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Abs t rac t .  A labelled transition system is presented for Milner's Try- 
calculus. This system is related to the reduction system for the calculus 
presented by Bellin and Scott. Also a reduction system and a labelled 
transition system for ~r~I-calculus are given and their correspondence is 
studied. This calculus is a subcalculus of Try-calculus in the way San- 
giorgi's ~rI-calculus is a subcalculus of ordinary rr-caJculus. 

Introduct ion 

In the early nineties, Abramsky [Abr94] presented a translation from proofs in 
linear logic into r~-calculus, and outlined the results relating the computational 
behaviour of the proofs under cut-elimination to that of the processes under 
reductions. When Milner heard of Abramsky's  result, he worked out his own 
translation. This led to the development of a synchronous version of re-calculus 
[Mi193], which we call 7rccalculus 1. In [BS94], Bellin and Scott analysed Abram- 
sky's translation in detail for Milner's ~re-calculus. 

In lr~-calculus we encounter enabling, extended scope extrusion, and self com- 
munication. These three features are not present in ordinary 7r-calculus. We 
discuss them in the following three paragraphs. 

In 7r-calculus, the process c~.P specifies that the action c~ has to precede all 
actions in P. For the 7rccaleulus process a P this condition has been weakened 
as follows. The action a only has to precede those actions in P which it enables, 
i.e. those actions a free name of which is bound by ~. For example, in the 
process w(x)gzP, where x # y, z, the action w(x) does not enable 9z. As 
a consequence, the action 9z may precede w(x). Hence, if we put the process 
w(x) 9z P in parallel with y(z) Q, then a communication at y can occur resulting 
in the process w(x) P in parallel with Q. This is modelled by the reduction 

w(x) 9z P I y(z) Q -+ w(x) P I Q. (1) 

Like in Tr-calculus, in re~-calculus we encounter scope extrusions. For example, 
if x :fi y then 

( . .)  ~x P I v(*) Q -~ (~x) (e I Q). (2) 

1 Since we do not want to contrast the calculus with asynchronous 7r-calculus [HT91, 
Bou92] and enablement is one of its key features, we call it rr~-calculus. 
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Usually, only scopes of the form (•x) are extruded. In rrccalculus also extended 
scopes like (uw) w(x) x ( y ) - - a  formal definition of these extended scopes is given 
in Definition 6- -are  extruded. For example, 

(z~w) w(x) x(y) 2y P I z(y) Q --+ (.w) w(x) x(y) ( P I Q) (3) 

provided that  z :fi w, x, y, and w, x do not occur free in Q. 
In rr~-calculus, a process can communicate with itself. In its simplest form, 

self communication amounts to 

~yx(z) P ~ P[y/z]. (4) 

Self communication can also take place in extended scopes. For example, if 
w 5s x, y, z then 

w(x) (.y) y(z)(P[z/4). (5) 

The process communicates with itself at w within the extended scope ( , y )  y(z). 
For 7re-calculus, Bellin and Scott [BS94] presented a reduction system [Mi192]. 

We briefly review this system in Section 2. The rules defining this system are 
simple and natural.  However, the system does not support  reasoning in a purely 
structural way. In Section 3, we give a labelled transition system for the calculus 
following Plotkin's structural approach [Plo81]. The rules defining the labelled 
transition system are non-trivial. In Section 4, the correctness of this system 
is shown by proving the correspondence between the reduction system and the 
labelled transition system. Both the reduction system and the labelled transi- 
tion system are useful (of. [San92, page 26]) and once their relation has been 
established they support each other. 

In [San96], Sangiorgi studied a subcMculus of rr-calculus, called rrI-ealculus, 
which only uses internal mobility. In Section 5, we present a reduction system 
and a labelled transition system for rr~I-calculus, a subcalculus of rr~-caleulus 
with only internal mobility. Furthermore, we investigate the relation between 

the two systems. 
Some related work is discussed in Section 6. In the final section, some con- 

clusions are drawn. We assume that  the reader is familiar with rr-calculus and 
7rI-calculus. For an introduction to ~r-calculus we refer the reader to Milner's 
tutorial [Mil91]. In Sangiorgi's [San96], a-I-calculus is studied in great, detail. 

A c k n o w l e d g e m e n t s .  I am thankful to Prakash Panangaden for numerous dis- 
cussions. These were essential for my understanding of rrccalculus and the devel- 
opment of the labelled transition system. Furthermore, I am grateful to Davide 
Sangiorgi for his constructive comments. My thanks also to Gianluigi Ferrari, 
Vincent van Oostrom, Marco Pistore, and Philip Scott for discussion. 

1 Basic ~-ccalculus 

We assume an infinite set of names. We use x, y, xl,  y,, . . .  

n a m e s .  

to range over these 
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D e f i n i t i o n  1. The set of processes is defined by 

P::=OITrPIPIQ 

where the set of particles is given by 

::= evl  x(y) I ( .x)  _J 

Only the constructs 2y P and x(y)  P are not part of ordinary 1r-calculus. Just a 
small fi'agment of ~rccalculus is presented here. We are confident that  the results 
of the present paper can be extended straightforwardly if we add operators like 
summation and replication. 

This calculus has two binders, the particles x(g)  and (ux). We define the 
bound names and free names of particles and processes in the usual way. 

~:v O {*, v) 
x(y) {v} {*) 
(-*)~ {*} o 

P II bn(P) fn(P) 
0 0 0 

rr P bn (Tr) U bn (P)  fn (Tr) U (fn (P)  \ bn (rr)) 
P I Q bn (P)  U bn (Q) fn (P)  u f n  (Q) 

The names of particles and processes are given by n (~r) = bn (It) U fn (rr) and 
n (P)  = bn (P)  U fn (P).  

2 R e d u c t i o n  s y s t e m  

The reduction system is defined in two steps. First, we identify several processes 
by introducing a structural congruence over processes. Second, we define the 
computation steps of processes in terms of a reduction relation. Our presentation 
is based on [Mi191, Section 2] and [BS94, Section 2]. 

D e f i n i t i o n  2. The structural congruence = is defined as the smallest congruence 
relation over processes satisfying 

1. if P and Q are alpha-convertible then P = Q 
2. P I Q = Q I p  

3. (PIQ) I R ~ P I ( Q I R )  
4. O I P = P  

5. if n (rq) n bn (rr=) = 0 and n (rr2) n bn (Trl) = 0 then 7r1"a-2 P ~ 7r27r 1 p 
6. if bn (rr) N fn (Q) = 0 then rr (P  I Q) -= (rrP)  I Q _d 

For ordinary ~r-calculus 1., 2., 3 ,  and 4., and 5. and 6. restricted to particles of 
the form (ux) are used (see [Mi]91, page 7 and 8]). In [Eng96, page 81], Engelfriet 
considers the following variation of 5. 

if x ~ n (rr) then (ux) .rr .P -- rr . (ux) .P 

D e f i n i t i o n 3 .  The reduction relation ~ is defined as the smallest relation over 
processes satisfying 
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1. x(y) P I ~z Q ~ P[~/y] I Q 
p __~ pi  

2. 
~ P --~ rr P' 

p _+ pI 
3. 

P I Q ~ P ' [ Q  
P - Q  Q ~ Q '  

4. 
Q, ~ pt  

p- -~  P'  _J 

For ordinary rr-calculus one only needs 1.,3., and 4. (see [Mil91, page 8]). 
In [Bre97] we give proofs of the reductions presented in the introduction. We 

conclude this section with some properties of the structural congruence. These 
will be exploited when we link the reduction system and the labelled transition 
system. 

P r o p o s i t i o n 4 .  I f  P =_ Q then fn (P)  - - fn  (Q). 

Proof. Induction on the proof of P ~_ Q. [] 

P r o p o s i t i o n 5 .  I f  P ~ Q then P[%] -- Q[~/y]. 

Proof. Induction on the proof of P ~ Q. [] 

In Proposition 7 we show that  5. and 6. of Definition 2 also hold for scopes. 

D e f i n i t i o n 6 .  The set of connected input sequences is given by 

4 ::-- x(y) lx (z ) '~  

The set, of scopes is defined by 

x x ~ ::= *y I ( .x)  I ( .v) ,~ 

A connected input sequence L ~ is of the form Xl(X2)x2(x3).. .  x~- l ( x~) .  These 
are related to Sangiorgi's dependency chains [San96, Definition 6.5]. In ordinary 
7r-calculus one usually only considers scopes of the form (vx). The role of these 
extended scopes will be discussed in the next section. The bound and free names 
of scopes are defined straightforwardly. 

U ' II bn (t) [fn(t)l 

F~(y) I {y) I{ i )  l 

I ~ II bn (o') ] fn (~)~ 

4 bn (,~)~ rn (,~) 

I(>v),~ {v} o bn (,~) 0 

P r o p o s i t i o n  7. 

1. I f  n (c~) r bn (Tr) = 0 and n(zv) f3 bn(cr) = 0 then ~r r P ~_ 7r r p .  
2. /fbn(o-) Afn(Q)  = 0 then c~(P I Q) ~ (c~P) ] Q. 

Proof. Structural induction on #. 
[] 
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3 L a b e l l e d  t r a n s i t i o n  s y s t e m  

The labelled transition system presented in this section is new. Its presentation 
is based on [MPW92, page 46] and [ACS96, page 150]. The system uses the late 
scheme of name instantiation. It can be adapted straightforwardly to deal with 
the early scheme (cf. [MPW91, page 49 and 50]). 

The labelled transition system not only describes the computation steps 
of processes but also their communications possibilities. This information is 
recorded by means of actions. 

D e f i n i t i o n &  The set of ac t ions  is given by 

where ~ ~ bn (r J 

In ordinary 7r-calculus the action (uy) 2y is usually written as 5:(y). The actions 
% 2ry, with % r (uy), one does not encounter in the usual labelled transition 
system. These extended scopes are used to model extended scope extrusions (cf. 
(3) in the introduction). 

The bound and free names of actions are defined as follows. 

I ~  It bn(") Ifn(~)l 
] ~y 0 {x,y} 
~(v) {.v} {~} 

r 0 

In the next. definition the transition relation is presented. We have omitted the 
symmetric versions of the rules 9., 10., and 11. 

Definit ion9.  The t rans i t i on  re lat ion ~ is defined as the smallest labelled re- 
lation over processes satisfying 

c (  p,  ~ Q, 

p - - - , Q  

~ y  

2. 2 y P - - - . p  
* 0 )  

a. , ( v )  P -  , P 
Ol 

p ___~ p ,  
4. Ol 

rr P . ) rr P '  

a y  

P 
5. ,,(y) ~y 

, , ( v )  P - 

P and P ' ,  and Q and Q' are alpha-convertible 

n (c 0 A bn (~r) = {~ and n (rr) C~ bn (oe) = 

p i  p .. p i  
y C z  ~(y ) ~ " ~ 

y 
x(y) P , p '  

y r  
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. 

. 

. 

. 

10. 

11. 

~y 
p ~ p /  

(uy) zy 
O'y) P ' P'  

~(,) 
p ~ pi  

T 

~2y P ~ P'[y/~] 
g Z  

P ) p '  
T 

~(v) e ~ P'[z/4 
Ol 

p____+pI 

P ~ p '  
( y )  % ~w 

( -y )  P , p '  

p ~ pI 

~(v)  P ~ cr~ (F'Hy])  

Ot 

P I Q  ) P ' [ Q  

P , p ,  Q ~ Q, 

bn (od n fn (Q) = o 

T 

P IQ ~ P'[y/z]IQ' 

P bn (cry) N fn (P) = 0 
P ] Q ~ ~ y ( P ' ]  Q') J 

Some remarks:  

- The  rules 1., 4. with ~r of  the form (ux),  the first par t  of  6., 9 ,  10., and 11. 
with cry of  the form (uy) are as usual. 

- The  axioms 2. and 3. are as expected. 
The  rule 4. models  enabling and corresponds to Definition 2.5. 
The  rules 5. and 6. describe scope opening (cf. [MPW92,  page 48]). Like 
in ord inary  ~r-calculus, the side condit ion y r z prevents z f rom becoming  
bound  (of. Definition 8). The  rule 11. handles scope closing. Note tha t  the 
scope cry reappears  in the conclusion. The  side condit ion bn (cry)nfn (P )  = 0 
prevents us f rom deriving the incorrect t ransi t ion 

, ( y ) 2 y 0  I ( u z ) z ( y ) ~ y 0  - L  ( ~ z ) z ( y ) ( 2 y O  0). 

This  t ransi t ion is incorrect since the free name  z in x(y) 2y 0 is only acciden- 
tal ly the same as the bound  name z in (t,z) z(y) 2y O. In [Bre97] the interplay 
between scope opening and scope closing is i l lustrated. 

- The  rules 7. and 8. describe self communica t ion .  Because of  the side condit ion 
y ~ x, we cannot  prove the obviously incorrect t ransi t ion 

T 

x(y) 9z 0 --'-* O. 

This side condit ion ensures tha t  the free name  x and the bound  name  y, 
which can be a lpha-conver ted to  x, are not  identified. The  side condit ion 

y 7~ z rules out  the t ransi t ion 

T 

x(y) ~,y &y 0 ---+ 2w O. 
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This transition is incorrect because the bound name y, which can be alpha- 
converted to w, becomes free (cf. Proposition 10). The side condition 
y ~ n (~r~ ~z) prevents us from proving the transition 

T 

x(y) (.y) y(z) ez 0 ( .y) o. 

This transition is incorrect since the name y in 9w is bound by (uy) in the 
process x ( y ) ( u y ) y ( z ) 2 z g w  0 whereas the corresponding z in 2w is bound 
by y(z) in (uy) y(z) 2w O. 

- The following variation of 1. (cf. [San92, page 30]) suffices to prove the results 
of Section 4. 

cr 
p,  - -~ Q 

ce 

P - - + Q  
P and P '  are alpha-convertible 

We have chosen for 1. since it is convenient for proving Proposition 11. 

In [Bre97] we give proofs of the r-transitions corresponding to the reductions 
presented in the introduction. Like in the previous section, we conclude with 
some properties which are used when we relate the two systems. 

P r o p o s i t i o n  10. [ f P  - -~  P'  then fn (P ' )  C fn (P) Ubn (c~) and fn (a) _C fn (P).  

Proof. Induction on the proof of P ) P~. [] 

P r o p o s i t i o n l l .  I f  there exists a proof of P 

a Q and a' Q' are alpha-convertible 2 then P 

c~ 

) Q not containing bn (cd) and 
! 

ol 
Q I o  

Pro@ Induction on the depth of the proof of P ~ Q. [] 

4 C o r r e s p o n d e n c e  b e t w e e n  t h e  s y s t e m s  

The reduction system of Section 2 and the labelled transition system of Section 3 
are related in this section. More precisely, reductions and r-transit ions are linked. 
In Theorem 12.4 it is shown that  every r- transit ion is matched by a reduction. 
Conversely, for every reduction there exists a corresponding r-transit ion, as is 
proved in Theorem 14.4. 

T h e o r e m  12. 
i ' y  

J. I f  P ) P '  then P - ~  2y PI. 
"~( y ) 

2. I f  P ~ p ,  then P = x(y) P' .  
ay  ~ y  

3. I f  P > p t  lhen P =_ ~ry ~2y Pt. 

2 r Q and r (2' are alpha-cm~vertible if Q and Q' are. 
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r pI pt .  
~. I f  P - - +  then P---~ 

Proof. Induction on the proofs exploiting Proposition 7. [] 

The proof of Theorem 14 relies on the following lemma. This lemma is the main 
technical result of the paper. 

L e m m a 1 3 .  Let P =_ Q. 

O/ O~ 

1. I f  P ~ P'  then Q ) Q' for some Q~ such that P~ - Q'. 
c~ c~ 

2. I f  Q ~ Q~ then P ~ pi  for some p i  such that p i  = QI 

o~ c~ 

Proof. We prove this lemma by induction on the proofs of P ~ P~, Q ~ Q~, 

and P -= Q. We only consider proofs of P ~ P~ and Q ----* Q~ of minimal 
complexity. The complexity of a proof is determined by those nodes in the proof 
where the rule 1. is applied. The more this rule is applied towards the root. of 
the proof, the smaller its complexity is. In the proof we exploit Proposition 4, 5, 
10, and 11. [] 

We conclude this section with 

T h e o r e m  14. 

~v p ,  p// pii p/ .  
1. f f  P -  2y P'  then P ) for some such that =~ 

2. I f  P ==- x(y) P '  then P x(y) P "  for some P "  such that P "  - P ' .  ) 

c y "2y 

3. I f  P =- gy 2y Pt then P ~ ptt for  some P "  such that P~ -~ P~. 
p ,  p ,  p ,  p i  4. I f  P ~ pi  the,, P ---+ for some such that =- 

Proof. From Lemma 13 we conclude 1., 2., and 3. The fourth case we prove by 

induction on the proof of P -+ P ' .  [] 

5 B a s i c  ~ ' ~ I - c a l c u l u s  

In this section we restrict our attention to a subcalculus of ~-calculus which only 
gives rise to internal mobility (see [San96]) called ~I-calculus. The reduction 
system of Section 2 is easily adapted. Like for ordinary ~-cMculus, the labelled 
transition system for the subcalculus is much simpler than the one for the full 
calculus given in Section 3. The relation between the two systems is similar to 

the one presented in Section 4. 
The subcalculus is obtained by restricting the set of particles. We do not 

consider free outputs ~y but only bound ones (uy) ~y, from now on abbreviated 

to x(y) 

D e f i n i t i o n 1 5 .  The set of particles is given by 
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The particle 2(y) is a binder with bn (2(y)) = {y} and fn (2(y)) = {x}. The 
structural  congruence = is defined by all the rules of Definition 2 but  the rule 5. 
The latter rule can be derived from the other ones (see [Bre97]). The reduction 
relation --* is obtained from Definition 3 by replacing the axiom 1. by 

1. x(.v) P I ~(v) Q ~ (-v) (P I Q) 

Note that  we only encounter alphwconversion and no substitution in the reduc- 
tion system for 7r~I-calculus. 

In the labelled transition system we do not need the extended scopes of 
Definition 6 we used in Section 3. 

D e f i n i t i o n  16. The set of actions is given by 

~-~ : : =  ~(y) I~(y) I~- _1 

The transition relation is presented next.  We have omit ted the symmetr ic  ver- 
sions of the rules 7. and 8. 

D e f i n i t i o n l 7 .  The transit ion relation --+ is defined as the smallest labelled 
relation over processes satisfying 

1. 
0r 

p ----~ 

Q f 
P and pt ,  and Q and Q'  are alpha-convertible 

Q 

2. ~(y) P ~(Y)> p 

3. x (y )  P ~(Y)) p 
O~ 

p----~ 
4. 

O~ 

~r P ~ ~r P '  
~(~) 

5. p ~ p i  x # y  
2(y)  P ~ ( , y )  (p'[y/,]) 

e(*) 

6. p _  , p /  x # y  
x (v )  P ~ (vy )  (Priy/z]) 

p - - - ~ p ,  
7. ,~ bn (a)  n fn (Q) = O 

PIQ.---~p'IQ 
8. P i p '  Q ~ Q, 

T 

P I Q ~ (.y) (p'  I Q') 

pi  
n (a) n bn (7 0 = 0 and n (7 0 n bn (o 0 = 0 

/ 

Some remarks: 

- The rules 1., 4 ,  and 7., and the axiom 3. correspond to the rules 1., 4., and 
9., and the axiom 3. of Definition 9. 
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- The axiom 2. and the rules 5., 6., and 8. are the obvious modifications of the 
axiom 2., and the rules 7., 8., and 10. of Definition 9. 

- Note that  we do use substitution in the rules 5. and 6. In the transition 
corresponding to the reduction 

~(y) x(z) z(w) ~(w) 0 -+ (~Y) Y(W) Y(~) 0 (6) 

(a proof of this reduction is given in [Bre97]) z in z ( w )  and y in y(w) are 
identified: 

T 

. ( z )  9(,0) 0 --+ 0. 

This identification cannot be brought about by alpha-conversion of the pro- 
cess x(v) x(z) z(w) ~(w) 0. 

We conclude this section with a correspondence theorem. 

T h e o r e m  18. 
~(v) 

J. I f  P ~ P '  then P = 2,(y) p i .  
~(v) 

2. I f  P ~ P '  then P = x(y)  P ' .  
T 

3. I f  P -----+ pI  then P -+ pi .  

~,. I f  P = ~(y) P '  then P ) P "  for  some P "  such that p , i  =_ p , .  

5. I f  P -  x (y )  P ~ then P ) P "  for  some P "  such that P "  =- P '. 
r p .  p .  p .  p i .  

5. I f  P --+ p i  then P ~ for  some such that =- 

Proof. Similar to the proof of Theorem 12 and 14. [] 

6 R e l a t e d  w o r k  

The only three other papers which discuss the relation between a reduction 
system and a labelled transition system we are aware of are Ferrari's [Fer96], 
Milner's [Mi192], and Honda and Yoshida's [HY93]. Ferrari considers a CCS- 
like calculus. Since the calculus contains no binders, the problem of relating a 
reduction system and a labelled transition system becomes much simpler. Milner, 
and Honda and Yoshida focus on rr-calculus. They both use the rule 

p ,  --~ Q, p ,  Q, 
1.' p = and Q _= 

p - - - + Q  

instead of the rule 1. of Definition 9. In their setting bemma 13, the main tech- 
nical result, of this paper, becomes trivial. Their rule is less structural than ours. 
Furthermore, the rule 1. can easily be distributed over the other axioms and 
rules (compare the labelled transition system of Milner et al. [MPW92, page 46] 
and the one of Sangiorgi [San92, page 30]). This is not the case for the other 

rule. 
In the conclusion of [MP95], Montanari and Pistore consider relaxing the 

sequencing power of prefixing. Instead of a reduction system or a labelled tran- 
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sit ion system, they use a graph rewriting system. In their setting, enablement 
can easily be accommodated (as long as one does not consider replication). 

C o n c l u s i o n  

From our case study we can conclude that  the problem of reconstructing a la- 
belled transition system from a reduction system is far from easy. Although the 
reduction system for 7rccalculus is rather close to the one for ordinary ~r-calculus, 
we encounter in the labelled transition system for cry-calculus extended scopes 
and various new rules. 

In [Mi193, page 37], Milner first presented ~rccalculus with enablement as 
its new feature. The fact that  ~r~-calculus has self communication was already 
observed by Bellin and Scott [BS94, page 15]. But the presence of extended scope 
extrusion in 7rccalculus--although maybe not very surprising--only occurred to 
us when we developed the labelled transition system. 

The labelled transition system for rccalculus  might be the basis for the 
development of a (possibly fully abstract with respect to some form of bisimula- 
tion) denotational semantics for the calculus. Here we can make fruitful use of 
the work of Fiore, Moggi, and Sangiorgi [FMS96], Hennessy [Hen96], and Stark 
[Sta96]. 

The labelled transition system for ~r~I-calculus, the subcalculus with only 
internal mobility, is much simpler than the one for the full calculus. This provides 
another indication that  external mobility is responsible for much of the semantic 
complications (of. [San96]). 

Although we only consider internal mobility in ~r~I-calculus, we do use substi- 
tution in the labelled transition system. In 7rI-calculus only alpha-conversion is 
needed (see [San96, Section 2.2]). This suggests that  the absence of substitution 
in 7rI-calculus is just a property of the calculus, rather than a consequence of its 
restriction to internal mobility. Whether the substitutions used in Ir~I-calculus 
are of a special kind (the substituted name is always bound by a generated 
restriction) needs further study. 

Another topic reserved for later t reatment  is the study of bisimulation. The 
definitions of barbed, early, ground, late, and open bisimulation for 7r-calculus 
can be adapted straightforwardly to our setting (see [Bre97]). We are interested 
in the connection with bisimulation for action structures (for ~r~-calculus) given 
by Milner in [Mi193]. 
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