----join(a:,~l).  

Return A~-~A~-ff~.(a, a(t2)). 

Fig.  2. Algorithm Wzr 
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For an extended type environment He and a program expression M, 
Wrt(H~; M) returns a structure AV-A-m.(~r, t). Let l~ represent the empty (or iden- 
tity) substitution. We use only idempotent substitutions (0 o 0 = 0). The opera- 
tion join is borrowed from Leivant [12]. Given substitutions St , . . . ,S ,~ ,  
jo in(St , . . . ,S ,~)  = R such that  for each Si in S1 , . . . , Sn  there is a substitu- 
tion Pi such that Pi o Si = R. Furthermore, if R ~ also satisfies this property then 
there is a substitution P such that  P o R = R ~. That  is, jo in(S1 , . . . ,  S~) is the 
most general common instance of S I , . . . ,  S~ (if it exists). The join operation 
can be implemented using the standard unification Mgorithm. 

The use of c~-equivalenee (=~) in the definition of the algorithm is appropriate 
since the A binder is conveniently represented by A-abstraction of the A-calculus. 
This amounts to using higher-order abstract syntax [17] for our presentation. We 
use "A" to distinguish it from the "A" used in program expressions. 

To explain how this algorithm is used relative to a regular (non-extended) 
type environment, we define the following: 

D e f i n i t i o n 1  (Base  E x t e n s i o n ) .  Given a type environment H, let HI" repre- 
sent the extended type environment that includes (x ~-~ A ~--'~.(~, t)) for each 
(x : f/vA-~.t) ~n H. 

For a c losed type environment H, if Wg(H~;  M) succeeds with Ag-~m.((7, t) 
then it will be the case that (~, t) contains no free variables. We can then conclude 
that  H ~- M : IIV~.t. 

The critical point in WI~ where "free variables" are dynamically introduced 
into an environmen~ occurs in the typing of a A-expression Ax.M. Here x is 
assumed to have type a, where a is a new type variable. This variable is free only 
in the dynamic, temporary environment. It will be captured by A-abstraction 
when the top-level type scheme of Ax.M is constructed. We will call the free 
variables introduced for ,~-bindings fugitive variables. 

The algorithm W of Damas-Milner requires the prolific generation of new free 
variabies. We observe, however, that  if the initial environment is closed then all 
dynamically generated free variables that  can not be immediately quantified are 
those that  are unified with fugitive variables. But since the fugitive variables will 
also be quantifiable eventually, any new variable that occurs in a substitution 
for them will also be quantifiable eventually. In algorithm Wu, all new variables 
generated from discharging (an instance of) a typing assumption are immediately 
quantified. As a consequence, some invalid expressions will appear "momentarily 
typable." The join operation, however, will reveal any inconsistencies in the 
substitutions and reject untypable expressions. We illustrate this technique of 
"eager quantification, delayed resolution" with three examples. 

3 S a m p l e  I n f e r e n c e s  

Assume the type environment H contains the assignment f : IIv.v ~ v. Consider 
typing the expression Ax.(f  x). Firs~ we augment the extended environment HT 
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with x F-~ (0, a) for a new fugitive variable a. In typing ( f  x), we unify v --+ v 
with a --+ b for some new variable b. Thus 

W I I ( H t ,  x ~-+ (~, a); ( f  x)) =~ AbAv.([v/a ,  v/b], v). 

The accompanying substitution [v/a,v/b] is then applied to a -+ v, and the 
fugitive a is "captured," yielding AaAbAv. ([v /a ,  v/b], (v --+ v). We can therefore 
conclude tha t  H ~- A x . ( f  x) : I I a l I b H v . v  --+ v. 

Now consider let x = )~y.y in (x x). First, Ay.y is inferred as having the eager 
type scheme Av.(O, v --+ v). Then x is assumed to map to this eager scheme. For 
(x x), the type of x is inferred twice as Av.(O, v --+ v) and Aw.(O, w --+ w). With 
a new variable b, (w --+ w) --+ b is unified with v -+ v, yielding the substitution 
[w ~ w/b ,  w --+ w/v].  This substitution can be trivially joined with the two 
instances of the empty  substitution inferred above. Thus calling W/I on (x x) 
will return the structure 

AbAwAv. ( [w --+ w/b,  w --+ w/v],  w --+ w), 

and since the substitution returned joins immediately with the empty  substi- 
tution in Av.(O, v --+ v), we can conclude that  let x = )~y.y in (x x) has type 
I I w . w  -+ w (eliminating the vacuous quantifiers this t ime for convenience; we 
may  also implement  this elimination as an optimization).  The key observation 
here is tha t  a type scheme is always inferred, thereby eliminating the need for 

the gen operation. 
For the final example, assume the program variable p has type I Iv .v  --+ v ~ v. 

Consider the untypable expression ~y.(let x = (p y) in (x x)). For the top level 
A-abstraction, a new fugitive variable a is assumed as the type for y. In the 
l e t  expression, (p y) can be inferred as having the structure AbAv.([v /a ,  (v --+ 
v)/b], v --+ v). The program variable x is then assumed to map  to this struc- 
ture in the updated  extended environment. Typing (x x) will again produce two 

individual copies of this structure: 

Ab.Av.([v /a ,  (v --+ v)/b], v -+ v), and Ab2.Aw.([w/a,  (w -+ w)/b2], w --+ w). 

Another type variable b3 is introduced, and (w --+ w) --+ b3 is unified with v ~ v, 
resulting in the substitution [(w --+ w) / v ,  (w --+ w)/ba]. But this substi tution can 
not be joined with the two substitutions from the individual recursive inferences 
for y: [v/a, (v ~ v)/b], and [w/a, (w ---+ w)/b2]. The variable a can not have both 
w --+ w and w (or both  v --+ v and v) as instances. 

Notice tha t  although a fugitive a is a (dynamically) free variable, it can 
be substi tuted by a (A) bound variable, as when a was substi tuted by the A- 
bound variable v in the third example. Once a variable is bound, "copies can be 
made" ,  and thus two instances of v, v and w, were created. Type  inference was 
allowed to continue where in algorithm W it would have failed: v was unified with 
w --* w. This "eager inference," however, was invalidated when the substitutions 
were joined, revealing that  v /a  and w / a  are inconsistent if v = w --~ w. In case 
these substitutions can be successfully joined, then these variables (v and w) can 
remain rightfully quantified, since the final type scheme returned will quantify 
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over all fugitive variables. Because we need to keep track of which bound variables 
are in fact "eagerly" quantified, the jo in  operation must replace the composition 
of substitutions as used in algorithm W. That  is, we need to "memorize" the 
various substitutions for the fugitive variables in the form of extended type 
environments. 

4 C o r r e c t n e s s  P r o o f s  

This section addresses the major components required to show soundness and 
in particular completeness of Wg with respect to principal type schemes for the 
Damas-Milner typing discipline. As a consequence we also show how to extend 
the algorithm to accommodate open type environments in general. 

With respect to a structure AWA-~.(~r, t), we say that a bound variable vi is 
innocent if for some free variable a, (r(a) = t such that vi occurs in t. Tha t  is, 
innocent variables are variables that  were A-bound prematurely, and should be 
freed if a occurs in the environment. 

D e f i n i t i o n 2  (Base  C o m p r e s s i o n ) .  Given an extended type environment H ,  
of the form 

{Xl ~ AVnll(O'l, t l ) , . . . ,Xm ~--~ ( A ~ n  .(Crrn, trn)}. 

Assume that  all variables v / a~ are distinct. Let 6 = j o i n ( q 1 , . . . ,  ~,~). Let ~ be 

all the variables in 6 that are innocent. Let ~7 be all the variables v 1 v,~ 
minus u-~. Define He ~[ = (5, H)  where H is the type environment 

{ x l :  n .6(tl), . . . ,  xm: 

For a type environment H, clearly HTI= (0, H).  

T h e o r e m  3. Given an extended type environment He and a program expression 
M ,  assume W , ( H e ;  M) = A ~ . ( ~ , t ) .  • y ~ A ~ . ( ~ , t ) ]  1= (6, H)  for some 
new "dummy" variable y, then H F M : H(y) .  

Proof. By structural induction on M,  appealing to properties of the jo in  oper- 
ation. [] 

We forgo the details of the soundness proof in favor of completeness. The 
following corollary establishes soundness for closed type environments. 

C o r o l l a r y  4. (Soundness of WII)  
Given a closed type environment H and a term M,  W ~ ( H  T; M) = AV-~-~.(o-, t) 
implies H F M : HV-~,~.t. 

The structure of the (syntactic) completeness proof is similar to other such 
proofs including those of Leivant [12]. The main contribution here is our l e t  
case. Since there is no gen operation, in the proof of the l e t  case the inductive 
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hypothesis can be used directly. Most of the detailed proof deals with ordinary 
algebraic manipulat ions of the various substitutions. We define the generic ap- 
plication of a substitution G to a type scheme II~mm.t as G[I I~ . t ]  = YI~--g~.G(t). 
T h a t  is, generic application can replace bound variables as well as free variables. 
For every "generic instance" (in the sense of Damas-Milner [2]) c~' of ~r there 
is a substi tution G such that  G[~r] = ~r' (modulo some vacuous /7 quantifiers). 
Because the ~ operation breaks quantifiers, the completeness theorem must  be 
stated using generic applications of substitutions. In the theorem below, we as- 
sume that  all variables (free and bound) in H~ are distinct. 

T h e o r e m a .  Assume for the extended type environment He, He ~ exists and 
is equal to (6, H) .  Assume S[H] F M : T for substitution S, term M and 
type scheme T. Then WH(He; M)  = A~--~.(a, t). For a new term variable y, let 

1= le t  o 5  = and  let  = also 

holds that there exists a substitution p such that p o ~ = S and p[II~-Lf] = T. 

Proof. By induction on the height of derivations. For the inductive basis if x : 
/ / ~ . t 0  E H then x ~-+ A~--,T,~.(c~, t) E He for some c~ and t, and Ws(He;  x) = 
A~-~.(c~, t). Here, 6' = 6. We set p = S in this case and the result follows. The 
Lr -E l im  case is trivial. The L r - I n t r o  case also follows easily since all variables 
not free in He are always A-bound. The a b s  and a p p  cases can be shown by 
rewritting the inference rules into more general forms: 

S[H] x : S [ a ] F M : S [ c ]  S [ H ] F M : S [ r - ~ b ]  S [ H ] F N : S [ r ]  
' abs app 

S[H] F Ax.M : S[a --~ c] S[H] ~ (M N ) :  S[b] , 

where a, c, r and b are distinct type variables not appearing elsewhere. 
We concentrate on the le t  case. Let He ~= (6, H).  A le t  rule-application can 

be writ ten in the form 

S [ H ] k M : ~  S [ H ] , x : ~ - N : T  
let 

S [ H ] F l e t x = M i n N  : T 

where ( is some type scheme. Then by inductive hypothesis, WH(He; M) = 
Ab--s such that  [He, y ~ A~--~,~.((h,tl)] $= (51,H,) .  Let Hi(y)  = FiTvT.t 
and 0o6 = 61. There is also a substitution Pl such that  p lo0 = S and pl[II~. t]  = 
~. But pl(t) = pl(61(tl)) by definition of H1, and pl(61(tl)) = f l l ( 0 ( 0 ( ~ ( t l ) ) ) )  : 
S(51(tl)). Thus ~ = S[II~.6~(tl)].  We can therefore rewrite the above instance 

of th%le t  rule as: 

S[H] ~- M :  S[II@-T.61(tl)] S[H,x  : H~.61(t l )]  ~- N :  T let 
S [ H ] F Z e t x = M i n N  : T 

The critical observation is that  

[He, x F-+ A~-~.(o'l,tl)] 1 = (61, [0[H], x :  H~)T.61(tl)])- 

1 We know 8 exists since 6' = join(a, ~). 
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But S[H] = Pl o 0 o O[H] = S[O[H]]. We can therefore eliminate 0 by absorbing 
it into S: S[H,x  : / /~7.51(h)] = S[O[H], x : H ~ . 5 1 ( h ) ] .  Thus by inductive 
hypothesis on the second premise we have 

WH(He, x ~-~ A~-m.(crl, t l) ;  N)  : AuTh.(o-2, t2). 

Let [g~, x ~ AV-~.(al,tl),  y ~-+ A~X.(c~2,t2)] l =  ((52, g2) ,  02 0 (51 = (52, and 
H2(y) = II-2-g.t2. The inductive hypothesis also gives a P2 such that  p2 0 02 = S 
and pB[H~.t2] = T. 

Now, join(a2, a l )  = ~r succeeds since (52 exists ((52 is an instance of a2 and 
a l ) ,  and so 

Ve (H ; l e t  x = M iN N )  = 

succeeds. We also have [He, y H Ag-jA~--~.(a, o'(t2))] ~= ((52, H3), and we know 
that  H3(y) = H-2-~.52(t2). Now 02 o 0 o 5 = 5B and PB o (02 o 0) = S o 0 = S. 
Finally, (52(tB) = t2 by definition of (52, and so 

= = T .  

C o r o l l a r y 6 .  (Completeness of WH) 
For a closed type environment H such that H F M : T, Wn(HT; M)  = A~--~.(a,t) 
such that T is an instance of H~--~m.t. 

Proof. We may assume, without loss of generality, that  ~ are distinct from all 
variables in H.  Set S = ~. It  follows easily from the definition of the algori thm 
that  cr does not contain variables other than V~ in its support.  Thus S[H] = H. 
Similarly from the definition of the algorithm, a(t)  = t. In terms of the above 
theorem, here 5 = 0 and 5 ~ = c~, so we set p = 0 and the corollary follows. [] 

The ~ operation is not needed in the algorithm for closed type environ- 
ments  since in the returned substitution all fugitives are captured. If  the en- 
vironment  can be initially open, then we must free the innocent variables from 
bondage. The generalized Wz[ algorithm merely requires a simple extra step: Let 
W//(HT; M) = AW~-m.(cr, t). Then [HT, y ~-+ AV-~m.(a, t)] l =  (a, H ' ) .  Return n ' ( y ) .  
It  will follow that  H '  F M : H'(y). 

5 D e c l a r a t i v e  I m p l e m e n t a t i o n  

The eager quantification technique arose from a t tempts  to implement  type infer- 
ence in a higher-order logic programming language. Such a declarative t rea tment  
will aid the analysis of functional languages in the context of logical frameworks, 
such as the dependent-type calculus LF [8]. The desire here is for an executable 
proof-theoretic formulation of type inference. Tha t  is, type inference should be 
presentable as proof search. The original Damas-Milner calculus is too non- 
deterministic for this purpose. Previous a t tempts  at its alteration either took 
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short-cuts with the l e t  case or were stopped by gen. In [6], Hannan gave proof- 
theoretic formulations of the natural semantics of ML. But his technique for l e t  
was basically to replace let x = M in N with N [M/x] .  To allow let-expressions 
to be typed naturally, Harper defined in [7] an "algorithmic" version of the 
Damas-Milner calculus for the express purpose of allowing the modified typing 
rules of the new calculus to become logic programs that  yield principal type 
schemes. He defined a predicate called witnessed that  captures the maximal- 
ity condition implemented by gen. Application of the gen operation is replaced 
by proving that  a type scheme is witnessed. Specifying the witnessed predicate 
directly as logic programming, however, requires a forward-chaining operation 
which is inconsistent with the goal-directed nature of logic-programming. An- 
other problem with type inference was the need for an inexhaustible supply of 
new variables. In the context of "meta-programming in logic," one can either 
use the meta-logic's inherent "logic variables" or define data structures such as 
strings to represent object-level variables. Using the meta-logic's own variables 
(called the "non-ground representation") is only adequate for a very small range 
of problems 2. Strings and similar structures are too algorithmic and "low level." 

It is at this point in the type inferencing algorithm, when "new" variables are 
needed, that  higher-order abstract syntax, combined with a logic programming 
environment, can be used to advantage. In intuitionistie logic (which forms the 
basis of many logic programming languages), VxF is provable if and only if for  a 
new symbol a, F[a/x] is provable. Thus the process of "creating a new type vari- 
able a" can be represented naturally with the intuitionistie quantification Va. The 

clause of the type inference Mgorithm can be automatically implemented in a 
logic programming language supporting positive occurrences of V-quantification. 
Furthermore, the g quantifier is represented in the (meta-level) simply typed 
A-calculus as a second order constant of type ( term --+ f o r m )  --+ f o r m  (where 
t e r m  and f o r m  classify object-level terms and formulas respectively). The con- 
sequence of this is that,  although a is supposed to represent a new free variable 
at the object level, it is in fact represented as a h-bound variable at the meta 
level. That  is, at the meta-level of higher-order abstract syntax, all type vari- 
ables are bound variables. A-abstraction immediately enforces the proper scoping 
of the dynamic "new" variables used in type inference. This uniform treatment 
of type variables at the meta-level is what allows a-conversion to replace the gen 
operation in allowing for multiple instances of polymorphic types. 

A full implementation of the WH algorithm has been given in the logic pro- 
gramming language L~ [15] without using any extra-logical extensions. The lan- 
guage of La, which is a simplification of the better known ;~Prolog, can be directly 
embedded in a variety of more powerful logical frameworks. This implementation 

is described in the author's Ph.D. thesis [13]. 

See [9, 13] for further discussion of issues in meta-progtamming in logic. 
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6 R e l a t e d  W o r k  

The technique presented here is also related to the work of Leivant [12], Appel 
and Shao [1] and Jim [10] (among others) in type inferencing with conjunctive 
types or multi-environments (environments where variables map to sets of types). 
Leivant's algorithm "V" returns a multi-environment (or multi-base) and a type 
given a program expression. Type inference in algorithm V does not take place 
under a given type environment. As a consequence, there is nothing to constrain 
the generalization of free type variables. Variables can be given multiple instan- 
tiations which are then resolved at the end. But algorithm V does not include a 
case for ML's l e t .  Leivant chose to address l e t  polymorphism in the context of 
a rank 2 conjunct ive type discipline. Wand [18] gave a similar algorithm, which 
likewise bypassed l e t .  Appel and Shao's algorithm W* [1] can be seen as essen- 
tially an extension of algorithm V to include l e t .  They use a procedure called 
Monouni fy  which serves basically the same purpose as j o i n .  W* is similar to 
the approach here in that  it too does not use t e n  ( t e n  would be meaningless 
since there is no environment in the input to W*). Instead, for the l e t  case 
W* uses an operation called Polyunify ,  which generates a new set of copies of 
multi-environments (or "assumption environments") for every occurrence of the 
l e t - b o u n d  variable. The Polyuni fy  technique is a "brute force" method akin 
to replacing let x = M in N with N [ M / x ] .  The multi-environment returned by 
W* can be enormous, and will have to be further resolved with a given type 
environment (using their Match procedure) to derive the final type. Because of 
this complexity, Appel and Shao themselves favored a customization of Kaes' 
algorithm "D" [11] for their purpose of smar tes t  recompilation. Furthermore, 
the correctness of W* was proved by a reduction to the correctness of algorithm 
W ,  and not to the Damas-Milner typing discipline itself. 

The motivation for W* was to support separate compilation, where the types 
of program variables are not always available. Each program variable is always 
eagerly given the most general type (a free type variable), and the various possi- 
ble instantiations are resolved when the type is finally known. The algorithm W~ 
as given already contains the essential components necessary for this purpose. 
We can assign to each program variable that is not contained in the known type 
environment the most general type scheme H v . v .  Then Wn will return a substi- 
tution containing the different possible instantiations of v. For example, assume 
that  the type of f is unknown. Consider the expression let x = ( f  2) in  ( f  2.5). 
If f is mapped to Av.(0, v), then W~ will return the structure 

AbAcAv lAv2 . ( [ rea l  --+ c/v2,  in t  ~ b/vl] , c). 

If we knew that  the variables vl and v2 are in fact copies of the type scheme 
H v . v ,  then we can infer the correct type for the expression once the type of f is 
available. Assume we now know that  the type of f is actually H v . v  --~ v. We can 
apply Appel and Shao's Match technique to the two instantiations real  --~ c and 
in t  --+ b with two separate instances of H v . v  --~ v: H u . u  --+ u and H w . w  --~ w. 

This will reveal that  c = real  and b = in t ,  and therefore real  should be the 



500 

type for let x = ( f  2) in ( f  2.5). To implement this technique correctly, Ws 
must be modified so that we can identify which variables are copied from type 
schemes IIv .v  associated with undeclared program variables. One approach is to 
label these special type variables with the program variable they are associated 
with. This approach would be similar to Appel and Shao's adaptation of Kaes' 
algorithm D for constrained types [11]. However, algorithm D again uses the 
gen operation in the l e t  case. 

The purpose of the above discussion is to clarify the relationship between 
our algorithm and work in conjunctive types. It is not our immediate aim here 
to formulate an algorithm in a conjunctive type discipline. We wish to derive 
principal types as in ML, and not principal typings (as in [10]). Instead, we 
use the technique of conjunctive types at an intermediate level (when multiple 
substitutions are kept inside extended environments) in order to facilitate the 
typing of let-expressions.  

7 C o n c l u s i o n  a n d  F u t u r e  W o r k  

The traditional gen operation is incompatible with a declarative, logical frame- 
work approach to formulating principal type inference. It is hoped that  our new 
approach will provide a starting point from which various issues of type infer- 
ence can be studied in declarative settings, without ignoring le t -polymorphism.  
It of course remains to extend Wr/ to other language constructs. We also hope 
to study, in the context of the eager quantification technique, type disciplines 
other than ML polymorphism (in particular principal typings and conjunctive 
types). This will lead to, for example, the use of our technique with respect to 
polymorphic references. It is hoped that we will be able to accept more type- 
safe programs than current methods. The W/I algorithm can also lead to the 
early reportage of typing errors. Because substitutions are composed instead of 
joined in algorithm W, by the time we discover a type error the substitutions 
may have obscured its origin. Combined with a constrained typing discipline, 
the WH technique can potentially offer a new solution to this problem. 
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