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A b s t r a c t .  For a hierarchy of properties of term rewriting systems, re- 
lated to termination, we prove relative undecidability even in the case of 
single rewrite rules: for implications X ~ Y in the hierarchy the property 
X is uudecidable for rewrite rules satisfying Y. 

1 I n t r o d u c t i o n  

A fundamental problem in the theory of term rewriting is the detection of termi- 
nation: for a fixed system of rewrite rules, determine whether there are infinite 
rewrite sequences. Besides termination a number of related properties are of 
interest, linearly ordered by implication: 

polynomial termination ~ w-termination ~ total termination 

simple termination ~ non-self-embeddingness ~ termination 

non-loopingness ~ acyclicity 

We call this the termination hierarchy. Apart from polynomial termination, all 
properties in the termination hierarchy are known to be undecidable ([11, 15, 
! 3, 18, 8, 9]). In [9] we showed the stronger result of relative undecidability: for 
all implications X ~ Y in the termination hierarchy except one--polynomial  
termination ~ w-termination--the property X is undecidable for term rewriting 
systems (TRSs for short) satisfying property Y. 

In this paper we address the question of relativ@ undecidability for TRSs 
consisting of a single rewrite rule. We show that  for all implications X ~ Y in 
the termination hierarchy except two--polynomial  termination ~ w-termination 
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total termination--the property X is undecidable for one-rule TRSs satisfying 
property Y. 

Dauchet [1] was the first to prove undecidability of termination for one- 
rule TRSs, by means of a reduction to the uniform halting problem for Turing 
machines. Middeldorp and Gramlich [13] reduced the undecidability of simple 
termination, non-self-embeddingness, and non-loopingness for one-rule TRSs to 
the uniform halting problem for linear bounded automata. Lescanne [12] showed 
that Dauchet's result can also be obtained by a reduction to Post's Correspon- 
dence Problem (PCP). The results presented in this paper are stronger because 
(1) we obtain the same undecidability results for (much) smaller classes of one- 
rule TRSs, and (2) we show the undecidability of total termination for one-rule 
(simply terminating) TRSs. The latter solves problem 87 in [4] and rectifies a 
conjecture in [18]. 

The relative undecidability results in [9] are obtained by using PCP in the 
following way: for the lower five implications X ~ Y in the termination hierarchy 
and for all PCP instances P a TRS is constructed that always satisfies Y and 
satisfies X if and only if P admits no solution. In this paper we present a more 
uniform approach. First ,we construct a TRS L/(P, Q) parameterized by a PCP 
instance P and a TRS Q. The TRS U(P, Q) has the following properties: (1) 
the left-hand sides of its rewrite rules'are the same, (2) if P admits no solution 
then U(P, Q) is totally terminating, and (3) if P admits a solution then L/(P, Q) 
simulates Q. Because of property (1) every U(P, Q) can be compressed into a 
one-rule TRS S(P, Q) without affecting the termination behaviour. In particular, 
if P admits no solution then S(P, Q) is totally terminating. Finally, for the lower 
five implications X ~ Y in the termination hierarchy we define a suitable TRS Q 
such that S(P, Q) satisfies Y if and only if P admits no solution. The advantage 
of this approach is that the complicated part--the construction and properties 
of the TRS U(P, Q)--is independent of the involved level in the termination 

hierarchy. 
The remainder of this paper is organized as follows. In th• next section we 

briefly recall the definitions of the properties in the termination hierarchy and 
PCP. In Section 3 we define the TRS L/(P, Q) and show that it simulates Q 
whenever P admits a solution. In Section 4 we define the one-rule TRS $(P, Q) 
and show that it inherits the termination behaviour from L/(P, Q). In Section 5 
we instantiate S(P, Q) by suitable TRSs Q in order to conclude the desired 
relative undecidability results. For reasons of space, the difficult proof of total 
termination of b/(P, Q) in the case that P admits no solution has been omitted. 
It can be found in the full version of this paper [10]. 

2 Preliminaries 

For preliminaries on rewriting and termination we refer to [2, 3]. Let ~" be a 
signature containing at least one constant. We write T(~) for the set of ground 
terms over ~; for a set X of variable symbols we write T(.~, X) for the set of 
open terms. A (strict partial) order > on T(J ~) is called monotonic if for all 
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f E iT and t ,u  E T(IT, X) with t > u we have f ( . . .  , t , . . . )  > f ( . . .  , u , . . . ) .  A 
TRS T~ over ~" and an order > on T(IT) are called compatible if t > u for all 
rewrite steps t -+n u. For compatibility with a monotonic order it suffices to 
check that  la > ra for all rules l -+ r in T~ and all ground substitutions a. It 
is well-known that  a TRS is terminating if and only if it is compatible with a 
monotonic well-founded order. An iT-algebra consists of a set A and for every 
f E iT a function fA : A "~ -+ A, where n is the axity of f .  A monotone iT-algebra 
(A, >) is an iT-algebra A for which the underlying set is provided with an order 
> such that  every algebra operation is monotonic in all of its arguments. More 
precisely, for all f E iT and a,b E A with a > b we have fA( . . .  , a , . . . )  > 
fA( . . .  ; b , . . . ) .  A monotone iT-algebra (A, >) is called well-founded if > is a 
well-founded order. Every monotone iT-algebra (A, >) induces an order >A on 
the set of terms T(IT, X) as follows: t >A u if and only if [a](t) > [a](u) for 
all assignments a :  k' --+ A. Here [a] denotes the homomorphic extension of a,  
i.e., [a](x) = a(x) and [a](f( t l , . . .  ,tn)) = fA([a](tl) , . . .  ,[a](tn) ) for x e X, 
f E iT, and t l , . . .  , tn E T(IT, X). A TRS 7r and a monotone algebra (A,>)  are 
called compatible if Tr and >A axe compatible. It is well-known that  a TRS is 
terminating if and only if it is compatible with a well-founded monotone algebra. 
The set of rewrite rules f ( x l , . . .  ,xn) --> x~ for all f E iT and all i = 1 , . . .  ,n,  
where n > 1 is the axity of f ,  is denoted by grab(iT), or simply by grab when the 
signature iT can be inferred from the context. 

The properties in the hierarchy are defined as follows. A TRS is called ter- 
minating if it does not allow an infinite reduction. A TRS T~ over a signature 
iT is called simply terminating if Tr U gmb(iT) is terminating, or, equivalently, 
Tr U grab(iT) has no cycle. A well-known sufficient condition for simple termina- 
tion of terminating TRSs is length-preservingness, which means that  Ilcr I = Iral 
for all rules 1 --+ r and all ground substitutions a. Here Itl denotes the number 
of function symbols in t. A TRS over a signature iT is called totally termi- 
nating if it is compatible with a monotonic well-founded total order on T(iT), 
or, equivalently, it is compatible with >A for some well-founded monotone iT- 
algebra (A, >) in which the order > is total. A TRS over a signature iT is called 
w-terminating if it is compatible with >A for some well-founded monotone iT- 
algebra (A, >) in which A = N and > is the usual order on N. A TRS over a 
signature iT is called polynomiaUy terminating if it is compatible with >A for 
some well-founded monotone iT-algebra (A, >) in which A = N, > is the usual 
order on N and for which all functions fA are polynomials. A TRS 7r is called 
looping if it admits a reduction t --++ C[ta] for some term t, some context C and 
some substitution a. A TRS Tr is called cyclic if it admits a reduction t --++ t for 
some term t. A TRS 7~ over a signature iT is called self-embedding if it admits a 
reduction t --->+ u -+~mb(~:) t for some terms t, u. Recent investigations of these 
notions include [5, 7, 8, 14, 19]. 

For the proofs we use Post 's Correspondence Problem (PCP),  which can be 
described as follows: 

given a finite alphabet F and a finite set P C F + • F +, is there some 
natural number n > 0 and (c~,/~i) E P for i = 1 , . . .  ,n  such that  
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This problem is known to be undecidable even in the case of a two-letter alphabet 
([16]). The set P is called an instance of PCP, the string a l a 2 " "  aN = ~1132"" ~ ,  
a solution for P.  We use a fixed two-letter alphabet F = {0, 1}. 

We encode PCP instances P and, for each layer X ~ Y of the hierarchy, a 
characteristic TRS Q into a one-rule TRS S(P,  Q) such that  S(P,  Q) is in Y for 
all P,  and in X if and only if P has no solution. Thus we reduce PCP to the 
relative decision problem in each layer. 

3 T h e  E n c o d i n g  

We are now going to encode a PCP instance P and a TRS Q with the property 
that  all left-hand sides coincide in a TRS U(P, Q) with the same property. 

The signature ~-u we add for our TRSs consists of constants 0, 1, $, and s, 
binary symbols cons and cons, and a symbol A the arity of which will depend 
on the size of the PCP instance P. 

The binary symbols cons and cons as well as the constant s build lists of 
terms. Usually we drop the cons and cons symbols, and write only the appended 
terms and barred terms, respectively. Formally, we define the notation ((t) for 
any term t and mixed sequence ( E {t, t [  t E T($' ,  X)}* of barred and unbarred 
terms as follows: 

{(t) = t i f { = c ,  

~(t) = cons ( t ' , ( ' ( t ) )  if { = t '{',  

~(t) = cons(#, r if r = ~ ' .  

Moreover, with any sequence a = tit2 �9 .. tn of unbarred terms we associate the 
sequence ~ = t , . . .  t2 tl  of barred terms. Hence 

a(t)  = cons(tl, cons(t2,. . ,  cons(t, ,  t ) . . .  ), 

~(t) = cons(t , ,c--~(t ,~-l , . . -c--6V/(h,t) . . . )-  

In order to avoid confusion, we will use the latter abbreviation only when 
the appended terms are in the set {0, 1, $} U X. For instance, 005(6) stands 
for cons(0, c-b-fig(0), cons(S, s))), 5yl(~) for c-5-ffg(x, cons(y, cons(l, r 0-10(Z) for 
cons(l, c--6-~(0, cons(0, z))), and z(x)  for cons(z, x). Note that  0-10(z) differs from 

10(z) = c-b-Kg(0, c--6fi-g(1, cons(0, z))). 
Before we give the technical definition of Lt(P, Q) let us explain the intuition 

behind its architecture. The system b/(-P, Q) is a modification of the following 

system from [18]: 

( F ( x , - d ( y ) , x , ~ ( y ) )  -+ F ( a ( x ) , y , a ( x ) , y )  for all a e F, 
S ( P )  t F ( a ( x ) , y , ~ ( z ) , w )  --> F(x , -5 (y ) , z ,~ (w) )  for all (a,13) C P. 

The system 8(P)  admits a reduction 

_F(7(x), y, 7(x), Y) --++ F(V(x), Y,'7(x)' Y) (1) 
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if and only if 7 is a solution of the PCP P.  If P has no solution then ,%(P) is to- 
tally terminating. The use of barred symbols in the second and fourth argument 
is essential for total termination. 

It is now straightforward to change the cyclic behaviour (1) to any desired 
behaviour that  can be expressed by some rewrite system Q. To this end an 
argument is added to F.  This last argument is left unchanged, except for the 
step completing the cycle in which it is rewritten by a rule in Q. 

To avoid unintended rewrite steps, we refine control: we distinguish two 
states, exhibited by function symbols G and H,  which enable only steps of the 
first and second shape, respectively, in S (P) .  A change from state G to state H 
is possible only if the second and the fourth argument equals ~. Vice versa, a 
change of state from H to G requires that  the first and third fourth argument 
equals s. This gives the rewrite system consisting of the rule 

G(x,~,z,~,LHS) ~ H(x,~,z,~,LHS), 

the rules 

(2) 

H(a(x ) ,  y,/7(z), w, LHS) --> H(x,-~(y), z, ~(w), LHS) 

for each (a,/7) E P ,  and the rules 

(3) 

H(s,  ~(y), s, ~(w), LHS) ---> G(a(~), y, a(s), w, RHSj) (4) 

G(x,-d(y), z, ~(w), LHS) --> G(a(x), y, a(z), w, LHS) (5) 

for each a C F and each rule (LHS --+ RHSj) E Q. 
In view of the one-rule construction, finally, there is the need to have equal 

left-hand sides. For this reason Q has to have this property, too. The two states 
G and H in the previous definition are encoded by argument pairs (0, 1) and 
(1, 0), respectively, hence one function symbol, A, can replace both G and H.  
Finally, the end of a sequence may not be s because sequences of various lengths 
have to match. Instead the end is marked by a special symbol, $. 

In this way, one gets four left-hand sides which can be regarded as instances 
of one pattern.  The match to the pattern can be delayed by the same trick as 
in Lescanne [12]: One extends the argument vector (to the left) by a vector of 
terms to match, and exchanges variables with the terms they should match. 

D e f i n i t i o n  1. Let P = { ( o L 1 , / 7 1 ) , . - .  , ( a n , / T n ) }  ~ F + x F + be a P CP  instance 5 
and let # = max{la h 1,81 I (a,/7) e P}.  Let Q = {LHS ---> RHSI, . . . ,LHS -->. 
RHSm} be a TRS over a signature 5~Q disjoint from ~-u. We assign to P and Q a 
TRS U(P, Q) over the signature ~u  U ~Q where A has arity 2n + 15. It consists 
of the rules l -+ ri, 1 < i < n + 2m + 3, where I and ri are defined as follows: 

I = A(0, 1, 0, 1, $, o~ 1 (~), . . . , o~ n (~), 0, 1, $,/71 (~), �9 (~), 

~t, V, Wl. . .  Wtt (W), xT1 (x), Yl . . .  Yt~ (Y), z-T(z), LHS), 

5 Presenting PCP instances as ordered lists instead of sets entails no loss of generality. 
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rl = A(u, v, O, 1, x l ,  a l ( e ) , . . . ,  an(C), O, 1, Zl, f l ( e ) , . . . ,  fn(e) ,  

1, O, Wl . . . w , (w) ,  $(x), Yl . . . Y~(Y), $(z),  LHS), 

(2) 

r~+~ = A(~, ~, O, 1, $, ~(~) , . . . ,  ~_~ (c), w ~ . . .  wl~ , t(~), ~ + ~  ( c ) , . . . ,  ~n (~), 
0, 1, $, f l ( c ) , . . .  , f l i- l(e) ,  y l .  �9 �9 yl#d (e), fli+l (e), �9 �9 �9 fn(e) ,  (3) 

1, 0, Wl~ , ]+1 �9 �9 �9 w~ (w), ~-7 ~-T(x), YI#~ I+1-'" Y~ (Y), ti(2T(z), kHS) 

for all 1 < i < n, 

rn+l+j = A(v, u, xl ,  1, wl ,  al ( e ) , . . . ,  an (e), zl, 1, Yl,/31 ( e ) , . . . ,  fin (e), (4) 

0, 1, 05w2. . .  w, (w) ,  x, 05y2. . .  y~(y), z, RHSj) 

rn+x+m+j = A(v, u, O, Xl, Wl, al ( r  an(c),  O, Zl, Yl, f l  (E) , . . . ,  fn(e) ,  

0, 1, 15W2...W~(W),X, 15y2. . .y~(y) ,z ,  RHSj) 

for all 1 < j < m, and finally 

rn+2,~+2 = A(u ,v ,  x l , l , $ , a i ( e ) , . . . , a n ( e ) , z x , l , $ , f l ( e ) , . . . ,  fn(e) ,  (5) 

0, 1, 0 w , . . .  w ,  (w), x, 0 y l . . .  y ,  (y), z, LHS) 
rn+2m+3 = A(u, v, 0, xl,  $, a l  (e), �9 �9 an(e), 0, zl, $, f l  ( e ) , . . . ,  fn(e) ,  

0, 1, lWl . . ,  w# (w), x, l y l . . ,  y~(y), z, LHS). 

In the following we denote 0, 1, 0, 1, $ , a l ( e ) , . . . ,  an(e), 0, 1, $, f l ( e ) , . . . ,  fin(e), 
i.e., the first 2n + 8 arguments of l, by V. 

We are now going to show that in case P has a solution, reductions in Q 
mirror reductions in IX(P, Q). That is, if P is a PCP instance that  has a solution 
then we get the following particular form of reddction in IX(P, Q). 

P r o p o s i t i o n  2. I f  the PCP instance P has a solution, "y' a, then for every rewrite 
rule LHS ~ RHS in Q we have 

A(V, W, LHS) --+u(p,Q)+ A(V, W, RHS) 

where W denotes the sequence O, 1, a$w2 . . . w , ( w ) ,  $'y' (x), a$y2 . . . y~(y), $'y'(z). 

Proof. Let "y = a l  . . .  an = f l  . . .  fin = "y'a be a solution of the PCP instance 
P.  Let LHS --+ RHS be a rule in Q and abbreviate the terms $w2. . .w~(w)  
and $y2. . .  Y~(Y) by w' and y', respectively. We have the following reduction in 

IX(P, Q): 
A(V, O, 1, aw', $'y'(x), ay ' , -~ ' (z ) ,  LHS) 

- ~ )  A(V, O, 1, ~w', $(x), ~/y',$(z), LHS) 

"->(2) A(V, 1, 0,'yw',$(x),'Yy', $(z), LHS) 

' " X -->(3) A(V, I, O, a2. . .  anw,  Sa t ( ) ,  f12-., tiny', $f : (z) ,  LHS) 

-+~3) A(V, 1, 0, w', $--~(x), y', $-~(z), LHS) 

-->(4) A(V, O, 1, aw', $'y'(x), ay',$-~7~'(z), RHS). 
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First, using rules (5), 7' in the 2n + 12-th (2n + 14-th) argument is shifted to 
the 2n + l l - t h  (2n + 13-th, resp.) argument character by character. Note that  
$7'(x) = 7' $(x). Next by rule (2), there is a change of state from 0, 1 to 1, 0. 
Then, since 7 is a solution of P,  it can be shifted back by using rules (3). Finally, 
with rule (4), the state is changed back to 0, 1. [] 

Conversely, a reduction in U(P, Q) gives rise either to an underlying reduction 
in Q or to a reduction in 5/(P, Q) without the 2m rules (4). We will denote the 
latter system by U(P, 0). 

P r o p o s i t i o n 3 .  If W and t contain no A symbols then A(V,W,t)  --+u(p,Q) 
A(V, W',  t') implies t --~Q t' or t = t' and A(V, W, t) -~u(P,O) A(V, W',  t). 

Proof. Since there is only one A symbol in A(V, W, t), the reduction must take 
place at the root position. If a rule (4) has been applied, then t --+Q t ~. Otherwise, 
A(V, W, t) --+u(P,O) A(V, W', t'). Obviously, this implies t = t' by the form of the 
rules in U(P, 0). [] 

P r o p o s i t i o n  4. The TRS LI(P, O) is simply terminating, for any P. 

Proof. Since U(P, O) is length-preserving, it is sufficient to show termination. We 
show termination by semantic labelling [20]. Let the model be {0, 1}, and let 1 
be interpreted by 1, and every other symbol by constant 0. Label the symbol A 
by 2x2 + x2n+lo where xi denotes the value of A's i-th argument. In the labelled 
system, U(P, Q3) obtained this way the symbol A carries the label 2 + v at the 
left hand side, and the labels 2v, 2u, 2v + 1 at the right hand sides r l ,  ri+l,  and 
r,~+2m+2, respectively. Taking into account that  u, v C {0, 1} one finds that  the 
label decreases for all rules except in case u = 1, v = 0 for type (2) rules, and 
case v = 1 for type (5) rules, where it stays equal. Termination of the labelled 
system is now shown by recursive path order with precedence Ai+l > Ai and 
Ai greater than any other function symbol, and A2i having status lexicographic 
first 2n + 11 then 2n + 13 then the other arguments, A2n+I having status first 
2n + 12 then 2n + 14 then the other arguments, and cons and ~ having status 
right-to-left. [] 

If P has no solution then U(P, Q) can be ordered by a total reduction order, 
for any Q. 

T h e o r e m  5. If P has no solution then U(P, Q) is totally terminating. [] 

The complicated proof can be found in the full version [10] of this paper. 

4 One-Rule Systems 

Transforming U(P, Q) into a single-rule TRS 8(P, Q) is easy: we define S(P, Q) 
as the rule 

l ~ B(r l , . . . , r ,~+2m+3)  
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where B is a new function symbol of arity n + 2m + 3. The symbol B is called 
a dummy because it only appears in the right-hand sides of the rules, hence i t  
acts as a barrier for rewrite steps. So the transition from S(P, Q) to U(P, Q) 
is a particular form of dummy elimination [6], a method to support  proofs of 
termination by decomposing right-hand sides. 

P r o p o s i t i o n  6. Let T~ be a one-rule TRS I --+ B(r l , .  .. , rk) where B is a symbol 
that does not occur in 1 nor in any of the ri, and let E(T~) denote the system 
{1 --+ ri [~1 < i < k).  Suppose E(T~) is linear. 6 

1. I f  T~ is looping then E(T~) is looping. 
2. I f  E(T~) is terminating then T~ is terminating. 
3. I f  T~ is self-embedding then E(T~) is self-embedding. 
4. E(Tt) is simply terminating if and only if T~ is simply terminating. 
5. E(T~) is totally terminating if and only if T~ is totally terminating. 

The converse of statements 1, 2, and 3 does not hold, as the counterexample 
n = {f(g(x))  -+ B( f ( f ( x ) ) ,g (g (x ) ) ) }  shows. Here E(•)  is looping, but  n is 

non-self-embedding. 

Proof. A proof of statement 1 for the case k = 2 can be found in [19]. It easily 
extends to the general case. Proofs of statements 2, 4, and 5 appear in [17]. It 

remains to prove statement 3. 
We call a position an inner position of t if it is a function symbol position 

of t not~ at the top. Call a position p in a term t touched by the rewrite step 
t u > t' if p is of the form p = u.v where v is an inner position in 1. Now a 

l - +  r 

position p may be called touched during the reduction t -++ t' if the reduction 
* t" t '" * t I and a residual p" in t" of p by t -+~ t" is is of the form t -+n --~n -+R 

touched in the step t" -+R t m- 
Assume a self-embedding reduction t -~+ t' --~mb t. If an inner position, q, 

of t remains untouched during this reduction, the reduction may be split into 
the reduction steps above and those below the (unique) residual of q: 

t[Z]a - ~  t'[z]r -~*E,~b t[z]r tla -+~ t ' lr ~ , ~ b  tic, 

If qt' is below q then t[Z]q --~+ t'[z]r -+*Emb t[z]q,, -+*~,~b t[Z]q is a self-embedding 
reduction. If q" = q then one of the two reductions must be nonempty; it forms 
a self-embedding reduction. Otherwise tlq ---~+ t'lq, --~*c,~b tla" -+*e,~b tlq is a self- 
embedding reduction. By induction, all untouched inner positions of t can be 

eliminated. 
One may so assume that  every inner position of t is touched during the 

self-embedding reduction. Then t cannot contain B symbols except one B sym- 
bol a t  ~he top. By a counting argument no B symbols occur in t at all. All 
B symbols that  are created by Tr steps must therefore be cancelled by an $mb 
step later. One may commute the 8rob step, B ( t l , . . . ,  tk) -+ ti, with all preced- 
ing steps until the 7~ step that  created the corresponding B symbol. The pair 

6 The proposition also holds without E(Tr right-linear. 



245 

e[la] -~n c[B(rla,. . .  ,rka)] --+E,~b c[r~a] of steps can be replaced by an E(7r 
step c[la] --+ c[ri(r]. Each such replacement reduces the number of B symbols 
in the intermediate term, t'. Repeating this procedure removes all B symbols 
from t' hence the reduction contains no more 7r steps. We have thus obtained a 
self-embedding reduction for E(Tr 

[] 

P r o p o s i t i o n  7. If there are no A symbols in the sequence W of terms then 
A(V, W) --++(p,Q) A(V, W') if and only if A(V, W) -+s(P,Q)+ C[A(V, W')] for 
some context C. [] 

5 T h e  T e r m i n a t i o n  H i e r a r c h y  

In this section we apply the construction S(P, Q) to the following TRSs Q. 

Defini t ion 8. The TRSs Q1,. .- ,  Q5 are defined as follows: 

g(d, b(x'), y') --~ g(x', y', b(b(d))) 

Q3 = { g(d) --~ g(h(d)) } 

{ h(e),e) } 
Q4 = g(d, e, x') --+ g(h(d), x', d) 

f g(d, e) g(e, } 
= [ g(d, e) --+ g(d, d) 

Observe that in each Q~ the left-hand sides coincide and that each Qi is 
linear and uses no variables from Defn. 1. Hence L/(P, Qi) is linear, too. 

Now we have all the ingredients to complete the relative undecidability results 
for single rule systems. 

P r o p o s i t i o n  9. The TRS S(P, Q1) is acyclie. It is non-looping if and only if P 
admits no solution. 

Proof. Acyclicity is obvious. If P has a solution then U(P, Q1) is cyclic by 
Prop. 2. According to Prop. 7 S(P, Q~) is looping. Conversely, if P has no solu- 
tion then S(P, Q1) is totally terminating and hence non-looping by Theorem 5 
and Prop. 6. [] 

P r o p o s i t i o n  10. The TRS S(P, Q2) is non-looping. It is terminating if and 
only if P admits no solution. 

Proof. Assume S(P, Q2) admits a loop. By Prop. 6 one obtains a loop, say 
t --++ C[tcr], in L/(P, Q2). Define the linear interpretation r by r = r 
and r  tk)) = r 1 6 2  for every other function symbol f of 
arity k. Clearly, s -+u(P, Q2) s' implies r > r for all terms s and s', hence 
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C consists of b symbols only. Define another linear interpretation r by r = 
r + 1 and r  , t k ) )=  0 for every other function symbol of arity k. For 
all terms s and s'~if s ~ ( P ,  Q2) s' then r -- r hence C is empty. Now 
the loop must be (if the shape D[A(V, W, u)] -++ D[A(Va, Wa, ua)] where D is 
a context not containing any A symbol. Then A(V, W, u) -4+ A(Va, Wa, u~). 
Since A(V, W, u) -~(P,O)+ A~Va, Wa, ua) would contradict Prop. 4, we obtain 

u -+~ ua b)/Prop. 3. This is impossible since Q2 is non-looping [19]. 
Now let P have a solution.:There exists an infinite Q2-reduction tl -+ t2 -+ 

t3 --+ �9 " " in which all steps take place at the root position. With help of Props. 2 
and 7 this sequence is transformed into an infinite S(P, Q2)-reduction 

A(V, W, tl) -~+ Ct [A(V, W, t2)] ~+ C2 [A(V, W, t3)] ~ " "  

Conversely, if P has no solution then S(P, Q2) is totally terminating and there- 
fore terminating by Theorem 5 and Prop. 6. [] 

P r o p o s i t i o n l l .  The TRS 8(P, Q3) is terminating. It is non-self-embedding if 
and only if P admits no solution. 

Proof. We prove that L/(P, Q3) is terminating, from which termination of S(P, Q3) 
follows by Prop. 6. We use semantic labelling ([20]). As a model we choose {0, 1}, 
where g is interpreted as the identity, h as being constant 0, and all other sym- 
bols as being constant 1. Label the symbol A by the value of its last argument. 
According to the main result of semantic labelling then L/(P, Q3) is terminating 
if and only if hi(P, 23) is terminating, where U(P, 23) is obtained from U(P, 23) 
by replacing the A symbols in the right hand sides of the type (4) rules by A0 
and all other A symbols by A1. Now the number of A1 symbols strictly decreases 
by applying a type (4) rule from L/(P, Q3), while it remains constant by apply- 
ing any other rule. Hence an infinite L/(P, Q3i'-reduction gives rise to an infinite 
L/(P, 23)-reduction without application of type (4) rules. By omitting the labels 
this gives an infinite L/(P, @)-reduction, contradicting Prop. 4. 

If P has a solution then we obtain A(V, W, g(d)) + -+$(P, Q3) C[A(V, W, g(h(d)))] 

from Props. 2 and 7. Since A(V, W, g(d)) is embedded in C[A(V, W, g(h(d)))] this 
shows that S(P, 23) is self-embedding. Conversely, if P has no solution then 
$(P, 23) is totally terminating and thus non-self-embedding by Theorem 5 and 

[] 
Prop. 6. 

P r o p o s i t i o n  12. The TRS S(P, Q4) is non-self-embedding. It is simply termi- 
nating if and only if P admits no solution. 

Proof. We prove that/A(P, 24) is non-self-embedding, non-self-embeddingness 
of S(P, 24) follows then by Prop. 6. Suppose to the contrary that L/(P, 24) is 
self-embedding. Using a standard minimality argument we obtain 

t = A(V,W,g(d,e,t')) -++(P, Q4) u = A~V,W',v) -~*~mb t 

such that t contains only one A symbol. Hence rules in $mb({A}) are not ap- 
plied. So W I -+~mb W and v -+*Ernb g(d,e,t') must hold. By Prop. 3 either 
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g(d, e, t') --+Q4 v or A(V, W, g(d, e, t')) --+u(P,O)+ .A(V, W', g(d, e, t')). The former 
contradicts the non-self-embeddingness of Q4 and the latter simple termination 
of L/(P, O) iProp. 4). 

If P has a solution then with help of Props. 2 and 7 we obtain the cyclic 
SiP,  Q4) u $mb(Yu U YQ)-reduction 

AiV, W,g(d,e,d)) -++ Cl[AiV, W,g(d,h(e),e)) ] -++ A(V, W,g(d,e,e)) 

-++ C2[A(V, W, g(hid), e, d))] -++ A(V, W, g(d, e, d)). 

So in this case $(P,  Q4) is not simply terminating. Conversely, if P has no 
solution then S(P, Qa) is totally terminating and hence simply terminating by 
Theorem 5 and Prop. 6. [] 

P r o p o s i t i o n l 3 .  The TRS S(P, Q~) is simply terminating. It is totally termi- 
nating if and only i]P admits no solution. 

Proo/. If P has no solution then total termination of S(P, Qh) follows from 
Theorem 5 in conjunction with Prop. 6. It remains to show that  S(P, Qh) is 
simply terminating but not totally terminating whenever P has a solution. By 
Prop. 6, it is sufficient to show this for L/(P, Q). 

Let P have a solution. Any infinite Ll(P, Qh)-reduction would by Propo- 
sition 3 imply an infinite Qh-reduction, contradicting termination of Qh- So 
L/(P, Qh) is terminating and, since it is length preserving, even simply terminat- 
ing. Suppose U(P, Qh) is totally terminating. With help of Prop. 2 we conclude 
the existence of a total reduction order > such that  both A(V, W,g(d,e)) > 
AiV, W, g(e, e)) and AiV , W, g( g, e)) > A(V, W, g( d, d)). By the truncation rule 
for total reduction orders > in Zantema [17] one may remove the context C from 
an inequation C[t] > C[t']. By doing this for the contexts A(V, W, g(_, e)) and 
A(V, W,g(d, _)) we get d > e and e > d, which contradicts the irreflexivity of >. 
So U(P, Qh) cannot be totally terminating. [] 

Of course the question emerges whether the next implication - -  w-termination 
total termination - -  is undecidable even for single rule TRSs. It is not hard 

to encode the implication in a suitable TRS Q6, but one needs the stronger re- 
sult of w-termination in Theorem 5. In the full version [10], we present a proof 
in w 4. Trying hard we have also established a termination proof in w 2 but no 
proof in w. So the question remains open. 

Conclusion 

We have shown that  the lower five levels of the termination hierarchy are rel- 
atively undecidable even for single rules. These results shows how difficult it is 
in general to detect one of the properties in the termination hierarchy. A con- 
sequence of our work is the impossibility of extending methods for establishing 
total termination, like recursive path orders and Knuth-Bendix orders, to a level 
where total termination can always be detected. This even holds if only simply 
terminating single rewrite rules are allowed as input for the method. 
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