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Abst rac t .  This paper considers the complexity of interprocedural func- 
tion pointer may-alias analysis, i.e., determining the set of functions that 
a function pointer (in a language such as C) can point to at a point in a 
program. This information is necessary, for example, in order to construct 
the control flow graphs of programs that use function pointers, which in 
turn is fundamental for most dataflow analyses and optimizations. We 
show that the general problem is complete for deterministic exponential 
time. We then consider two natural simplifications to the basic (precise) 
analysis and examine their complexity. The approach described can be 
used to readily obtain similar complexity results for related analyses such 
as reachability and recursiveness. 

1 I n t r o d u c t i o n  

Recent years have seen a great deal of interest in interprocedural compile-time 
analyses and optimizations (see, for example, [CBC93, LR92, LRZ93, WL95]). 
Fundamental  to any such effort is the determination of interprocedural control 
flow. In the presence of function pointers (or procedure-valued variables) this 
requires the determination of the set of functions that  a function pointer may 
point to at any program point, i.e., the set of its possible aliases. In this paper, 
we examine the theoretical complexity of this problem, which we refer to as the 
intcrprocedural function pointer may-alias analysis ( FP-MayAlias ). 

The problem of determining interprocedural control flow in the presence of 
procedure-valued arguments has been considered by a number of authors (see, for 
example, [CCHK90, Lak93, Ryd79, Shi91]). Zhang and Ryder [ZR94] examine 
the complexity of interprocedural function pointer may-alias analysis for the 
programming language C. They are the first to define, in a precise way, what 
it means for such an analysis to be precise, 1 and consider the complexity of the 
problem with respect to the presence or absence of various program constructs, 

* This work was supported in part by NSF grant number CCR-9502826. 
1 The determination of whether some (nontrivial) property will actually hold at a particular 

program point at runtime is, of course, undecidable. A standard assumption in the dataflow 
analysis literature is that both branches of a conditional can be executed: this usually suffices 
to sidestep the problem of undecidability, and "precision" of program analyses is typically 
defined with respect to this assumption. 



382 

such as global function pointers, assignment to function pointers, invocation 
through flmction pointers, etc. They show that while polynomial-time algorithms 
exist for precise solutions to the problem if the combination of those program 
constructs is restricted, the problem is, in most cases, NP-hard. 

This paper examines in detail the computational complexity of a number of 
variations on interprocedural function pointer may-alias analysis. It shows that 
the computation of precise solutions requires the use of the relational attributes 
method [JM81], which, in turn, implies NP-hardness even in the absence of 
function calls; shows that the problem is complete for deterministic exponential 
time; and examines the complexity implications of two natural ways to simplify 
the analysis at the cost of precision, namely, using the independent attributes 
method and giving up context information for function calls. Proofs have been 
omitted due to space constraints: the interested reader may consult [MD96]. 

2 P r e l i m i n a r i e s  

For code analysis and optimization purposes, compilers typically construct a 
control flow graph for each function in a program [ASUS6]. This is a directed 
graph where each node represents a segment of executable code that has a single 
entry point and a single exit point, and where there is an edge from a node A to 
a node B iff it is possible for execution to leave node A and immediately enter 
node B. If there is an edge from a node A to a node B, then A is said to be 
a predecessor of B and B is a successor of A; the set of all predecessors of a 
node A is denoted by pred(A), while the set of all successors of A are denoted 
by succ(A). For a node with a single predecessor, we abuse notation and use 
pred(A) to refer to the predecessor itself rather than the singleton set containing 
the predecessor, and similarly with successors. 

Control flow graphs in the traditional sense describe the flow of control within 
a function, but do not account for control flow across function boundaries. An 
interprocedural control flow graph (ICFG) for a program consists of the control 
flow graphs of all the functions in the program, together with edges representing 
calls and returns that link the flow graphs of different functions. A function call 
is represented using a pair of nodes, a call node, whose successors include the 
entry node of each function that can be called from that node (in the case of 
indirect calls through function pointers, there is an edge to the entry node of 
each function in the program), and a return node, whose predecessors include the 
exit node of each function that could have been called from the corresponding 
call node. The function that is called from a call node n is denoted by callee(n). 
To prove that a property holds at a program point, an analysis must consider 
statically executable paths from the entry point of the program upto that point: 
roughly speaking, these are paths that can actually be taken during execution, 
modulo the assumption (standard in dataflow analysis) that both branches of a 
conditional can be taken [ZR94]; for a more formal definition see [MD96]. 

Def ini t ion 2.1 [Function Pointer May Aliasing Problem] Given a node n in the 
ICFG and a variable v the function pointer may aliasing problem is to find all 
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procedures p so that  there is a statically executable path from the entry point 
of the program to the node n at the end of which v points to p. | 

We write [n, (v, p}] to indicate that  v may be aliased to p, i.e., may point to p, 
at a program point n. An interprocedural function pointer may-alias analysis is 
said to be precise if, for each program point n of each program P,  the set of aliases 
it computes is exactly the set [n, (v, p) ] .  While an analysis may not be precise in 
general, it is required to be safe, i.e., compute at least those aliases that  hold at 
each program point. We will show that  the problem of precise function pointer 
may-alias analysis is complete for the complexity class EXPTIME,  i.e., deter- 
ministic exponential time, which is defined as E X P TIME = Uc>0 DTIME[2~c] . 

We use the following notation in the remainder of the paper. The powerset 
of a set S is denoted by 7)(S) , the n-fold Cartesian product  of S with itself is 
denoted by S ~, the set of monotone functions from S ~ to S--assuming that  S is 
ordered-- is  denoted by [S n -+ S]. If S forms a (complete) lattice under a partial 
order __, with meet and join operations [7 and U, then S ~ and [S ~ ~ S] also form 
(complete) lattices with K_, [7 and U extended componentwise and pointwise in 
the obvious way. Finally, f[a ~ b] denotes the function that  coincides with f 

except at a, where it evaluates to b: f[a ~ b] ~= ),x.if x = a t h e n  b else  f ( x ) .  
Since we focus purely on the problem of function pointer aliasing, to simplify 

the discussion we explicitly disregard issues that  do not bear directly on this. 
In particular, we assume that  there are no arrays or records, nor any reference 
parameters or pointer-induced aliasing (except for aliases due to function point- 
ers). For notational simplicity in the discussion that  follows, we assume that  
programs obey the following syntactic restrictions. We assume that  all functions 
have the same set of local variable names, denoted by Var, and the same set of 
formal parameters Fml = {fml  1 . . . .  , fm lk}  C_ Var. These formals are assumed 
to be read-only, i.e., they cannot be changed within a function. Additionally, 
each function is assumed to have a special variable ret C Var: the value returned 
by the function is loaded into this variable before control returns to its caller. 
To model parameter  passing, we assume that  each function has a special set of 
variables Arg = { a r g l , . . .  , argk} C Var, and that  the value of the i th argument is 
assigned to arg i before a function call (1 < i < k). Additionally, each function is 
assumed to have a special variable res E Var: whenever a function calls another 
function, the result of the function call is assumed to be assigned to this variable 
when control returns to the caller. Finally, it is assumed that  the flow graph for 
each function f has distinguished entry and exit nodes, en t ry ( f )  and ex i t ( f )  
respectively, where execution enters f and leaves f .  

We sidestep the issue of indirect calls through an undefined function pointer 
variable by assuming that  there is a special function n i l  E Fun, where Fun 
denotes the set of function names in a program, that  always returns a pointer to 
itself. Initially, all variables are assumed to be initialized to point to n i l .  The 
entry point of a program is a distinguished function main E Fun. We assume 
that  there are no global variables. This restriction is primarily to simplify our 
datafiow equations: it is straightforward to extend the equations to take globals 
into account, but this does not shed any additional insight into complexity issues 
relating to this analysis or affect our results in any way. 
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3 P r e c i s e  F u n c t i o n  P o i n t e r  A l i a s  A n a l y s i s  

3.1 R e l a t i o n a l  A t t r i b u t e s  vs.  I n d e p e n d e n t  A t t r i b u t e s  

Program analysis involves keeping track of (descriptions of) the values differ- 
ent variables can take on at different program points. In general, the values of 
different variables may depend on each other. When tracking the values that  
variables can take on, we may choose to keep track of such dependencies or 
ignore them: Jones and Muchnick refer to the former kind of analysis as the 
relational attributes method,  and the latter kind as the independent attributes 
method [JMSl]. In practice, program analyses typically use the independent at- 
tr ibutes method because it tends to be simpler and more efficient to implement. 

In the context of function pointer may-alias analysis, a precise analysis al- 
gorithm cannot use the independent at tr ibutes method in general. This is illus- 
t rated by the following example: 

E x a m p l e  3.1 Let PF denote the type of a pointer to a function that  takes an 
argument of type PF and returns a result of type PF. 2 Consider the following 
program: 

PF id(PF x) { return x; } 

PF nil(PF x) { return ~nil; } 

main() { 
PF z; 
if (...) { x = ~id; y = &nil; } 

else { x = ~nil; y = ~id; } 

z = (*x)(y);  
. . .  

} 

It is not difficult to determine that,  regardless of which branch of the con- 
ditional is taken, the value assigned to z must be a pointer to n i l .  However, 
an independent at tr ibute analysis would determine the set of possible aliases for 
both x and y, at the point immediately after the conditional, to be {• n i l ) .  
Then, when considering the indirect call (*x) (y) we would be forced to consider 
the possibility that  both x and y are pointers to • implying that  a possible 
value that  could be assigned to z is a pointer to id. This is imprecise, and the 
imprecision is due solely to the fact that  the connection between the aliases of 
different variables is lost during an independent attr ibutes analysis. �9 

3.2 A F r a m e w o r k  for  F u n c t i o n  P o i n t e r  M a y - A l i a s  A n a l y s i s  

As Example 3.1 illustrates, a precise analysis requires what Jones and Muchnick 
have referred to as a relational attributes analysis, i.e., where connections be- 
tween the possible aliases of different variables are maintained [JMSl]. We will 

2 T h i s  recurs ive  t ype  cannot be proper ly  expressed  in C, t hough  it is poss ible  to use  void 
po in te r s  and casting to achieve the  s a m e  resul t s .  To s impl i fy  t he  p resen ta t ion ,  however,  we 

will use  PF to refer to such  pointers. 
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keep track of such connections using environments, which map  local variables to 
the functions they are aliased to (point to). Environments  are finite maps;  an 
environment of the form [at ~-+ b l , . . . ,  an ~ bn] represents the function 

Ax.if x = al  t h e n  bl; �9 �9 .; e lse  i f  x = an t h e n  bn; e lse  n i l  

The set of environments is ELy = Var -+ Fun. The function Lookup : (Var U 
Fun) x ELy -+ Fun evaluates the expressions in call and assignment nodes. An 
expression can either be a variable or a constant: 

f expr • expr E Fun 
Lookup(expr, env) = [ env(expr) i f  ezpr e Vat 

The datafiow analysis associates, with each node n in the ICFG,  an element 
AEnv(n) E P ( E n v ) .  Since all variables are undefined, and hence assumed to be 
initialized to n i l  at the entry to the program (see Section 2), for the root node 
r (= entry(main)) of the ICFG we set AEnv(r) = {) ,x.ni l}.  The environments 
for the other nodes are defined via datafiow equations as follows: 

1. n is the entry node for a function f .  Define: 

CallEnv(n, f )  = {e e AEnv(n) t f = Lookup(callee(n), e)}. 
Then, AEnv(n) is given by 

AEnv(n) = U {[]mll ~'+ e(argt),"" ,fmlk ~-~ e(argk)] l 
p~pred(n) 

e E CallEnv(p, f )} .  

2. n is an assignment node 'x := u'. The only effect of this is to update  the 
binding of x in the environment to the value(s) denoted by u: 

AEnv(n) = U {e[x ~ Lookup(u, e)] I e e AEnv(p)}. 
pEpred(n) 

3. n is a return node for a function call with corresponding call node n I. Define: 

ReturnEnv(n, e) = {e' e AEnv(cxit(f) ) I f = Lookup( callee(n), e)A 

A = 
t<i<k 

Then: 

AEnv(#) = {e[res ~ ~'(r~t)] I e e AEnv(n') A e' e ReturnEnv(n', e)} 

4. n is a conditional node, an exit node, or a call node. In each case, AEnv(n) 
is obtained by copying the environments of the only predecessor node: 

AEnv(n) = AEnv(pred(n)). 

5. n is a junction node. In this case, AEnv(n) is obtained as the union of its 
predecessors '  envoronments: 

AEnv(n) = Upep~(~) AEnv(p). 
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The equation for the entry nodes make sure that not all possible function argu- 
ments are considered but only those that can actually happen during execution. 
This essentially resembles the minimal function graphs approach of [JM86]. 

We use AEnv* to denote the least fixpoint of the system of equations given 
above for AEnv . Since the sets Var and Fun are finite, so is the set Env = 
Var -~ Fun. This implies that (P(Env), _C) is a finite lattice, and therefore that 
AEnv* E P(Env) can be computed using the iterative algorithm shown below. 

A l g o r i t h m  3.1 
fo r  all nodes n do 

if n = r then AEnv(n) = {~x.nil} else AEnv(n) = ~) 
repeat 

fo r  all nodes n except r do in p a r a l l e l  
recompute AEnv(n) from the AEnv value(s) of the predecessor(s) of n 

until there is no change to AEnv(n) for any node n 

The fixpoint captures the aliasing behavior of the program precisely (upto 
the standard assumptions of dataflow analysis): 

L e m m a  3.1 The precise set of aliases at any program point n in a program is 
given by AEnv*(n) .  In other words, for any point n in a program, [n, <v,p>] i# 
3e E AEnv*(n): e(v) = p. �9 

It is straightforward to show that given an ICFG with n nodes, Algorithm 3.1 
has complexity O(n 3. 22nl~ ~) [MD96]. This implies the following result: 

T h e o r e m  3.1 FP-MayAlias E EXPTIME. �9 

3.3 FP-MayAlias is EXPTIME-Hard 

Theorem 3.1 indicates that in the worst case, time that is exponential in the size 
of the input program is sufficient for the FP-MayAlias problem. In this section, 
we show that this analysis problem is hard for deterministic exponential time. 
Our proof is by reduction from a problem of evaluating recursive monotone 
Boolean functions over the lattice/3 -- {0, 1}, the boolean lattice with 0 E_ 1, 
and meet and join operations i3 and U. 

Def ini t ion 3.1 [Recursive monotone boolean function (RMBF)] 
A recursive monotone boolean function (RMBF) is an equation 

F ( x l , . . . , x k )  = expr 

where expr is recursively defined by the following BNF productions: 

exp  : : =  o 11 I x (1 < i < k) I exp, A expr I exp," V exp,  I F (expr , .  . . ,  expr) 

expr induces a monotone and continous functional T1 on [/3 k --+/3].3 The function 
denoted by the equation is then its least fixpoint lip(F) in [/3k __+/3]. | 

3 Here  0,1,  resp. xi are  a b b r e v i a t i o n s  for )~Z.0, ,ki.1,  resp. AN.xi 
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D e f i n i t i o n  3.2 [RMBF Problem] Given a pair (eq, ~ where eq is a RMBF and 
E 6 B k the RMBF problem is to evaluate (Ifp(F))(Z). | 

Theorem 3.2 (Hudak and Young [HY86]) 
The RMBF problem is EXPTIME-complete in the length of the pair (eq, z-). 

Given an instance c 2 = (eq, E) of the RMBF problem, our strategy will be to 
generate a program P~ such that  the results of fnnction pointer alias analysis 
on P~, can be used to solve ~2. (The generation of the corresponding ICFG 
is straightforward). Given any numbering of the syntax tree of eq that  assigns 
distinct numbers to distinct nodes, let the subtree of the syntax tree rooted at 
the node numbered ~ be denoted by Et  and let f~ be the number of the root 
node. Then, the program P~, is defined as follows: 

1. It contains the definitions 

t y p e d e f  PF . . . ;  
PF niI(PF arg) {return ~nil;} 
PF id(PF arg) {return arg;} 

Here, PF is a pointer to a function that returns a result of type PF and takes 
an argument of type PF (see Example 3.1). 

2. Corresponding to each subexpression Et of the body of the recursive equation 
eq, there is a C function fe,  defined as follows: 

(a) I fEe  ~ 1 then fe is: PF fe(PF x l  . . . . .  PF xk) { r e t u r n  &id;} 

(b) I fEe  -~ 0 then f t  is: PF fe(PF x l  . . . . .  PF xk) { r e t u r n  &ni l ;}  

(c) If Ee =-xl then fe is: PF fe(PF xl  . . . . .  PF xk) { r e t u r n  x i ;}  

(d) If Er ~ Eel A Ee~ then fe is: PF fe (PF xl  . . . . .  PF xk) 
{ r e t u r n  f t l  (xl  . . . . .  xk) (fe~ (xl  . . . . .  xk))  ;} 

(e) If Ee = Eel V Ee2 then fe is: PF fe (PF x l  . . . . .  PF xk) 
{ r e t u r n  ( . . . )  ? f e , ( x l  . . . . .  xk) : fe2(x l  . . . .  , x k ) ; }  

(f) I f E t  = F(Eel,.. . ,Etk) then fe is: PF f t (PF  x l  . . . . .  PF xk) 
{ r e t u r n  fe~ (f t ,  (x l  . . . . .  xk) . . . . .  f 4  (xl  . . . . .  xk))  ;} 

3. Let z 3 be obtained from E by mapping 1 to id  and 0 to n i l  componentwise. 
Then, the entry point for P~ is defined by the C function 

void main() { PF result = fer(~z~ ..... ~z~n); } 

The following result is straightforward: 

Lemma 3.2 Given any instance ~9 of RMBF , the ICFG for program P~ can 
be generated in time polynomial in I~1. �9 
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E~ I[Equation corresponding to fe _ 

i ' " !AFunc(fe) '  ie .{{d} 
0 " AFunc({~) = .A%:{nil} .[ " 

'AFunc(fe) = i%.xi 
Ih:FuncCfe) = AFunc(fe,) ; AFunc(fe~) 

Xi 

Ee~ A E h 
E~ V E h 
F(&,..., 

AFunc(fe) = AFunc(fe.,) U A.Func(fz=) 
AFunc'(fe") = AFunc(:fe~)(AFunc(f(; ),. �9 A'Func'(f~)) 

Table  1. Equations for AFunc 

Since aliases in the programs so generated are generated through function 
calls only, variables can point only to n i l  and/or  id, and the aliases of a par- 
ticular incarnation of a variable never changes, we can use a somewhat simpler 
approach for the analysis than that  outlined in Section 3.2. The following the- 
orem establishes the relationship between the alias analysis and the solution of 
the PdVIBF problem. The rest of the section is devoted to its proof. 

T h e o r e m  3.3 ( M a i n  T h e o r e m )  Let 9~ = (eq, z-) be an RMBF problem and 
P~, the corresponding program generated by our reduction, Then, 

(Ifp(F))(Z) = 1 iff [exit(main), <resul t ,  id)] holds in P~ 

In order to prove Theorem 3.3, it suffices to focus on the possible return 
values of functions. This motivates the definition of the mapping AFunc : Fun --4 
"/)(Fun) k --9 7)(Fun) that  models the aliasing behavior of an entire function. 
AFunc(f) maps argument aliases of f into return aliases of f .  AFunc(f) is defined 
by a system of recursive equations; one equation for each function f~ correspond- 
ing to the subexpression Ee, as given in Table 1, with the binary ope ra t i on ,  is 

defined as follows: 

a , b ~  if (a----{~V5=~) then r 
elseif (a = {nil} V b--- {nil}) then {nil} 

else a U b .  

Let s be the lattice (7)({nil, id}) , C). All the functions occnring in the system 
. �9 - k  g], i.e., are monotone functions over of equations defimng AFunc are m[L; 

a finite complete lattice. These equations therefore have a least fixpoint, which 
we denote by AFunc*. Furthermore, we can reduce this system of equations (by 
successive substitution) to a single recursive equation in AFunc(fe~) The syntax 
tree of this equation is isomorphic to that  for eq: only the labels are different, 
but they correspond as follows: a node labelled 0 in the tree for eq corresponds 
to a node A%.{n/1} in the tree for the equation for AFunc(~t~); 1 corresponds to 
A~.{id); xi corresponds to XS.xi; A corresponds to *; V corresponds to U; and a 
node labelled F(."-)  corresponds to one labelled AFunc(fer). The functional 72 
represented by the right hand side of the resulting equation allows us to express 

{~-<;> (-L2) l i > O} where • = X~.~. Since [E ~ --~ s is a finite 
gFunc* ~s 13 
lattice, it follows that  AFunc* = T2 <k> (-1-2) for some finite k. 
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AFunc*(f) is closely related to the set AEnv*(exit(f)): the set of function 
pointers tha t  can be returned by a function f ,  as determined by AFunc*(f), is 
precisely the set of return aliases for the exit node of f as determined by AEnv*: 

Lemma 3.3 (Relationship between AFunc*(f) and AEnv*(exit(f))) 
For any f ,  v l , . . .  ,vk E Fun with []ml 1 F-~ v l , . . .  , fml k ~-~ vk] E AEnv*(init(f)) ,  

k 

AFunc*( f ) ({v l} , . . . ,  {vk}) --- {e(ret) I e e AEnv*(exit(f)) A m e(fmli) = vi}. 
i = l  

In contrast with the minimal function graph approach for AEnv* where we 
considered only arguments of a function that  could actually occur during pro- 
gram execution, AFunc* considers all possible arguments. However, the preceding 
lemma shows that  AFunc* agrees with AEnv* for those arguments that  can occur. 

Next we show that  given a RMBF instance p defining a function F ,  the 
set of aliases AFunc* computed for the corresponding program P~ is essentially 
equivalent to lfp(F), if we associate aliases to n i l  with 0 and aliases to id  with 
1. Define the function h : s ~ B as follows: 

1 i f i d  E x 
h(x) = 0 otherwise 

Let ft : L: n --+ B n be the componentwise extension of h. The connection between 
AFunc* and lfp(F) can now be made precise via the notion of one function being 
faithful to another. Intuitively, g : ~n ..~ ~ is faithful to f : Bn __+ B if g(~) can 
return a pointer to the function id  iff f(Z) evaluates to the truth-value 1: 

D e f i n i t i o n  3.3 A function g E [/2 ~ ~ s is faithful to a function f E [B ~ --+ B], 
wr i t t eng t>  f ,  i f f f o f t = h o g .  | 

T h e o r e m  3.4 AFunc* [> lfp(F). �9 

The Main Theorem is an easy corollary of this result: 

C o r o l l a r y  3.1 FP-MayAlias is EXPTIME-complete. �9 

It is interesting, at this point, to revisit the NP-hardness result for function 
pointer may-alias analysis due to Zhang and Ryder [ZR94]. As shown in Section 
3.1, a relational attributes analysis is necessary for precise function pointer may  
alias analysis. It turns out that  once we have a relational attributes analysis, the 
problem becomes NP-hard even for the intra-procedural case: in other words, 
aliasing effects are enough to give rise to NP-hardness, even if we dispense with 
the additional complications due to interprocedural analysis. This can been seen 
by a reduction from 3-SAT which we illustrate by an example. Given the 3-SAT 
problem (x V y V 5) A (~ V ~ V z) A (x V z2 V 5) we generate the following program: 
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main() { 
if (~ . . )  {x=~id;nx=~nil} else {x=~nil;nx=~id;} 
if (...) {y=~id;ny=&nil} else {y=~nil;ny=~id;} 
if (...) {z=~id;nz=&nil} else {z=&nil;az=~id;} 

i f  ( . . . )  cl=x e l s e  i f  ( . . . )  cl=y e l s e  cl=nz; 
i f  ( . . . )  c2=nx e l s e  i f  ( . . . )  c2=ny e l s e  c2=z; 
if ( . . . )  C3=X else if ( . . . )  c3=ny else c3=nz; 

Here nx, ny, nz represent the negation of the variables x, y,  z and c 1, c2, c3 rep- 
resent the 3 clauses. Each computation path in the first group of i f - s ta tements  
corresponds to a t ruth assignment for the variables of the clause. Each i f -  
s ta tement  in the second group of statements then corresponds to the evalua- 
tion of the truth value of the corresponding clause: the i th clause evaluates to 
true iff there is a computat ion path through the i th i f - s t a tement  that  causes ci 
to be aliased to id. It  follows that  the original 3-SAT problem is satisfiable iff 
c l ,  c2, c3 may be simultaneously aliased to id at exit(main). 

4 Approximation I: Independent Attributes Analysis 

As mentioned in Section 3.1, for pragmatic reasons most program analyses do 
not use the relational at tr ibute method considered in the previous section: in- 
stead, they ignore dependences between the values taken on by different variables 
in order to improve efficiency. The dataflow framework in this case can be de- 
rived from that  of Section 3.2 by systematically modifying equations to ignore 
dependences between variables (see [MD96] for details). Exponential  t ime is still 
sufficient to solve the relaxed problem. Exponential  t ime is also necessary which 
can be proven reusing the reduction from section 3.3. 

Theorem 4.1 Function pointer may-alias analysis is complete for deterministic 
exponential time even when the independent attributes method is used. [] 

This result comes as something of a surprise, since it is usually the case that  
concessions in the precision of analysis are accompanied by improvements in 
the complexity of the analysis algorithms. In practice, program analyses usually 
abandon the relational method in favor of the independent attr ibutes method 
because the latter tend to be simpler and more efficient. This result indicates, 
however, that  in this case the sacrifice in precision (illustrated in Example 3.1) 
does nothing to improve the worst case complexity of this analysis problem. 

5 A p p r o x i m a t i o n  I I :  C o n t e x t - I n s e n s i t i v e  A n a l y s i s  

The analysis discussed in the previous section "merges" environments at a node 
if their formals match, i.e. if they are the result of the same function invoca- 
tion, but  distinguishes between different invocations of the same function. The 
completeness result of the last section suggests that  there can be an exponen- 
tial number of different invocations and hence an exponential number of en- 
vironments at a node, and keeping track of these different invocations can be 
expensive. Our next approximation will be to merge environments even if they 
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come from different invocations. As a result, when propagating the results of a 
function call back to the caller at one point, we also propagate aliases arising 
from invocations from other program points because the analysis of a function 
invocation does not maintain any information about the context from which it 
arose: for this reason, this has also been referred to as "zeroth-order control flow 
analysis" (0-CFA)[Shi91]. 

We can capture the effects of this approximation by changing the equations 
for return and entry nodes (see [MD96] for details). In the resulting framework 
there is at most one environment at any node. Hence the problem has been sim- 
plified considerably. In fact, it is equivalent to a problem discussed by Lakhotia 
[Lak93] who also shows how to solve it polynomial time. 4 

6 Interprocedural  Funct ion  Pointer  Must  Alias Analys i s  

Thus far we have focused on interprocedural function pointer may-alias analysis, 
which is concerned with determining whether there exists a computat ion path 
through the program along which certain aliases can occur. One can also consider 
an analysis that  is concerned with determining whether certain aliases must 
occur along every computation path from the entry point of the program to some 
particular program point. Such an analysis is called a "must alias" analysis: 

D e f i n i t i o n  6.1 [Function Pointer Must Aliasing Problem] Given a node n in 
the ICFG and a variable v the function pointer must aliasing problem is to 
determine if there is a single procedure p so that  at the end of all statically 
executable path from entry(main) to n v points to p. 

We write [n, (v,p)] must indicating that  v must point to p at n. | 

L e m m a  6.1 [n, (v,p)] must cv {q I In, (v,p)] } = {p} �9 

Given the results of the previous sections, the following result is not surprising: 

T h e o r e m  6.1 Function pointer must alias analysis is EXPTIME-complete .  �9 

7 C o n c l u s i o n  

The construction of a interprocedural control flow graph is the first step in any 
in~erprocedural dataflow analysis. In programs involving function pointers, this 
requires the determination of the possible values such pointers can take on. In 
this paper, we consider complexity issues for a variety of approaches to this prob- 
lem. We show that  a relational at tr ibute analysis is necessary if precise results 
are to be obtained; extend earlier results by Zhang and Ryder [ZR94] to show 
that  the problem is complete for deterministic exponential time; and show that  
for precise analyses, Zhang and Ryder's NP-hardness result holds even for intra- 
procedural analyses: that  is, aliasing effects alone give rise to NP-hardness even 
when inter-procedural effects are absent. We then show that  sacrificing precision 
by resorting to an independent at tr ibute analysis does not change the complexity 
result: the problem remains EXPTIME-complete.  However, if context-sensitivity 
is abandoned as well, it is possible to get polynomial-time algorithms. 

4 L a k h o t i a  a s sumes  a s l igh t ly  more  e l abora t e  p a r a m e t e r  pass ing  mechan i sm.  
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