
On the Complexity of Function Pointer
May-Alias Analysis*

Robert Muth Saumya Debray
Department of Computer Science

University of Arizona
Tucson, AZ 85721, USA

{muth, debray}@cs.arizona.edu

Abst rac t . This paper considers the complexity of interprocedural func-
tion pointer may-alias analysis, i.e., determining the set of functions that
a function pointer (in a language such as C) can point to at a point in a
program. This information is necessary, for example, in order to construct
the control flow graphs of programs that use function pointers, which in
turn is fundamental for most dataflow analyses and optimizations. We
show that the general problem is complete for deterministic exponential
time. We then consider two natural simplifications to the basic (precise)
analysis and examine their complexity. The approach described can be
used to readily obtain similar complexity results for related analyses such
as reachability and recursiveness.

1 I n t r o d u c t i o n

Recent years have seen a great deal of interest in interprocedural compile-time
analyses and optimizations (see, for example, [CBC93, LR92, LRZ93, WL95]).
Fundamental to any such effort is the determination of interprocedural control
flow. In the presence of function pointers (or procedure-valued variables) this
requires the determination of the set of functions that a function pointer may
point to at any program point, i.e., the set of its possible aliases. In this paper,
we examine the theoretical complexity of this problem, which we refer to as the
intcrprocedural function pointer may-alias analysis (FP-MayAlias).

The problem of determining interprocedural control flow in the presence of
procedure-valued arguments has been considered by a number of authors (see, for
example, [CCHK90, Lak93, Ryd79, Shi91]). Zhang and Ryder [ZR94] examine
the complexity of interprocedural function pointer may-alias analysis for the
programming language C. They are the first to define, in a precise way, what
it means for such an analysis to be precise, 1 and consider the complexity of the
problem with respect to the presence or absence of various program constructs,

* This work was supported in part by NSF grant number CCR-9502826.
1 The determination of whether some (nontrivial) property will actually hold at a particular

program point at runtime is, of course, undecidable. A standard assumption in the dataflow
analysis literature is that both branches of a conditional can be executed: this usually suffices
to sidestep the problem of undecidability, and "precision" of program analyses is typically
defined with respect to this assumption.

382

such as global function pointers, assignment to function pointers, invocation
through flmction pointers, etc. They show that while polynomial-time algorithms
exist for precise solutions to the problem if the combination of those program
constructs is restricted, the problem is, in most cases, NP-hard.

This paper examines in detail the computational complexity of a number of
variations on interprocedural function pointer may-alias analysis. It shows that
the computation of precise solutions requires the use of the relational attributes
method [JM81], which, in turn, implies NP-hardness even in the absence of
function calls; shows that the problem is complete for deterministic exponential
time; and examines the complexity implications of two natural ways to simplify
the analysis at the cost of precision, namely, using the independent attributes
method and giving up context information for function calls. Proofs have been
omitted due to space constraints: the interested reader may consult [MD96].

2 P r e l i m i n a r i e s

For code analysis and optimization purposes, compilers typically construct a
control flow graph for each function in a program [ASUS6]. This is a directed
graph where each node represents a segment of executable code that has a single
entry point and a single exit point, and where there is an edge from a node A to
a node B iff it is possible for execution to leave node A and immediately enter
node B. If there is an edge from a node A to a node B, then A is said to be
a predecessor of B and B is a successor of A; the set of all predecessors of a
node A is denoted by pred(A), while the set of all successors of A are denoted
by succ(A). For a node with a single predecessor, we abuse notation and use
pred(A) to refer to the predecessor itself rather than the singleton set containing
the predecessor, and similarly with successors.

Control flow graphs in the traditional sense describe the flow of control within
a function, but do not account for control flow across function boundaries. An
interprocedural control flow graph (ICFG) for a program consists of the control
flow graphs of all the functions in the program, together with edges representing
calls and returns that link the flow graphs of different functions. A function call
is represented using a pair of nodes, a call node, whose successors include the
entry node of each function that can be called from that node (in the case of
indirect calls through function pointers, there is an edge to the entry node of
each function in the program), and a return node, whose predecessors include the
exit node of each function that could have been called from the corresponding
call node. The function that is called from a call node n is denoted by callee(n).
To prove that a property holds at a program point, an analysis must consider
statically executable paths from the entry point of the program upto that point:
roughly speaking, these are paths that can actually be taken during execution,
modulo the assumption (standard in dataflow analysis) that both branches of a
conditional can be taken [ZR94]; for a more formal definition see [MD96].

Def ini t ion 2.1 [Function Pointer May Aliasing Problem] Given a node n in the
ICFG and a variable v the function pointer may aliasing problem is to find all

383

procedures p so that there is a statically executable path from the entry point
of the program to the node n at the end of which v points to p. |

We write [n, (v, p}] to indicate that v may be aliased to p, i.e., may point to p,
at a program point n. An interprocedural function pointer may-alias analysis is
said to be precise if, for each program point n of each program P, the set of aliases
it computes is exactly the set [n, (v, p)] . While an analysis may not be precise in
general, it is required to be safe, i.e., compute at least those aliases that hold at
each program point. We will show that the problem of precise function pointer
may-alias analysis is complete for the complexity class EXPTIME, i.e., deter-
ministic exponential time, which is defined as E X P TIME = Uc>0 DTIME[2~c] .

We use the following notation in the remainder of the paper. The powerset
of a set S is denoted by 7)(S) , the n-fold Cartesian product of S with itself is
denoted by S ~, the set of monotone functions from S ~ to S--assuming that S is
ordered-- is denoted by [S n -+ S]. If S forms a (complete) lattice under a partial
order __, with meet and join operations [7 and U, then S ~ and [S ~ ~ S] also form
(complete) lattices with K_, [7 and U extended componentwise and pointwise in
the obvious way. Finally, f[a ~ b] denotes the function that coincides with f

except at a, where it evaluates to b: f[a ~ b] ~=),x.if x = a t h e n b else f (x) .
Since we focus purely on the problem of function pointer aliasing, to simplify

the discussion we explicitly disregard issues that do not bear directly on this.
In particular, we assume that there are no arrays or records, nor any reference
parameters or pointer-induced aliasing (except for aliases due to function point-
ers). For notational simplicity in the discussion that follows, we assume that
programs obey the following syntactic restrictions. We assume that all functions
have the same set of local variable names, denoted by Var, and the same set of
formal parameters Fml = {fml 1 , fm lk} C_ Var. These formals are assumed
to be read-only, i.e., they cannot be changed within a function. Additionally,
each function is assumed to have a special variable ret C Var: the value returned
by the function is loaded into this variable before control returns to its caller.
To model parameter passing, we assume that each function has a special set of
variables Arg = { a r g l , . . . , argk} C Var, and that the value of the i th argument is
assigned to arg i before a function call (1 < i < k). Additionally, each function is
assumed to have a special variable res E Var: whenever a function calls another
function, the result of the function call is assumed to be assigned to this variable
when control returns to the caller. Finally, it is assumed that the flow graph for
each function f has distinguished entry and exit nodes, en t ry (f) and ex i t (f)
respectively, where execution enters f and leaves f .

We sidestep the issue of indirect calls through an undefined function pointer
variable by assuming that there is a special function n i l E Fun, where Fun
denotes the set of function names in a program, that always returns a pointer to
itself. Initially, all variables are assumed to be initialized to point to n i l . The
entry point of a program is a distinguished function main E Fun. We assume
that there are no global variables. This restriction is primarily to simplify our
datafiow equations: it is straightforward to extend the equations to take globals
into account, but this does not shed any additional insight into complexity issues
relating to this analysis or affect our results in any way.

384

3 P r e c i s e F u n c t i o n P o i n t e r A l i a s A n a l y s i s

3.1 R e l a t i o n a l A t t r i b u t e s vs. I n d e p e n d e n t A t t r i b u t e s

Program analysis involves keeping track of (descriptions of) the values differ-
ent variables can take on at different program points. In general, the values of
different variables may depend on each other. When tracking the values that
variables can take on, we may choose to keep track of such dependencies or
ignore them: Jones and Muchnick refer to the former kind of analysis as the
relational attributes method, and the latter kind as the independent attributes
method [JMSl]. In practice, program analyses typically use the independent at-
tr ibutes method because it tends to be simpler and more efficient to implement.

In the context of function pointer may-alias analysis, a precise analysis al-
gorithm cannot use the independent at tr ibutes method in general. This is illus-
t rated by the following example:

E x a m p l e 3.1 Let PF denote the type of a pointer to a function that takes an
argument of type PF and returns a result of type PF. 2 Consider the following
program:

PF id(PF x) { return x; }

PF nil(PF x) { return ~nil; }

main() {
PF z;
if (...) { x = ~id; y = &nil; }

else { x = ~nil; y = ~id; }

z = (*x)(y);
. . .

}

It is not difficult to determine that, regardless of which branch of the con-
ditional is taken, the value assigned to z must be a pointer to n i l . However,
an independent at tr ibute analysis would determine the set of possible aliases for
both x and y, at the point immediately after the conditional, to be {• n i l) .
Then, when considering the indirect call (*x) (y) we would be forced to consider
the possibility that both x and y are pointers to • implying that a possible
value that could be assigned to z is a pointer to id. This is imprecise, and the
imprecision is due solely to the fact that the connection between the aliases of
different variables is lost during an independent attr ibutes analysis. �9

3.2 A F r a m e w o r k for F u n c t i o n P o i n t e r M a y - A l i a s A n a l y s i s

As Example 3.1 illustrates, a precise analysis requires what Jones and Muchnick
have referred to as a relational attributes analysis, i.e., where connections be-
tween the possible aliases of different variables are maintained [JMSl]. We will

2 T h i s recurs ive t ype cannot be proper ly expressed in C, t hough it is poss ible to use void
po in te r s and casting to achieve the s a m e resul t s . To s impl i fy t he p resen ta t ion , however, we

will use PF to refer to such pointers.

385

keep track of such connections using environments, which map local variables to
the functions they are aliased to (point to). Environments are finite maps; an
environment of the form [at ~-+ b l , . . . , an ~ bn] represents the function

Ax.if x = al t h e n bl; �9 �9 .; e lse i f x = an t h e n bn; e lse n i l

The set of environments is ELy = Var -+ Fun. The function Lookup : (Var U
Fun) x ELy -+ Fun evaluates the expressions in call and assignment nodes. An
expression can either be a variable or a constant:

f expr • expr E Fun
Lookup(expr, env) = [env(expr) i f ezpr e Vat

The datafiow analysis associates, with each node n in the ICFG, an element
AEnv(n) E P (E n v) . Since all variables are undefined, and hence assumed to be
initialized to n i l at the entry to the program (see Section 2), for the root node
r (= entry(main)) of the ICFG we set AEnv(r) = {) ,x.ni l}. The environments
for the other nodes are defined via datafiow equations as follows:

1. n is the entry node for a function f . Define:

CallEnv(n, f) = {e e AEnv(n) t f = Lookup(callee(n), e)}.
Then, AEnv(n) is given by

AEnv(n) = U {[]mll ~'+ e(argt),"" ,fmlk ~-~ e(argk)] l
p~pred(n)

e E CallEnv(p, f)} .

2. n is an assignment node 'x := u'. The only effect of this is to update the
binding of x in the environment to the value(s) denoted by u:

AEnv(n) = U {e[x ~ Lookup(u, e)] I e e AEnv(p)}.
pEpred(n)

3. n is a return node for a function call with corresponding call node n I. Define:

ReturnEnv(n, e) = {e' e AEnv(cxit(f)) I f = Lookup(callee(n), e)A

A =
t<i<k

Then:

AEnv(#) = {e[res ~ ~'(r~t)] I e e AEnv(n') A e' e ReturnEnv(n', e)}

4. n is a conditional node, an exit node, or a call node. In each case, AEnv(n)
is obtained by copying the environments of the only predecessor node:

AEnv(n) = AEnv(pred(n)).

5. n is a junction node. In this case, AEnv(n) is obtained as the union of its
predecessors ' envoronments:

AEnv(n) = Upep~(~) AEnv(p).

386

The equation for the entry nodes make sure that not all possible function argu-
ments are considered but only those that can actually happen during execution.
This essentially resembles the minimal function graphs approach of [JM86].

We use AEnv* to denote the least fixpoint of the system of equations given
above for AEnv . Since the sets Var and Fun are finite, so is the set Env =
Var -~ Fun. This implies that (P(Env), _C) is a finite lattice, and therefore that
AEnv* E P(Env) can be computed using the iterative algorithm shown below.

A l g o r i t h m 3.1
fo r all nodes n do

if n = r then AEnv(n) = {~x.nil} else AEnv(n) = ~)
repeat

fo r all nodes n except r do in p a r a l l e l
recompute AEnv(n) from the AEnv value(s) of the predecessor(s) of n

until there is no change to AEnv(n) for any node n

The fixpoint captures the aliasing behavior of the program precisely (upto
the standard assumptions of dataflow analysis):

L e m m a 3.1 The precise set of aliases at any program point n in a program is
given by AEnv*(n) . In other words, for any point n in a program, [n, <v,p>] i#
3e E AEnv*(n): e(v) = p. �9

It is straightforward to show that given an ICFG with n nodes, Algorithm 3.1
has complexity O(n 3. 22nl~ ~) [MD96]. This implies the following result:

T h e o r e m 3.1 FP-MayAlias E EXPTIME. �9

3.3 FP-MayAlias is EXPTIME-Hard

Theorem 3.1 indicates that in the worst case, time that is exponential in the size
of the input program is sufficient for the FP-MayAlias problem. In this section,
we show that this analysis problem is hard for deterministic exponential time.
Our proof is by reduction from a problem of evaluating recursive monotone
Boolean functions over the lattice/3 -- {0, 1}, the boolean lattice with 0 E_ 1,
and meet and join operations i3 and U.

Def ini t ion 3.1 [Recursive monotone boolean function (RMBF)]
A recursive monotone boolean function (RMBF) is an equation

F (x l , . . . , x k) = expr

where expr is recursively defined by the following BNF productions:

exp : : = o 11 I x (1 < i < k) I exp, A expr I exp," V exp, I F (expr , . . . , expr)

expr induces a monotone and continous functional T1 on [/3 k --+/3].3 The function
denoted by the equation is then its least fixpoint lip(F) in [/3k __+/3]. |

3 Here 0,1, resp. xi are a b b r e v i a t i o n s for)~Z.0, ,ki.1, resp. AN.xi

387

D e f i n i t i o n 3.2 [RMBF Problem] Given a pair (eq, ~ where eq is a RMBF and
E 6 B k the RMBF problem is to evaluate (Ifp(F))(Z). |

Theorem 3.2 (Hudak and Young [HY86])
The RMBF problem is EXPTIME-complete in the length of the pair (eq, z-).

Given an instance c 2 = (eq, E) of the RMBF problem, our strategy will be to
generate a program P~ such that the results of fnnction pointer alias analysis
on P~, can be used to solve ~2. (The generation of the corresponding ICFG
is straightforward). Given any numbering of the syntax tree of eq that assigns
distinct numbers to distinct nodes, let the subtree of the syntax tree rooted at
the node numbered ~ be denoted by Et and let f~ be the number of the root
node. Then, the program P~, is defined as follows:

1. It contains the definitions

t y p e d e f PF . . . ;
PF niI(PF arg) {return ~nil;}
PF id(PF arg) {return arg;}

Here, PF is a pointer to a function that returns a result of type PF and takes
an argument of type PF (see Example 3.1).

2. Corresponding to each subexpression Et of the body of the recursive equation
eq, there is a C function fe, defined as follows:

(a) I fEe ~ 1 then fe is: PF fe(PF x l PF xk) { r e t u r n &id;}

(b) I fEe -~ 0 then f t is: PF fe(PF x l PF xk) { r e t u r n &ni l ;}

(c) If Ee =-xl then fe is: PF fe(PF xl PF xk) { r e t u r n x i ;}

(d) If Er ~ Eel A Ee~ then fe is: PF fe (PF xl PF xk)
{ r e t u r n f t l (xl xk) (fe~ (xl xk)) ;}

(e) If Ee = Eel V Ee2 then fe is: PF fe (PF x l PF xk)
{ r e t u r n (. . .) ? f e , (x l xk) : fe2(x l , x k) ; }

(f) I f E t = F(Eel,.. . ,Etk) then fe is: PF f t (PF x l PF xk)
{ r e t u r n fe~ (f t , (x l xk) f 4 (xl xk)) ;}

3. Let z 3 be obtained from E by mapping 1 to id and 0 to n i l componentwise.
Then, the entry point for P~ is defined by the C function

void main() { PF result = fer(~z~ ~z~n); }

The following result is straightforward:

Lemma 3.2 Given any instance ~9 of RMBF , the ICFG for program P~ can
be generated in time polynomial in I~1. �9

388

E~ I[Equation corresponding to fe _

i ' " !AFunc(fe) ' ie .{{d}
0 " AFunc({~) = .A%:{nil} .["

'AFunc(fe) = i%.xi
Ih:FuncCfe) = AFunc(fe,) ; AFunc(fe~)

Xi

Ee~ A E h
E~ V E h
F(&,...,

AFunc(fe) = AFunc(fe.,) U A.Func(fz=)
AFunc'(fe") = AFunc(:fe~)(AFunc(f(;),. �9 A'Func'(f~))

Table 1. Equations for AFunc

Since aliases in the programs so generated are generated through function
calls only, variables can point only to n i l and/or id, and the aliases of a par-
ticular incarnation of a variable never changes, we can use a somewhat simpler
approach for the analysis than that outlined in Section 3.2. The following the-
orem establishes the relationship between the alias analysis and the solution of
the PdVIBF problem. The rest of the section is devoted to its proof.

T h e o r e m 3.3 (M a i n T h e o r e m) Let 9~ = (eq, z-) be an RMBF problem and
P~, the corresponding program generated by our reduction, Then,

(Ifp(F))(Z) = 1 iff [exit(main), <resul t , id)] holds in P~

In order to prove Theorem 3.3, it suffices to focus on the possible return
values of functions. This motivates the definition of the mapping AFunc : Fun --4
"/)(Fun) k --9 7)(Fun) that models the aliasing behavior of an entire function.
AFunc(f) maps argument aliases of f into return aliases of f . AFunc(f) is defined
by a system of recursive equations; one equation for each function f~ correspond-
ing to the subexpression Ee, as given in Table 1, with the binary ope ra t i on , is

defined as follows:

a , b ~ if (a----{~V5=~) then r
elseif (a = {nil} V b--- {nil}) then {nil}

else a U b .

Let s be the lattice (7)({nil, id}) , C). All the functions occnring in the system
. �9 - k g], i.e., are monotone functions over of equations defimng AFunc are m[L;

a finite complete lattice. These equations therefore have a least fixpoint, which
we denote by AFunc*. Furthermore, we can reduce this system of equations (by
successive substitution) to a single recursive equation in AFunc(fe~) The syntax
tree of this equation is isomorphic to that for eq: only the labels are different,
but they correspond as follows: a node labelled 0 in the tree for eq corresponds
to a node A%.{n/1} in the tree for the equation for AFunc(~t~); 1 corresponds to
A~.{id); xi corresponds to XS.xi; A corresponds to *; V corresponds to U; and a
node labelled F(."-) corresponds to one labelled AFunc(fer). The functional 72
represented by the right hand side of the resulting equation allows us to express

{~-<;> (-L2) l i > O} where • = X~.~. Since [E ~ --~ s is a finite
gFunc* ~s 13
lattice, it follows that AFunc* = T2 <k> (-1-2) for some finite k.

389

AFunc*(f) is closely related to the set AEnv*(exit(f)): the set of function
pointers tha t can be returned by a function f , as determined by AFunc*(f), is
precisely the set of return aliases for the exit node of f as determined by AEnv*:

Lemma 3.3 (Relationship between AFunc*(f) and AEnv*(exit(f)))
For any f , v l , . . . ,vk E Fun with []ml 1 F-~ v l , . . . , fml k ~-~ vk] E AEnv*(init(f)) ,

k

AFunc*(f) ({v l} , . . . , {vk}) --- {e(ret) I e e AEnv*(exit(f)) A m e(fmli) = vi}.
i = l

In contrast with the minimal function graph approach for AEnv* where we
considered only arguments of a function that could actually occur during pro-
gram execution, AFunc* considers all possible arguments. However, the preceding
lemma shows that AFunc* agrees with AEnv* for those arguments that can occur.

Next we show that given a RMBF instance p defining a function F , the
set of aliases AFunc* computed for the corresponding program P~ is essentially
equivalent to lfp(F), if we associate aliases to n i l with 0 and aliases to id with
1. Define the function h : s ~ B as follows:

1 i f i d E x
h(x) = 0 otherwise

Let ft : L: n --+ B n be the componentwise extension of h. The connection between
AFunc* and lfp(F) can now be made precise via the notion of one function being
faithful to another. Intuitively, g : ~n ..~ ~ is faithful to f : Bn __+ B if g(~) can
return a pointer to the function id iff f(Z) evaluates to the truth-value 1:

D e f i n i t i o n 3.3 A function g E [/2 ~ ~ s is faithful to a function f E [B ~ --+ B],
wr i t t eng t> f , i f f f o f t = h o g . |

T h e o r e m 3.4 AFunc* [> lfp(F). �9

The Main Theorem is an easy corollary of this result:

C o r o l l a r y 3.1 FP-MayAlias is EXPTIME-complete. �9

It is interesting, at this point, to revisit the NP-hardness result for function
pointer may-alias analysis due to Zhang and Ryder [ZR94]. As shown in Section
3.1, a relational attributes analysis is necessary for precise function pointer may
alias analysis. It turns out that once we have a relational attributes analysis, the
problem becomes NP-hard even for the intra-procedural case: in other words,
aliasing effects are enough to give rise to NP-hardness, even if we dispense with
the additional complications due to interprocedural analysis. This can been seen
by a reduction from 3-SAT which we illustrate by an example. Given the 3-SAT
problem (x V y V 5) A (~ V ~ V z) A (x V z2 V 5) we generate the following program:

390

main() {
if (~ . .) {x=~id;nx=~nil} else {x=~nil;nx=~id;}
if (...) {y=~id;ny=&nil} else {y=~nil;ny=~id;}
if (...) {z=~id;nz=&nil} else {z=&nil;az=~id;}

i f (. . .) cl=x e l s e i f (. . .) cl=y e l s e cl=nz;
i f (. . .) c2=nx e l s e i f (. . .) c2=ny e l s e c2=z;
if (. . .) C3=X else if (. . .) c3=ny else c3=nz;

Here nx, ny, nz represent the negation of the variables x, y, z and c 1, c2, c3 rep-
resent the 3 clauses. Each computation path in the first group of i f - s ta tements
corresponds to a t ruth assignment for the variables of the clause. Each i f -
s ta tement in the second group of statements then corresponds to the evalua-
tion of the truth value of the corresponding clause: the i th clause evaluates to
true iff there is a computat ion path through the i th i f - s t a tement that causes ci
to be aliased to id. It follows that the original 3-SAT problem is satisfiable iff
c l , c2, c3 may be simultaneously aliased to id at exit(main).

4 Approximation I: Independent Attributes Analysis

As mentioned in Section 3.1, for pragmatic reasons most program analyses do
not use the relational at tr ibute method considered in the previous section: in-
stead, they ignore dependences between the values taken on by different variables
in order to improve efficiency. The dataflow framework in this case can be de-
rived from that of Section 3.2 by systematically modifying equations to ignore
dependences between variables (see [MD96] for details). Exponential t ime is still
sufficient to solve the relaxed problem. Exponential t ime is also necessary which
can be proven reusing the reduction from section 3.3.

Theorem 4.1 Function pointer may-alias analysis is complete for deterministic
exponential time even when the independent attributes method is used. []

This result comes as something of a surprise, since it is usually the case that
concessions in the precision of analysis are accompanied by improvements in
the complexity of the analysis algorithms. In practice, program analyses usually
abandon the relational method in favor of the independent attr ibutes method
because the latter tend to be simpler and more efficient. This result indicates,
however, that in this case the sacrifice in precision (illustrated in Example 3.1)
does nothing to improve the worst case complexity of this analysis problem.

5 A p p r o x i m a t i o n I I : C o n t e x t - I n s e n s i t i v e A n a l y s i s

The analysis discussed in the previous section "merges" environments at a node
if their formals match, i.e. if they are the result of the same function invoca-
tion, but distinguishes between different invocations of the same function. The
completeness result of the last section suggests that there can be an exponen-
tial number of different invocations and hence an exponential number of en-
vironments at a node, and keeping track of these different invocations can be
expensive. Our next approximation will be to merge environments even if they

391

come from different invocations. As a result, when propagating the results of a
function call back to the caller at one point, we also propagate aliases arising
from invocations from other program points because the analysis of a function
invocation does not maintain any information about the context from which it
arose: for this reason, this has also been referred to as "zeroth-order control flow
analysis" (0-CFA)[Shi91].

We can capture the effects of this approximation by changing the equations
for return and entry nodes (see [MD96] for details). In the resulting framework
there is at most one environment at any node. Hence the problem has been sim-
plified considerably. In fact, it is equivalent to a problem discussed by Lakhotia
[Lak93] who also shows how to solve it polynomial time. 4

6 Interprocedural Funct ion Pointer Must Alias Analys i s

Thus far we have focused on interprocedural function pointer may-alias analysis,
which is concerned with determining whether there exists a computat ion path
through the program along which certain aliases can occur. One can also consider
an analysis that is concerned with determining whether certain aliases must
occur along every computation path from the entry point of the program to some
particular program point. Such an analysis is called a "must alias" analysis:

D e f i n i t i o n 6.1 [Function Pointer Must Aliasing Problem] Given a node n in
the ICFG and a variable v the function pointer must aliasing problem is to
determine if there is a single procedure p so that at the end of all statically
executable path from entry(main) to n v points to p.

We write [n, (v,p)] must indicating that v must point to p at n. |

L e m m a 6.1 [n, (v,p)] must cv {q I In, (v,p)] } = {p} �9

Given the results of the previous sections, the following result is not surprising:

T h e o r e m 6.1 Function pointer must alias analysis is EXPTIME-complete . �9

7 C o n c l u s i o n

The construction of a interprocedural control flow graph is the first step in any
in~erprocedural dataflow analysis. In programs involving function pointers, this
requires the determination of the possible values such pointers can take on. In
this paper, we consider complexity issues for a variety of approaches to this prob-
lem. We show that a relational at tr ibute analysis is necessary if precise results
are to be obtained; extend earlier results by Zhang and Ryder [ZR94] to show
that the problem is complete for deterministic exponential time; and show that
for precise analyses, Zhang and Ryder's NP-hardness result holds even for intra-
procedural analyses: that is, aliasing effects alone give rise to NP-hardness even
when inter-procedural effects are absent. We then show that sacrificing precision
by resorting to an independent at tr ibute analysis does not change the complexity
result: the problem remains EXPTIME-complete. However, if context-sensitivity
is abandoned as well, it is possible to get polynomial-time algorithms.

4 L a k h o t i a a s sumes a s l igh t ly more e l abora t e p a r a m e t e r pass ing mechan i sm.

392

R e f e r e n c e s

[ASU86] A. Aho, R. Sethi, and J. Ullman. Compilers. principles, techniques, and
tools. Addison-Wesley, 1986.

[CCHK90] D. Callahan, A. Carle, M. Hall, and K. Kennedy. Constructing the proce-
dure call multigraph. IEEE Trans. on Softw. Eng., 16(4):483, April 1990.

[CBC93] J. Choi, M. Burke, and P. Carini. Efficient Flow-Sensitive InterprocedurM
Computation of Pointer-Induced Aliases and Side Effects. Proc. 20th. ACM
Syrup. on Principles of Programming Languages, Jan. 1993, pp. 232-245.

[HY86] P. Hudak and J. Young. Higher-order strictness analysis in untyped lambda
calculus. In Proc. 13th ACM Symp. on Principles of Programming Lan-
guages, pages 97-109, St. Petersburg Beach, Florida, January 1986.

[JM81] N. Jones and S. Muchnick. Complexity of flow analysis, inductive assertion
synthesis, and~a language due to Dijkstra. In Steven S Muchnick and Neil D
Jones, editors, Program Flow Analysis: Theory and Applications, chapter 12,
pages 380-393. Prentice-Hall, 1981.

[JM86] N. Jones and A. Mycroft. Data flow analysis of applicative programs using
minimal function graphs: abridged version. In Proc. 13th ACM Symp. on
Principles of Programming Languages, pages 296-306, St. Petersburg, FL,
January 1986.

[Lak93] A. Lakhotia. Constructing call multigraphs using dependence graphs. In
Proc. 20th ACM Symp. on Principles of Programming Languages, pages
273-284, Charleston, South Carolina, January 1993.

[LR92] W. Landi and B. Ryder. A safe approximate algorithm for interprocedu-
ral pointer aliasing. SIGPLAN Notices~ 27(7):235-248, July 1992. Proc.
of the ACM SIGPLAN '92 Conf. on Programming Language Design and
Implementation.

[LRZ93] W. Landi, B. Ryder, and S. Zhang. Interprocedural side effect analysis
with pointer aliasing. SIGPLAN Notices, 28(6):56-67, June 1993. Proc.
of the ACM SIGPLAN '93 Conf. on Programming Language Design and
Implementation.

[MD96] R. Muth and S. Debray. On the complexity of function pointer may-alias
analysis. Technical Report 96-18, Dept. of Computer Science, The Univer-
sity of Arizona, Tucson, USA. October 1996.

[Ryd79] B. Ryder. Constructing the call graph of a program. IEEE Transaction of
Software Engineering, SE-5(3):216-226, 1979.

[Shi91] O. Shivers. Control-Flow Analysis of Higher-Order Languages or Taming
Lambda. PhD thesis, Carnige-Mellon Univeristy, May 1991. Also available
as CMU-CS-91-145.

[WL95] R. Wilson and M. Lain, Efficient Context-Sensitive Pointer Analysis for
C Programs. Proc. SIGPLAN '95 Conference on Programming Language
Design and Implementation, June 1995, pp. 1-12.

[ZR94] S. Zhang and B. Ryder. Complexity of single level function pointer aliasing
analysis. Technical Report LCSR-TR-233, Laboratory of Computer Science
Research, Rutgers University, October 1994.

