
Relative Undecidability in the Termination
Hierarchy of Single Rewrite Rules

Alfons Geser I*, Aart Middeldorp 2.*, Enno Ohlebusch 3, Hans Zantema 4

1 University of Tiibingen, Germany
2 University of Tsukuba, Japan

3 University of Bielefeld, Germany
4 Utrecht University~ The Netherlands

A b s t r a c t . For a hierarchy of properties of term rewriting systems, re-
lated to termination, we prove relative undecidability even in the case of
single rewrite rules: for implications X ~ Y in the hierarchy the property
X is uudecidable for rewrite rules satisfying Y.

1 I n t r o d u c t i o n

A fundamental problem in the theory of term rewriting is the detection of termi-
nation: for a fixed system of rewrite rules, determine whether there are infinite
rewrite sequences. Besides termination a number of related properties are of
interest, linearly ordered by implication:

polynomial termination ~ w-termination ~ total termination

simple termination ~ non-self-embeddingness ~ termination

non-loopingness ~ acyclicity

We call this the termination hierarchy. Apart from polynomial termination, all
properties in the termination hierarchy are known to be undecidable ([11, 15,
! 3, 18, 8, 9]). In [9] we showed the stronger result of relative undecidability: for
all implications X ~ Y in the termination hierarchy except one--polynomial
termination ~ w-termination--the property X is undecidable for term rewriting
systems (TRSs for short) satisfying property Y.

In this paper we address the question of relativ@ undecidability for TRSs
consisting of a single rewrite rule. We show that for all implications X ~ Y in
the termination hierarchy except two--polynomial termination ~ w-termination

* Corresponding author. Address for correspondence: Wilhelm-Schickard-Institut fiir
Informatik, Universits Tfibingen, Sand 13, D-72076 Tiibingen, Germany. Email:
geser~informatik.uni-tuebingen.de. Work carried out at Universit~it Passau,
Lehrstuhl fiir Programmiersysteme. Partially supported by grant Ku 996/3-1 of the
Deutsche Forschungsgemeinschaft within the Schwerpunkt Deduktion.

** Partially supported by the Advanced Information Technology Program (AITP) of
the Information Technology Promotion Agency (IPA).

238

total termination--the property X is undecidable for one-rule TRSs satisfying
property Y.

Dauchet [1] was the first to prove undecidability of termination for one-
rule TRSs, by means of a reduction to the uniform halting problem for Turing
machines. Middeldorp and Gramlich [13] reduced the undecidability of simple
termination, non-self-embeddingness, and non-loopingness for one-rule TRSs to
the uniform halting problem for linear bounded automata. Lescanne [12] showed
that Dauchet's result can also be obtained by a reduction to Post's Correspon-
dence Problem (PCP). The results presented in this paper are stronger because
(1) we obtain the same undecidability results for (much) smaller classes of one-
rule TRSs, and (2) we show the undecidability of total termination for one-rule
(simply terminating) TRSs. The latter solves problem 87 in [4] and rectifies a
conjecture in [18].

The relative undecidability results in [9] are obtained by using PCP in the
following way: for the lower five implications X ~ Y in the termination hierarchy
and for all PCP instances P a TRS is constructed that always satisfies Y and
satisfies X if and only if P admits no solution. In this paper we present a more
uniform approach. First ,we construct a TRS L/(P, Q) parameterized by a PCP
instance P and a TRS Q. The TRS U(P, Q) has the following properties: (1)
the left-hand sides of its rewrite rules'are the same, (2) if P admits no solution
then U(P, Q) is totally terminating, and (3) if P admits a solution then L/(P, Q)
simulates Q. Because of property (1) every U(P, Q) can be compressed into a
one-rule TRS S(P, Q) without affecting the termination behaviour. In particular,
if P admits no solution then S(P, Q) is totally terminating. Finally, for the lower
five implications X ~ Y in the termination hierarchy we define a suitable TRS Q
such that S(P, Q) satisfies Y if and only if P admits no solution. The advantage
of this approach is that the complicated part--the construction and properties
of the TRS U(P, Q)--is independent of the involved level in the termination

hierarchy.
The remainder of this paper is organized as follows. In th• next section we

briefly recall the definitions of the properties in the termination hierarchy and
PCP. In Section 3 we define the TRS L/(P, Q) and show that it simulates Q
whenever P admits a solution. In Section 4 we define the one-rule TRS $(P, Q)
and show that it inherits the termination behaviour from L/(P, Q). In Section 5
we instantiate S(P, Q) by suitable TRSs Q in order to conclude the desired
relative undecidability results. For reasons of space, the difficult proof of total
termination of b/(P, Q) in the case that P admits no solution has been omitted.
It can be found in the full version of this paper [10].

2 Preliminaries

For preliminaries on rewriting and termination we refer to [2, 3]. Let ~" be a
signature containing at least one constant. We write T(~) for the set of ground
terms over ~; for a set X of variable symbols we write T(.~, X) for the set of
open terms. A (strict partial) order > on T(J ~) is called monotonic if for all

239

f E iT and t ,u E T(IT, X) with t > u we have f (. . . , t , . . .) > f (. . . , u , . . .) . A
TRS T~ over ~" and an order > on T(IT) are called compatible if t > u for all
rewrite steps t -+n u. For compatibility with a monotonic order it suffices to
check that la > ra for all rules l -+ r in T~ and all ground substitutions a. It
is well-known that a TRS is terminating if and only if it is compatible with a
monotonic well-founded order. An iT-algebra consists of a set A and for every
f E iT a function fA : A "~ -+ A, where n is the axity of f . A monotone iT-algebra
(A, >) is an iT-algebra A for which the underlying set is provided with an order
> such that every algebra operation is monotonic in all of its arguments. More
precisely, for all f E iT and a,b E A with a > b we have fA(. . . , a , . . .) >
fA(. . . ; b , . . .) . A monotone iT-algebra (A, >) is called well-founded if > is a
well-founded order. Every monotone iT-algebra (A, >) induces an order >A on
the set of terms T(IT, X) as follows: t >A u if and only if [a](t) > [a](u) for
all assignments a : k' --+ A. Here [a] denotes the homomorphic extension of a,
i.e., [a](x) = a(x) and [a](f(t l , . . . ,tn)) = fA([a](tl) , . . . ,[a](tn)) for x e X,
f E iT, and t l , . . . , tn E T(IT, X). A TRS 7r and a monotone algebra (A,>) are
called compatible if Tr and >A axe compatible. It is well-known that a TRS is
terminating if and only if it is compatible with a well-founded monotone algebra.
The set of rewrite rules f (x l , . . . ,xn) --> x~ for all f E iT and all i = 1 , . . . ,n,
where n > 1 is the axity of f , is denoted by grab(iT), or simply by grab when the
signature iT can be inferred from the context.

The properties in the hierarchy are defined as follows. A TRS is called ter-
minating if it does not allow an infinite reduction. A TRS T~ over a signature
iT is called simply terminating if Tr U gmb(iT) is terminating, or, equivalently,
Tr U grab(iT) has no cycle. A well-known sufficient condition for simple termina-
tion of terminating TRSs is length-preservingness, which means that Ilcr I = Iral
for all rules 1 --+ r and all ground substitutions a. Here Itl denotes the number
of function symbols in t. A TRS over a signature iT is called totally termi-
nating if it is compatible with a monotonic well-founded total order on T(iT),
or, equivalently, it is compatible with >A for some well-founded monotone iT-
algebra (A, >) in which the order > is total. A TRS over a signature iT is called
w-terminating if it is compatible with >A for some well-founded monotone iT-
algebra (A, >) in which A = N and > is the usual order on N. A TRS over a
signature iT is called polynomiaUy terminating if it is compatible with >A for
some well-founded monotone iT-algebra (A, >) in which A = N, > is the usual
order on N and for which all functions fA are polynomials. A TRS 7r is called
looping if it admits a reduction t --++ C[ta] for some term t, some context C and
some substitution a. A TRS Tr is called cyclic if it admits a reduction t --++ t for
some term t. A TRS 7~ over a signature iT is called self-embedding if it admits a
reduction t --->+ u -+~mb(~:) t for some terms t, u. Recent investigations of these
notions include [5, 7, 8, 14, 19].

For the proofs we use Post 's Correspondence Problem (PCP), which can be
described as follows:

given a finite alphabet F and a finite set P C F + • F +, is there some
natural number n > 0 and (c~,/~i) E P for i = 1 , . . . ,n such that

240

This problem is known to be undecidable even in the case of a two-letter alphabet
([16]). The set P is called an instance of PCP, the string a l a 2 " " aN = ~1132"" ~ ,
a solution for P. We use a fixed two-letter alphabet F = {0, 1}.

We encode PCP instances P and, for each layer X ~ Y of the hierarchy, a
characteristic TRS Q into a one-rule TRS S(P, Q) such that S(P, Q) is in Y for
all P, and in X if and only if P has no solution. Thus we reduce PCP to the
relative decision problem in each layer.

3 T h e E n c o d i n g

We are now going to encode a PCP instance P and a TRS Q with the property
that all left-hand sides coincide in a TRS U(P, Q) with the same property.

The signature ~-u we add for our TRSs consists of constants 0, 1, $, and s,
binary symbols cons and cons, and a symbol A the arity of which will depend
on the size of the PCP instance P.

The binary symbols cons and cons as well as the constant s build lists of
terms. Usually we drop the cons and cons symbols, and write only the appended
terms and barred terms, respectively. Formally, we define the notation ((t) for
any term t and mixed sequence (E {t, t [t E T($' , X)}* of barred and unbarred
terms as follows:

{(t) = t i f { = c ,

~(t) = cons (t ' , (' (t)) if { = t '{',

~(t) = cons(#, r if r = ~ ' .

Moreover, with any sequence a = tit2 �9 .. tn of unbarred terms we associate the
sequence ~ = t , . . . t2 tl of barred terms. Hence

a(t) = cons(tl, cons(t2,. . , cons(t, , t) . . .),

~(t) = cons(t , ,c--~(t ,~-l , . . -c--6V/(h,t) . . .)-

In order to avoid confusion, we will use the latter abbreviation only when
the appended terms are in the set {0, 1, $} U X. For instance, 005(6) stands
for cons(0, c-b-fig(0), cons(S, s))), 5yl(~) for c-5-ffg(x, cons(y, cons(l, r 0-10(Z) for
cons(l, c--6-~(0, cons(0, z))), and z(x) for cons(z, x). Note that 0-10(z) differs from

10(z) = c-b-Kg(0, c--6fi-g(1, cons(0, z))).
Before we give the technical definition of Lt(P, Q) let us explain the intuition

behind its architecture. The system b/(-P, Q) is a modification of the following

system from [18]:

(F (x , - d (y) , x , ~ (y)) -+ F (a (x) , y , a (x) , y) for all a e F,
S (P) t F (a (x) , y , ~ (z) , w) --> F(x , -5 (y) , z ,~ (w)) for all (a,13) C P.

The system 8(P) admits a reduction

_F(7(x), y, 7(x), Y) --++ F(V(x), Y,'7(x)' Y) (1)

241

if and only if 7 is a solution of the PCP P. If P has no solution then ,%(P) is to-
tally terminating. The use of barred symbols in the second and fourth argument
is essential for total termination.

It is now straightforward to change the cyclic behaviour (1) to any desired
behaviour that can be expressed by some rewrite system Q. To this end an
argument is added to F. This last argument is left unchanged, except for the
step completing the cycle in which it is rewritten by a rule in Q.

To avoid unintended rewrite steps, we refine control: we distinguish two
states, exhibited by function symbols G and H, which enable only steps of the
first and second shape, respectively, in S (P) . A change from state G to state H
is possible only if the second and the fourth argument equals ~. Vice versa, a
change of state from H to G requires that the first and third fourth argument
equals s. This gives the rewrite system consisting of the rule

G(x,~,z,~,LHS) ~ H(x,~,z,~,LHS),

the rules

(2)

H(a(x) , y,/7(z), w, LHS) --> H(x,-~(y), z, ~(w), LHS)

for each (a,/7) E P , and the rules

(3)

H(s, ~(y), s, ~(w), LHS) ---> G(a(~), y, a(s), w, RHSj) (4)

G(x,-d(y), z, ~(w), LHS) --> G(a(x), y, a(z), w, LHS) (5)

for each a C F and each rule (LHS --+ RHSj) E Q.
In view of the one-rule construction, finally, there is the need to have equal

left-hand sides. For this reason Q has to have this property, too. The two states
G and H in the previous definition are encoded by argument pairs (0, 1) and
(1, 0), respectively, hence one function symbol, A, can replace both G and H.
Finally, the end of a sequence may not be s because sequences of various lengths
have to match. Instead the end is marked by a special symbol, $.

In this way, one gets four left-hand sides which can be regarded as instances
of one pattern. The match to the pattern can be delayed by the same trick as
in Lescanne [12]: One extends the argument vector (to the left) by a vector of
terms to match, and exchanges variables with the terms they should match.

D e f i n i t i o n 1. Let P = { (o L 1 , / 7 1) , . - . , (a n , / T n) } ~ F + x F + be a P CP instance 5
and let # = max{la h 1,81 I (a,/7) e P}. Let Q = {LHS ---> RHSI, . . . ,LHS -->.
RHSm} be a TRS over a signature 5~Q disjoint from ~-u. We assign to P and Q a
TRS U(P, Q) over the signature ~u U ~Q where A has arity 2n + 15. It consists
of the rules l -+ ri, 1 < i < n + 2m + 3, where I and ri are defined as follows:

I = A(0, 1, 0, 1, $, o~ 1 (~), . . . , o~ n (~), 0, 1, $,/71 (~), �9 (~),

~t, V, Wl. . . Wtt (W), xT1 (x), Yl . . . Yt~ (Y), z-T(z), LHS),

5 Presenting PCP instances as ordered lists instead of sets entails no loss of generality.

242

rl = A(u, v, O, 1, x l , a l (e) , . . . , an(C), O, 1, Zl, f l (e) , . . . , fn(e) ,

1, O, Wl . . . w , (w) , $(x), Yl . . . Y~(Y), $(z), LHS),

(2)

r~+~ = A(~, ~, O, 1, $, ~(~) , . . . , ~_~ (c), w ~ . . . wl~ , t(~), ~ + ~ (c) , . . . , ~n (~),
0, 1, $, f l (c) , . . . , f l i- l(e) , y l . �9 �9 yl#d (e), fli+l (e), �9 �9 �9 fn(e) , (3)

1, 0, Wl~ ,]+1 �9 �9 �9 w~ (w), ~-7 ~-T(x), YI#~ I+1-'" Y~ (Y), ti(2T(z), kHS)

for all 1 < i < n,

rn+l+j = A(v, u, xl , 1, wl , al (e) , . . . , an (e), zl, 1, Yl,/31 (e) , . . . , fin (e), (4)

0, 1, 05w2. . . w, (w) , x, 05y2. . . y~(y), z, RHSj)

rn+x+m+j = A(v, u, O, Xl, Wl, al (r an(c), O, Zl, Yl, f l (E) , . . . , fn(e) ,

0, 1, 15W2...W~(W),X, 15y2. . .y~(y) ,z , RHSj)

for all 1 < j < m, and finally

rn+2,~+2 = A(u ,v , x l , l , $, a i (e) , . . . , a n (e) , z x , l , $, f l (e) , . . . , fn(e) , (5)

0, 1, 0 w , . . . w , (w), x, 0 y l . . . y , (y), z, LHS)
rn+2m+3 = A(u, v, 0, xl, $, a l (e), �9 �9 an(e), 0, zl, $, f l (e) , . . . , fn(e) ,

0, 1, lWl . . , w# (w), x, l y l . . , y~(y), z, LHS).

In the following we denote 0, 1, 0, 1, $, a l (e) , . . . , an(e), 0, 1, $, f l (e) , . . . , fin(e),
i.e., the first 2n + 8 arguments of l, by V.

We are now going to show that in case P has a solution, reductions in Q
mirror reductions in IX(P, Q). That is, if P is a PCP instance that has a solution
then we get the following particular form of reddction in IX(P, Q).

P r o p o s i t i o n 2. I f the PCP instance P has a solution, "y' a, then for every rewrite
rule LHS ~ RHS in Q we have

A(V, W, LHS) --+u(p,Q)+ A(V, W, RHS)

where W denotes the sequence O, 1, a$w2 . . . w , (w) , $'y' (x), a$y2 . . . y~(y), $'y'(z).

Proof. Let "y = a l . . . an = f l . . . fin = "y'a be a solution of the PCP instance
P. Let LHS --+ RHS be a rule in Q and abbreviate the terms $w2. . .w~(w)
and $y2. . . Y~(Y) by w' and y', respectively. We have the following reduction in

IX(P, Q):
A(V, O, 1, aw', $'y'(x), ay ' , -~ ' (z) , LHS)

- ~) A(V, O, 1, ~w', $(x), ~/y',$(z), LHS)

"->(2) A(V, 1, 0,'yw',$(x),'Yy', $(z), LHS)

' " X -->(3) A(V, I, O, a2. . . anw, Sa t () , f12-., tiny', $f : (z) , LHS)

-+~3) A(V, 1, 0, w', $--~(x), y', $-~(z), LHS)

-->(4) A(V, O, 1, aw', $'y'(x), ay',$-~7~'(z), RHS).

243

First, using rules (5), 7' in the 2n + 12-th (2n + 14-th) argument is shifted to
the 2n + l l - t h (2n + 13-th, resp.) argument character by character. Note that
$7'(x) = 7' $(x). Next by rule (2), there is a change of state from 0, 1 to 1, 0.
Then, since 7 is a solution of P, it can be shifted back by using rules (3). Finally,
with rule (4), the state is changed back to 0, 1. []

Conversely, a reduction in U(P, Q) gives rise either to an underlying reduction
in Q or to a reduction in 5/(P, Q) without the 2m rules (4). We will denote the
latter system by U(P, 0).

P r o p o s i t i o n 3 . If W and t contain no A symbols then A(V,W,t) --+u(p,Q)
A(V, W', t') implies t --~Q t' or t = t' and A(V, W, t) -~u(P,O) A(V, W', t).

Proof. Since there is only one A symbol in A(V, W, t), the reduction must take
place at the root position. If a rule (4) has been applied, then t --+Q t ~. Otherwise,
A(V, W, t) --+u(P,O) A(V, W', t'). Obviously, this implies t = t' by the form of the
rules in U(P, 0). []

P r o p o s i t i o n 4. The TRS LI(P, O) is simply terminating, for any P.

Proof. Since U(P, O) is length-preserving, it is sufficient to show termination. We
show termination by semantic labelling [20]. Let the model be {0, 1}, and let 1
be interpreted by 1, and every other symbol by constant 0. Label the symbol A
by 2x2 + x2n+lo where xi denotes the value of A's i-th argument. In the labelled
system, U(P, Q3) obtained this way the symbol A carries the label 2 + v at the
left hand side, and the labels 2v, 2u, 2v + 1 at the right hand sides r l , ri+l, and
r,~+2m+2, respectively. Taking into account that u, v C {0, 1} one finds that the
label decreases for all rules except in case u = 1, v = 0 for type (2) rules, and
case v = 1 for type (5) rules, where it stays equal. Termination of the labelled
system is now shown by recursive path order with precedence Ai+l > Ai and
Ai greater than any other function symbol, and A2i having status lexicographic
first 2n + 11 then 2n + 13 then the other arguments, A2n+I having status first
2n + 12 then 2n + 14 then the other arguments, and cons and ~ having status
right-to-left. []

If P has no solution then U(P, Q) can be ordered by a total reduction order,
for any Q.

T h e o r e m 5. If P has no solution then U(P, Q) is totally terminating. []

The complicated proof can be found in the full version [10] of this paper.

4 One-Rule Systems

Transforming U(P, Q) into a single-rule TRS 8(P, Q) is easy: we define S(P, Q)
as the rule

l ~ B(r l , . . . , r ,~+2m+3)

244

where B is a new function symbol of arity n + 2m + 3. The symbol B is called
a dummy because it only appears in the right-hand sides of the rules, hence i t
acts as a barrier for rewrite steps. So the transition from S(P, Q) to U(P, Q)
is a particular form of dummy elimination [6], a method to support proofs of
termination by decomposing right-hand sides.

P r o p o s i t i o n 6. Let T~ be a one-rule TRS I --+ B(r l , . .. , rk) where B is a symbol
that does not occur in 1 nor in any of the ri, and let E(T~) denote the system
{1 --+ ri [~1 < i < k). Suppose E(T~) is linear. 6

1. I f T~ is looping then E(T~) is looping.
2. I f E(T~) is terminating then T~ is terminating.
3. I f T~ is self-embedding then E(T~) is self-embedding.
4. E(Tt) is simply terminating if and only if T~ is simply terminating.
5. E(T~) is totally terminating if and only if T~ is totally terminating.

The converse of statements 1, 2, and 3 does not hold, as the counterexample
n = {f(g(x)) -+ B(f (f (x)) ,g (g (x))) } shows. Here E(•) is looping, but n is

non-self-embedding.

Proof. A proof of statement 1 for the case k = 2 can be found in [19]. It easily
extends to the general case. Proofs of statements 2, 4, and 5 appear in [17]. It

remains to prove statement 3.
We call a position an inner position of t if it is a function symbol position

of t not~ at the top. Call a position p in a term t touched by the rewrite step
t u > t' if p is of the form p = u.v where v is an inner position in 1. Now a

l - + r

position p may be called touched during the reduction t -++ t' if the reduction
* t" t '" * t I and a residual p" in t" of p by t -+~ t" is is of the form t -+n --~n -+R

touched in the step t" -+R t m-
Assume a self-embedding reduction t -~+ t' --~mb t. If an inner position, q,

of t remains untouched during this reduction, the reduction may be split into
the reduction steps above and those below the (unique) residual of q:

t[Z]a - ~ t'[z]r -~*E,~b t[z]r tla -+~ t ' lr ~ , ~ b tic,

If qt' is below q then t[Z]q --~+ t'[z]r -+*Emb t[z]q,, -+*~,~b t[Z]q is a self-embedding
reduction. If q" = q then one of the two reductions must be nonempty; it forms
a self-embedding reduction. Otherwise tlq ---~+ t'lq, --~*c,~b tla" -+*e,~b tlq is a self-
embedding reduction. By induction, all untouched inner positions of t can be

eliminated.
One may so assume that every inner position of t is touched during the

self-embedding reduction. Then t cannot contain B symbols except one B sym-
bol a t ~he top. By a counting argument no B symbols occur in t at all. All
B symbols that are created by Tr steps must therefore be cancelled by an $mb
step later. One may commute the 8rob step, B (t l , . . . , tk) -+ ti, with all preced-
ing steps until the 7~ step that created the corresponding B symbol. The pair

6 The proposition also holds without E(Tr right-linear.

245

e[la] -~n c[B(rla,. . . ,rka)] --+E,~b c[r~a] of steps can be replaced by an E(7r
step c[la] --+ c[ri(r]. Each such replacement reduces the number of B symbols
in the intermediate term, t'. Repeating this procedure removes all B symbols
from t' hence the reduction contains no more 7r steps. We have thus obtained a
self-embedding reduction for E(Tr

[]

P r o p o s i t i o n 7. If there are no A symbols in the sequence W of terms then
A(V, W) --++(p,Q) A(V, W') if and only if A(V, W) -+s(P,Q)+ C[A(V, W')] for
some context C. []

5 T h e T e r m i n a t i o n H i e r a r c h y

In this section we apply the construction S(P, Q) to the following TRSs Q.

Defini t ion 8. The TRSs Q1,. .- , Q5 are defined as follows:

g(d, b(x'), y') --~ g(x', y', b(b(d)))

Q3 = { g(d) --~ g(h(d)) }

{ h(e),e) }
Q4 = g(d, e, x') --+ g(h(d), x', d)

f g(d, e) g(e, }
= [g(d, e) --+ g(d, d)

Observe that in each Q~ the left-hand sides coincide and that each Qi is
linear and uses no variables from Defn. 1. Hence L/(P, Qi) is linear, too.

Now we have all the ingredients to complete the relative undecidability results
for single rule systems.

P r o p o s i t i o n 9. The TRS S(P, Q1) is acyclie. It is non-looping if and only if P
admits no solution.

Proof. Acyclicity is obvious. If P has a solution then U(P, Q1) is cyclic by
Prop. 2. According to Prop. 7 S(P, Q~) is looping. Conversely, if P has no solu-
tion then S(P, Q1) is totally terminating and hence non-looping by Theorem 5
and Prop. 6. []

P r o p o s i t i o n 10. The TRS S(P, Q2) is non-looping. It is terminating if and
only if P admits no solution.

Proof. Assume S(P, Q2) admits a loop. By Prop. 6 one obtains a loop, say
t --++ C[tcr], in L/(P, Q2). Define the linear interpretation r by r = r
and r tk)) = r 1 6 2 for every other function symbol f of
arity k. Clearly, s -+u(P, Q2) s' implies r > r for all terms s and s', hence

246

C consists of b symbols only. Define another linear interpretation r by r =
r + 1 and r , t k))= 0 for every other function symbol of arity k. For
all terms s and s'~if s ~ (P , Q2) s' then r -- r hence C is empty. Now
the loop must be (if the shape D[A(V, W, u)] -++ D[A(Va, Wa, ua)] where D is
a context not containing any A symbol. Then A(V, W, u) -4+ A(Va, Wa, u~).
Since A(V, W, u) -~(P,O)+ A~Va, Wa, ua) would contradict Prop. 4, we obtain

u -+~ ua b)/Prop. 3. This is impossible since Q2 is non-looping [19].
Now let P have a solution.:There exists an infinite Q2-reduction tl -+ t2 -+

t3 --+ �9 " " in which all steps take place at the root position. With help of Props. 2
and 7 this sequence is transformed into an infinite S(P, Q2)-reduction

A(V, W, tl) -~+ Ct [A(V, W, t2)] ~+ C2 [A(V, W, t3)] ~ " "

Conversely, if P has no solution then S(P, Q2) is totally terminating and there-
fore terminating by Theorem 5 and Prop. 6. []

P r o p o s i t i o n l l . The TRS 8(P, Q3) is terminating. It is non-self-embedding if
and only if P admits no solution.

Proof. We prove that L/(P, Q3) is terminating, from which termination of S(P, Q3)
follows by Prop. 6. We use semantic labelling ([20]). As a model we choose {0, 1},
where g is interpreted as the identity, h as being constant 0, and all other sym-
bols as being constant 1. Label the symbol A by the value of its last argument.
According to the main result of semantic labelling then L/(P, Q3) is terminating
if and only if hi(P, 23) is terminating, where U(P, 23) is obtained from U(P, 23)
by replacing the A symbols in the right hand sides of the type (4) rules by A0
and all other A symbols by A1. Now the number of A1 symbols strictly decreases
by applying a type (4) rule from L/(P, Q3), while it remains constant by apply-
ing any other rule. Hence an infinite L/(P, Q3i'-reduction gives rise to an infinite
L/(P, 23)-reduction without application of type (4) rules. By omitting the labels
this gives an infinite L/(P, @)-reduction, contradicting Prop. 4.

If P has a solution then we obtain A(V, W, g(d)) + -+$(P, Q3) C[A(V, W, g(h(d)))]

from Props. 2 and 7. Since A(V, W, g(d)) is embedded in C[A(V, W, g(h(d)))] this
shows that S(P, 23) is self-embedding. Conversely, if P has no solution then
$(P, 23) is totally terminating and thus non-self-embedding by Theorem 5 and

[]
Prop. 6.

P r o p o s i t i o n 12. The TRS S(P, Q4) is non-self-embedding. It is simply termi-
nating if and only if P admits no solution.

Proof. We prove that/A(P, 24) is non-self-embedding, non-self-embeddingness
of S(P, 24) follows then by Prop. 6. Suppose to the contrary that L/(P, 24) is
self-embedding. Using a standard minimality argument we obtain

t = A(V,W,g(d,e,t')) -++(P, Q4) u = A~V,W',v) -~*~mb t

such that t contains only one A symbol. Hence rules in $mb({A}) are not ap-
plied. So W I -+~mb W and v -+*Ernb g(d,e,t') must hold. By Prop. 3 either

247

g(d, e, t') --+Q4 v or A(V, W, g(d, e, t')) --+u(P,O)+ .A(V, W', g(d, e, t')). The former
contradicts the non-self-embeddingness of Q4 and the latter simple termination
of L/(P, O) iProp. 4).

If P has a solution then with help of Props. 2 and 7 we obtain the cyclic
SiP, Q4) u $mb(Yu U YQ)-reduction

AiV, W,g(d,e,d)) -++ Cl[AiV, W,g(d,h(e),e))] -++ A(V, W,g(d,e,e))

-++ C2[A(V, W, g(hid), e, d))] -++ A(V, W, g(d, e, d)).

So in this case $(P, Q4) is not simply terminating. Conversely, if P has no
solution then S(P, Qa) is totally terminating and hence simply terminating by
Theorem 5 and Prop. 6. []

P r o p o s i t i o n l 3 . The TRS S(P, Q~) is simply terminating. It is totally termi-
nating if and only i]P admits no solution.

Proo/. If P has no solution then total termination of S(P, Qh) follows from
Theorem 5 in conjunction with Prop. 6. It remains to show that S(P, Qh) is
simply terminating but not totally terminating whenever P has a solution. By
Prop. 6, it is sufficient to show this for L/(P, Q).

Let P have a solution. Any infinite Ll(P, Qh)-reduction would by Propo-
sition 3 imply an infinite Qh-reduction, contradicting termination of Qh- So
L/(P, Qh) is terminating and, since it is length preserving, even simply terminat-
ing. Suppose U(P, Qh) is totally terminating. With help of Prop. 2 we conclude
the existence of a total reduction order > such that both A(V, W,g(d,e)) >
AiV, W, g(e, e)) and AiV , W, g(g, e)) > A(V, W, g(d, d)). By the truncation rule
for total reduction orders > in Zantema [17] one may remove the context C from
an inequation C[t] > C[t']. By doing this for the contexts A(V, W, g(_, e)) and
A(V, W,g(d, _)) we get d > e and e > d, which contradicts the irreflexivity of >.
So U(P, Qh) cannot be totally terminating. []

Of course the question emerges whether the next implication - - w-termination
total termination - - is undecidable even for single rule TRSs. It is not hard

to encode the implication in a suitable TRS Q6, but one needs the stronger re-
sult of w-termination in Theorem 5. In the full version [10], we present a proof
in w 4. Trying hard we have also established a termination proof in w 2 but no
proof in w. So the question remains open.

Conclusion

We have shown that the lower five levels of the termination hierarchy are rel-
atively undecidable even for single rules. These results shows how difficult it is
in general to detect one of the properties in the termination hierarchy. A con-
sequence of our work is the impossibility of extending methods for establishing
total termination, like recursive path orders and Knuth-Bendix orders, to a level
where total termination can always be detected. This even holds if only simply
terminating single rewrite rules are allowed as input for the method.

248

References

1. M. Dauchet. Simulation of Turing machines by a regular rewrite rule. Theoretical
Computer Science, 103(2):409-420, 1992.

2. N. Dershowitz. Termination of rewriting. Journal of Symbolic Computation, 3(1
&: 2):69-116, 1987.

3. N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In Handbook of Theoretical
Computer Science, volume B, pages 243-320. Elsevier, 1990.

4. N. Dershowitz, J.-P. Jouannand, and J.W. Klop. Problems in rewriting III. In
Proc. 6th RTA, volume 914 of LNCS, pages 457-471, 1995.

5. M. Ferreira. Termination of term rewriting - well-foundedness, totality, and trans-
formations. PhD thesis, University of Utrecht, 1995.

6. M. Ferreira and H. Zantema. Dummy elimination: Making termination easier. In
Proc. lOth FCT, volume 965, pages 243-252, 1995.

7. M. Ferreira and H. Zantema. Total termination of term rewriting. Applicable
Algebra in Engineering, Communication and Computing, 7(2):133-162, 1996.

8. A. Geser. Omega-termination is undecidable for totally terminating termrewriting
systems. Technical Report MIP-9608, University of Passan, 1996. To appear in
Journal of Symbolic Computation.

9. A. Geser, A. Middeldorp, E. Ohlebusch, and H. Zantema. Relative undecid-
ability in term rewriting. In Proc. CSL, Utrecht, 1996. Available at h t t p : / /
www. score, is. t sukuba, ac. jp/.~ami/papers/cs196, dvi.

10. A. Geser, A. Middeldorp, E. Ohlebusch, and H. Zantema. Relative undecidability
in the termination hierarchy of single rewrite rules. Technical report, 1997. Avail-
able at http ://www-sr. informatik, uni-tuebingen, de/~geser/papers/caap97-
full. dvi.

11. G. Huet and D. S. Lankford. On the uniform halting problem for term rewriting
systems. Rapport Laboria 283, INRIA, 1978.

12. P. Lescanne. On termination of one rule rewrite systems. Theoretical Computer
Science, 132:395-401, 1994.

13. A. Middeldorp and B. Gramlich. Simple termination is difficult. Applicable Algebra
in Engineering, Communication and Computing, 6(2):115-128, 1995.

14. A. Middeldorp and H. Zantema. Simple termination of rewrite systems. Theoret-
ical Computer Science, 175, 1997. To appear.

15. David Plaisted. The undecidability of self-embedding for term rewriting systems.
Information Processing Letters, 20:61-64, 1985.

16. E. Post. A variant of a recursively unsolvable problem. Bulletin of the American
Mathematical Society, 52, 1946.

17. H. Zantema. Termination of term rewriting: interpretation and type elimination.
Journal of Symbolic Computation, 17:23-50, 1994.

18. H. Zantema. Total termination of term rewriting is undecidable. Journal of Sym-
bolic Computation, 20:43-60, 1995.

19. H. Zantema and A. Geser. Non-looping rewriting. Technical Report UU-CS-1996-
03, Utrecht University, 1996. Available at f tp: / / f tp .cs . rnu.nl /pub/KUU/CS/
techreps/CS-1996/1996-03 �9 ps. gz.

20. Hans Zantema. Termination Of term rewriting by semantic labelling. Fundamenta
Informaticae, 24:89-105, 1995.

