
Word-into-Trees Transducers with Bounded Difference

Yves ANDRE* and Francis BOSSUT

L.I.F.L., U.R.A. 369 C.N.R.S.
University of Lille 1, 59655 Villeneuve d'Ascq Cedex. France.

e-maih{andre, bossut} @ fifl.fifl.fr
* also at University of Lille 3, I.U.T. "B" Tourcoing.

Abs t r ac t . Non-deleting Word-into-Trees Transducers with bounded dif-
ference are investigated in this paper. Informally, these transducers which
produce trees from words have the property that the difference of height
of any couple of trees (the input tree being a word) is bounded. We estab-
lish the fact that the tree transformations induced by such transducers
have some good closure properties.

1 Introduction

We extend here a result of Elgot and Mezei [4] about rational relations with
the property that the difference of length of two words in relation is bounded.
These relations can be seen as the sets obtained by means of computat ions of
2- tape-automata with bounded delay which are also equivalent with letter-to-
letter 2-au tomata with terminal function [7]. Mezei and Elgot showed that such
rational relations are closed under intersection and set difference.
We take an interest in a class of (non-deterministic) finite state transducers
which transform words into trees and verify the property of bounded difference
(between the heights of any input word and its output trees). We prove here
that the class of t ransformations induced by such transducers is closed under
intersection and set difference. We cannot hope a similar result for an other
class of tree transformations when even in the letter-to-letter case (obviously
with bounded difference) these closure properties are not satisfied 1
In section 3.2 using syntactic technics, we first normalize our transducers with
bounded difference, following in such a way works of Frougny and Sakarovitch
who propose a resynchronization of au toma ta with bounded delay. Let us note
that the transducers we obtain are not letter-to-letter transducers but transduc-
ers for which states appear at depth one in the right-hand side of the rules. We
call them f iat transducers.

In section 3.4 we show that word-into-trees letter-to-letter transducers can be
simulated by au toma ta with equivalence constraints between direct subterms.

1 For instance let us consider the letter-to-letter transducers T1 and T2 defined as fol-
lows : T1 : q(a(x, y)) -+ 8(q'(x), q'(y)), q'(a(x)) --+ a(q'(x)) and q'(5) --+ ~ and
T2 : q(a(x ,y)) --+ 8(q'(y),q'(x)), q'(a(x)) -+ a(q'(x)) and q'(d) --+ ~. The
intersection of the tree transformations associated with T1 and T2 is the set
{(~(a"(~), a'~(~)), 5(a"(~), a~(a))} which is not realizable by a tree transducer.

178

These automata belong to the general class of automata with constraints intro-
duced by A.C. Caron [2] and denoted by AC. So word-into-trees letter-to letter
transducers inherit the good properties of AC.
In the next sections (3.5 and 3.6) we express the intersection and the set differ-
ence induced by flat word-into-trees transducers in terms of intersection and set
difference of transformations induced by letter-to-letter word-into-trees trans-
ducers.

2 P r e l i m i n a r i e s

In this section, we just recall definitions and properties used in the following. We
refer the reader to [8] for tree rewriting systems and to [5] for tree transducers.

A ranked alphabet is a pair (S, p) where S is a finite alphabet and p is a mapping
from S to lh r. Usually, we will write S for short. For any cr of S , p(c~) is called
the rank of e. For any integer n, 2:n denotes the subset of S of letters of rank
n. For any k _> 1, Xk denotes the set of variables {Xl, .., zk}.
Given a ranked alphabet S , a denumerable set X of variables and a finite set Q
of unary symbols, T2 (X) denotes the set of all terms (trees) over S and indexed
by X and Ts(Q(X)) denotes the set of all terms (trees) over S and indexed by
Q(X), i.e. terms of the form t(ql(xix), . . . , qn(Xi~)) (t being a linear term). For
short, we denote by Ts(Q(x)) the set of terms T~(Q({x})) for any x C X. In
the particular case T~(O), we will write T~. Let S be a ranked alphabet, t be in
T~ (X) and Q , . . . , t~ be trees over S , the result of substituting tl for xi in t is
denoted by t (t l , . . . , t ,) . For any tree t, the height (or depth) of t , denoted by rr(t),
is defined by rr(t) = 0 i f t �9 So or t �9 Xp and 7r(t) = 1 +max{~r(tl),...,Tr(t~)}
i f t = e (t l , . . . , t .) .
For any term t, we denote by Y(t) the set of variables which appear in t.
A rewriting rule over an alphabet cr is a couple (l, r) of terms of T$ (X), usually
denoted l --~ r, such that either 7r(1) >_ 1 and]2(r) C V(l) or l and r are elements
of T~. A rewriting system S over an alphabet S is a finite set of rewriting rules
over S. We write t --+s t ~ if t is rewritten in t t by using one rule of S. By -~s
we denote the reflexive and transitive closure of--+s.
A rewriting system S over an alphabet S is noetherian if there does not exist any
infinite sequence to --+s tl --+s �9 �9 �9 tl --+s �9 �9 �9 A rewriting system. S is confluent, if

�9 * - -~s Y Vx, Vy, Vz �9 T~ (X), (z -+s x and z -+s Y) :=r 3t �9 T~ (X) (x t and --~s t).
Let S be noetherian and confluent; the unique irreducible form of any term t is

denoted by S(t).

2 . 1 T r a n s d u c e r s

A finite state top-down tree transducer is a 5-tuple T = < ~U, A, Q, I, R > where
S and A are ranked Mphabets of respectively input and output symbols, Q is a
finite set of unary symbols called states, I is the subset of Q of initial states and
R is a finite set of rules of the form q(~(x l , . . . , x=)) -+ t with q E Q, a E Z~

179

and t E Ta(Q(X~)) or of the form q(~r) --+ t with ~ E ~0 and t E Tax 1
A transducer is fiat if , for every rule, all states appear at depth 1 in the
right-hand side of the rules. A transducer is letter-to-letter if, for every rule,
its right-hand side is of the form 5(ql(x~l) , . . . , q,~(xim)) with 5 E A and for any
j E [m] xi~ E { x l , . . . , x n } .
The rules define a rewriting system over 5Y U ~ U Q, so we write t ~ u if t is
rewritten in u in one step. By -~ we denote the reflexive and transitive closure
of --+. A sequence of rewriting steps q(t) 2+ u is called a computation.
For any state q, the transformation realized from q is the set :s = {(t, u) E

T~ • Ta I q(t) 2+ u}. We denote by T the tree transformation associated with
T, i.e. the set {(t, u) E T~ x Ta] qo(t) 4 u, q0 E I}. The domain of a tree trans-
formation T is the set {t/(t, u) ff 5~}. Two transducers T and T' are equivalent
i f2~= T' .

A transducer is non-deleting (resp. linear) if, for each rule, variables of the left-
hand side appear at least (resp. at most) once in the right-hand side.

We call height difference, or difference for short, of a pair of trees (t, u) the
integer [rr(t) - re(u)[. A transducer is said to be with bounded difference if there
exists an integer k such that the height difference of every pair of trees (t, u) of
the tree transformation T is smaller or equal to k.
Note that in the case of a non-deleting transducer T the height difference of any
couple of trees (t, u) of T can be defined as re(u) - re(t) (because in this case we
have rr(u) > re(t)).

A finite state word-into-trees transducer, denoted by wtt for short, is a finite
state transducer the input alphabet of which is composed of letters of rank 0
and of rank 1 only. Input trees can be seen as words.
In the sequel, we will consider non-deleting Word-into-Trees Transducers with
Bounded Difference (note that a deleting transducer is not generally a trans-
ducer with bounded difference). We denote by W T T ~ the class of all non-deleting
Word-into-Trees Transducers with Bounded Difference.

Example
Let us consider the transducer T = < Z, A, Q, I, R > of W T T r w h e r e s --- {~},

~1 = {a}, A 0 ---- {~}, A 1 _-- {a}, A 2 ---- {b} and let r be a ground tree over A.
The sets of states are Q -- {q, q'} and I = {q}. R is composed of the rules

q(a(x)) --+ b(b(q'(x), r) , q'(x)) 2 q'(a(x)) --+ b(r, q'(x))
q'(a(x)) --+ a(q'(x)) q'(a) --+ ~t

2.2 Automata with Constraints

In order to handle non-linearity, the classical notion of tree automata has been
extended by adding some tests in the rules ([1], [2], [3]).

1 Rules of the form q(~(x)) -+ q'(x) are not allowed
2 In these rules x stands for xl

180

Here, we will use tree au tomata with equivalence tests between direct subterms.

An equivalence description on n elements is a partit ion of [hi. Let ~ be an equiv-
alence relation on T~ and let d be an equivalence description on In]. A tuple of
terms (ti)ic[~] satisfies the equivalence description d if and only if for any X E d,
for any i and j E X, t i~tj , and for any X and Y in d with X ~ Y, i E X, j E Y
implies "~(tiOt j).
A bot tom-up automaton with equivalence tests between direct subterms is a 4-
tuple < Z, Q, F, R > where E is a ranked alphabet, Q is a finite set of states, F
is the subset of Q of final states and R is a finite set of rules. Rules are usually

denoted by a(q~, .., q,~) -~ q where d is an equivalence description on [hi.
Let A be such an automaton, we have t -+A t' with t = to(a(ql(tl) , . . . , qn(t~))),

d
. , t' = to(q(a(Q,., t~))) if there exists in R a rule of the form a(qt , . . . , q~) q

such that (ti)ie[~] satisfies the equivalence description d. By "~A we denote the
reflexive and transitive closure of -~A. A tree t is recognized by A if there exists
a final state q such that t -~A q(t). The set of all trees recognized by automaton
A is denoted by E(A).

An automaton with equivalence constraints is deterministic (resp. complete) if
and only if for any letter c~ E ~n, for any n-tuple of states ql , q~ and for
any equivMence description d there exists at most (rasp. at least) one rule of the

form c~(ql, . . . , qn) d q. Using classical methods [2] we can compute a complete
anddeterminis t ic automaton from any non-complete and non-deterministic one.
Moreover the class AC is effectively closed under boolean operations : comple-
mentation, union and intersection. Especially we can construct the product of
two such automata : the composition of the two rules a(ql , . . . , qn) -~ q and

�9 ~' q , a(q~, . . , q~) --4 being the rule a((ql, q~),... (qn, q~)) c~ ' (q, q,).

For any equivalence relation 8 , we denote by R E C o the class of automata
wi'th equivalence tests between direct subterms where the equivalence relation

is O .

2.3 A u t o m a t a w i t h "Fu l l " C o n s t r a i n t s

Let ~ be an equivalence relation. We denote by REC]o the subclass of R E C e
composed of the automata such that , along any successful run, all the rules which
are applied carry a full constraint, i.e an equivalence constraint between all the

successors of the node. These rules are of the form c~(ql, . . . , q~) [1,::g~] q- The

class RECJoverifies the following property :

Property 1. The union, intersection and difference of tree languages recogniz-
able by automata of RECS~are also recognizable by some automaton of REC~.

H I N T O F P R O O F :
The completion of an automaton does not affect its successful runs. So we con-

sider only "complete" automata.

181

Let M1 and M2 be complete automata of RECfo. We construct both the au-
tomaton of union and intersection from the "product" of automata. For each
successful run of the automata of the union or intersection, at least its "projec-
tion" on the first or the second component coincides with a successful run of M1
or M2, what means that a full constraint is satisfied on each node.
Now, to obtain the automaton of the difference, we build the "product" of au-
tomaton M1 with the automaton which recognizes the complement of the set
recognized by M2. For each successful run of this automaton, its "projection"
on the first component coincides with a successful run of M1, what means that
a full constraint is satisfied on each node. []

3 N o n - d e l e t i n g W o r d - i n t o - T r e e s T r a n s d u c e r s w i t h

B o u n d e d D i f f e r e n c e

3.1 I t is d e c i d a b l e w h e t h e r a n o n - d e l e t i n g w t t is w i t h b o u n d e d
d i f f e r e n c e

We show that the problem of the bounded difference in W T T ~ can be reduced
to the problem of bounded difference for finite state transducers of words.
From any transducer T = < Z, A, Q, qo, RT > with bounded difference, we can
construct the transducer T ~ = < ~, A ~, Q, q0, RT, > where
q(~(x)) --+ t(ql(x), . . . ,qn(x)) E RT =~ q(c~(x)) ---+ c%(~l~ql(x),...,gt.qn(x)) E
RT, with crn E A~,3 E A] so that the q~(z)'s are at the same depth in both
rules.

Obviously T is with bounded difference iff T ~ is with bounded difference. Note
that now, for each (u, v) E ~'7, all the branches ofv are of depth greater than 7r(u).

From T', we construct L = < Z, {~, @}, 2q • Q, ({q0}, q0), RL > where the set
RL is the result of the algorithm :

Beginning with the state ({q0}, q0), we iterate the following procedure while new
states appear.
For each new state ({q l , . . . , qn}, qi) :
* we introduce the rules ({q l , . . . , q,}, qi)a(z) --+ ~t(({q~,. . . , q~}, qis)(x)) in RL
if and only if

VAG [n] 3 q~a(x)-+t~(q~l(x),q~(x), . . .) GRT, and
{q~, q2,"" ', qk} = U;=l{qzl, qa2,. . .} and
l is the depth of qlj in ti in the rule qia(x) -+ ti(qi~(x),..., qlj(x),...) E RT,

�9 we introduce the rules ({ql, q2 , . . . , qn}, q~)-5 --+ (~t# in RL if and only if (V)~ C [n] 3 q),-5 --+ t;~ E RT
and l is the depth of some branch of tj in the rule qi -5 -+ ti E RT,

It is obvious that we get the property :

V(w, t) E T~ • Ta : qow - ~ t ~ ({q0}, qo)w --~*L ~ for all n length of some
branch of t. So, if L verifies the bounded difference property then T ~ verifies also

182

A

this property. Conversely if ({q0}, qo)w --+*L ~ # there exists (w, t) E T ' so that
t has one branch of length n. So if L does not verify the property of bounded
difference, T ' does not verify it.

Proper ty2 . It is decidable to determine whether a word-into-trees transducer
T verifies or not the property of bounded difference.

PROOF :
T induces a t ransformation with bounded difference if and only if L is also a
finite state transducer of words with bounded difference which is decidable (see
for example [7]). []

Note that , as it is the case for any top-down tree transducer, emptiness is de-
cidable for the t ransformation induced by any word-into-trees transducer.

3 .2 N o r m a l i z a t i o n o f a t r a n s d u c e r 6 f W T T r

In this section, we show that we can associate with any transducer T of W T T r
a flat transducer T which realizes the same transformation. The idea is to sub-
st i tute a flat rule for every rule of T for which the states of the right-hand side
appear a t a depth greater than 1 ; the delay in the construction of the output
tree is memorized in new states. To construct these new states we need to define

Q as the set {qi of rank 0 / q i e Q}.
For instance, from the rule q(a(x)) --+ b(b(q'(z), T), q'(z)) of T (in example of
section 2:1), we construct the rule q(a(z)) --+ b (~ (z) , q'(x)); the new state

~ memorizing the delay in the construction of the output tree. At the next

step of the transformation, from this state ~ , the output tree b(., r) will
be produced, a new delay being eventually memorized.
Let p be such a new state. We will have p(cr(x)) aS the left-hand side of a rule
of 7- if, for every state 4 appearing in p, q(cr(x)) is the left-hand side of a rule of T.

C o n s t r u c t i o n o f a f iat t r a n s d u c e r
With T = < r , A, Q, q0, R > we associate the flat transducer 7" = < Z, A, Q, q0, 7E >

constructed by the following algorithm :

begin Q0 = Q1 = {q0}; T ~ = ~ ; n---- 1;
For every letter cr of Z which is t ransformed from q0

Case cr o f r ank 0
From every rule q0(~r) --~ ~ of R with ~ E Tn, we add in ~ the rule q0(c~) -+ ~.

Case ~ of rank i
From every rule q0(cr(x)) -+ $ (u l , . . . , u ,) of R where 6 e An and for any j E [n]
uj e Ta(Q(x)) (for some j we can have uj = r E Ta or uj = q'(x), q' E Q),
we add in n the rule q0(sr(x)) -+ ~ (f i l , . . . , fin) so that for any j C In],
either fij = uj if uj E T a or uj E Q(z) (if uj = q'(x) then q' is added to Qn)
or ~j = ~hj(z); ~j, obtained from uj by substituting 4 for q(z), is a tree of T~(~);

in this case, ~j is added to Qn.

183

REPEAT

n = n + l ; Q • = Qn-1
For every state q 6 Q ~ - I - Q~-~
Case q 6 Q

For every letter of Z which is t ransformed from q, we proceed<~s, in the initial
step of this algorithm.

Case q ~ Q
In this case, q = 7 (r l , . . . , r , ~) with 7 6 ,5 and r l , . . . , r m 6 Tz~Q) (for
some j 6 [m] we can have rj = 7- 6 Ta or rj = fi/p �9 Q).
Let Pl, . . . , / ~ be the elements of Q that appear in q.
For every letter cr of Z which is t ransformed from q (i.e. which!can be
transformed in T from the states P l , . . . ,P,~) :

Case o" of rank 0

from every set of rules of R {pi(~)--+ • ,& �9 Ta}
we add in 7~ q(~r) --+ 7 (~1 , . . . , ~m) where either b = rj if rj --N:T�9 Ta
or ~j is obtained by substituting 6i for any fii in rj .
Case cr of rank 1

From every set of rules of n {p~(~(~)) ~ u~, i �9 N, u; �9 T,~(Q(x))}
we add in 7~ the rule q(~(x)) --+ 7(~1 , . . . ,~m) with ~j = rj i f r j 6 Ta
or ~j = sj(x) where sj, tree over Ta((~), is obtained by substi tuting ff~ to
every fii in rj.

UNTIL Qn = Qn-1- end

It is easy to observe that this algorithm will end as the transducer T f r o m which
the flat transducer 7- is constructed is a transducer with bounded difference.
In such a transducer, rules for which, in the right-hand side, states appear at a
depth greater than 1 can be applied only a finite number of times.

E x a m p l e

Let us consider the transducer defined in section 2.1. The flat transducer equiv-
alent with it is defined as follows :

q(a(x)) --+ b (~ (x) , q'(x))
q'(a(x)) --+ a(q'(x))
q' ((t) --+ 6t

~ (a (x)) -~ b (~ i x) , T)

~ (a (x)) --+ a (~ (x))

(Trees written into boxes are new states)

q'(a(x)) ~ b(7-, q'(x))

~ (a (~)) ~ b([-d~(~), 7-)
~ (a (x)) --+ b(7",[-a~(x))
[-~-~(a(x)) -+ a (~ (x))

We have q(a(a(~))) --+T b(b(q' (a(~)), 7-), q' (a(~))) -~T b(b(a(q' (~t)), 7-), a(q' (~t)))
-~T b(b(a(a), r) , a(a)) when we will have in t h e f l a t form of T q(a(a(~))) -+7-
b (~ (a (~)), q' (a(a))) -5,7- b (b (~ (~ t) , 7-), a(q'(~t))) -:+7- b(b(a(a), 7-), a(a))

184

With this correspondence between the computations in T and the computations
in 7- we can establish that T and 7- are equivalent transducers. So, we conclude

T h e o r e m 1. W T T ~ = f la t W T T ~ .

3 . 3 T h e # - f o r m s o f a F l a t T r a n s d u c e r .

For any natural number #, we associate with any flat transducer T = < Z, A, Q, qo,
RT > of W T T ~ a transducer T ~ = < Z ' , A ' ,Q ' = Q u {q~},q~0, RT, > of
W T T ~ w h e r e RT, , Z I, AI are constructed as follows:

- any rule of RT on letters of non-null arity is also a rule of RT, ; so Z~ = Z1
and A C A~;

- for any rule of the form qoa(x) --+ t in RT, we have the rule q~oa(x) --+ t in

RT,;
- for any (u, v) in T with ~r(u) < #, we have the rule q~ou -+ v in RT, where

u, v are now considered as letters of respectively Z~ and A~;
- for any state q in Q, for any (u, v) in Tq with r (u) = #, we have the rule

qu --+ v in RT, where u, v are now considered as letters of respectively Z ~

and A I.
Computations in T and T~ are nearly identical with only the slight difference
that computations on the input word or a suffix of the input word of length less
than or equal to # are realized in T~ in one step.

3.4 C o r r e s p o n d e n c e b e t w e e n L e t t e r - t o - l e t t e r w t t a n d A u t o m a t a o f

RECfo

We establish, in this part, the fact that the computations of a letter-to-letter
wtt can be simulated by the runs of an automata with constraints, and there-
fore, the transformation realized by such a transducer can be encoded into an

automaton-definable set of trees.
Let us consider the class of letter-to-letter wtt from Tz into Ta . We associate
with the pair of alphabets ~ , A the alphabet denoted ~ | A such that :

Vi [Z | A]i = Z1 x Ai and [~ @ A] 0 = Z 0 x A 0 .
So, we define two noetherian and confluent rewriting systems 7 and ~ composed

of the following rules :
V(a, fl) �9 [Z | A]i (a, fl) (x , x , . . . , x) ~-+ a(x) is a rule ~ v"

i t i m e 8

V(a, f l) � 9 1 7 4 (a, f l) ~ - ~ a i s a r u l e o f %
V(a, fl) � 9 1 7 4 (a, f l) (x l , x 2 , . . . , x i) ~ + f l (x l , z 2 , ' " , x i) i s a r u l e ~
V(a,fl) � 9 1 7 4 (a, f l) ~ + f l i s a r u l e o f T .
Any term w of T~| has a normal form for ~/which be denoted by 3~(w), and a

normal form for ~ denoted by ~(w).
Let O be the equivalence relation on T~| such that t o t ' ca -/(t) = -y(t'). We
associate with T = < Z, zi, Q, qo, RT > (letter-to-letter wtt) the bot tom-up au-

tomaton of REC/o MT = < Z | zh, Q, q0, T > where

185

7-={(~,f l)(ql , . . . ,qn)[]- ' : :~n] q / q ~ -+ fl(q](x), . . . ,qn(x)) E RT}.
The elements of s are roughly speaking a kind of "superposition" of the
components of the couples (u, v) of T. But, as the transducer T can duplicate
an input and then process its copies differently, we read along all the branches
of an dement w of s exactly the same sequence u of labels of Z which
corresponds to the input word. The constraints of equivalence between all the
successors ([1, 2 , . . . , n]) upon all the rules ensures this property. Now, if we con-
sider only the second component of the nodes (symbols of A), we ge t an ouput
tree v for the input word u as the transitions of 7- are compatible with those of
RT (we get together the input and output symbols and the transformations of
states are the same)�9 So we obtain :

Proper ty3 . Every letter-to-letter wtt T can be simulated by an automaton M
of REC]e. What means that :

V(u,v) E T 3 w E s such that T(w) = u and-~(w) = v and
Vw E s (7(w),~(w)) E T.

E x a m p l e

Let T = < {a, 7}, {a, b, ~}, {q}, q, RT > be a letter-to-letter wtt where RT con-
tains the rules: qa(x) -+ a(q(x))ib(q(x), q(x)) and q~ --+ ~.
Then MT = < {(a, a), (a, b), (7, 7)}, {q}, q, 7- > where 7- contains the transitions

(a,a)q-+ q (a,b)(q,q) [~-~]q and (7,7)--+q.

a, a)

J
(a,

%. jJ'++ '%\

(7,7) (7,7)

(a, b)
�9 . 7 " ~ " ~

(a, b)
~

7 "+" ",\
(a,a) (a,a)

J J
(7,7)

Left-mentionned
is the tree w of s corresponding to
(aaaT, b(ab(7,-d), b(aT, a-d))) E T.
Observe that along all its branches, we read
the same sequence aaa7 on the first com-
ponents of the labels of the nodes.

Conversely, with any automaton M = < Z | A, Q, F, 7- > of REC]o, we can
associate the letter-to-letter wtt T - < Z, A, Q u {p}, p, }~T > where

RT -= {q o~(x) -+ fl(ql(x), . . . ,qn(x)) / (o~,fl)(qz,...,qn) [1'22) :n] q E 7-}

U {p o~(x) --+ f l(ql(x), . . . ,qn(x)) / (cr,fl)(q],... , qn) [1,::~n] q E 7- and q E F}
U {q / -+ q E 7-}.

So, we have obviously

Proper ty 4. Every automaton of RECfo can be interpreted as a letter-to-letter
wtt.

186

3 . 5 I n t e r s e c t i o n o f F l a t T r a n s d u c e r s

Let T1 = < Z , A , QI,qo, RT~ > and T2 = < Z , z~ ,S2 , so,RT~ > be two fiat trans-
ducers of W T T ~ .
In the following, we will only consider normal computations of a couple (u, v)
where u = x lx2 xn(x i �9 bY). A computation will be "norma~' in our sense if
it begins by the rewriting of all the occurrences of x~, next those of x~ and so
on until those of x,~ and one process the rewritings of the different occurrences
of xl from left to right.
Let (u, v) be an element of T~ ~ T~, r be a normal computation of (u, v) in T1
and r be a normal computation of (u, v) in T2:

I. At each step of the computation, the obtained trees ti (resp. t~) can be de-

composed into a tree tl (resp. t~) of Tzx (X) composed with a n-uple t i of trees
of Q I (T ~) (resp. of Q2(T~)) . So r and r can be developped as:

~ --). ~ - - 4 ~ - +

r : qo u --+ t l t l -+ t2 t2-+ . . . --4 t j tj--+ . . . --+ v
~ - . + ~ ---~ ~ - +

s 0 u - + t l v

5 That ;) and f o r i � 9 = t j Suppose that there exists j such that t j r t j
means that, during the j - 1 first steps, the rules applied in both computations
rewrite the same symbol of ~ into the same tree of T~ (X), and at the j th step :
- the rule used in r is of the form :

q a(x) -+ b(rl, r~ , . . . , r~) with ri = qi(x) or ri = r~ �9 T,~
- the rule used in r is of the form :

I s a(x) -+ b (r ~ , g , . . . , r ~) with r[= s i (x) or v[= r i �9 Ta
but at least one k (�9 [hi) is such that (vk = qk(x) and v~ = r~) or (r~ =

=

The consequence is that, at this point of the computations, the length of the
suffix u' of u which has not been yet transformed is less than 7r(rk)(or ~r(r~))
because qk u' --+* u' -+* rk). T~ rPk (or sk T~

II . The "p-forms" of the transducers allow us to erase these local differences

between these two computations :
Let be 9 -- max(91,92) + 1 where 01 = m a x { l r (d i) / 3 l~ -+ di �9 RT~} and
0~ = rnax{r (d~) /3 l~ -+ d~ �9 RT:} . Let T~ and T~ be the ~-forms ofT1 and T2.
So, from r we deduce the computation ~b~ : q0 ut * i " ' Y T ~ v t

and from r we deduce the computation r : s~ u' --+T~* v'.
A

Then, we have immediatly (u', v') ~ T~ N T~2 and at each step of the computa-
tions r and r the applied rules rewrite the same symbol of Z ' into t h e s ame

tree of Ta, (X).

I I I . Now, from T~ and T~, we construct the letter-to-letter wtt L1 = < ~ , A", Q~,
q~o,RL~ > and L~ --< ~ ' , A " , S ' , J o , RL~ :> in which each term of Tzv(X) which
appears in the right-hand side of the rules of T~ (resp. T~) is now considered as

a single symbol :

187

- q a(x) + t(ql(x), . . . ,q~(x)) E RT~ =~ q a(x) --~ t (ql (x) , . . . ,q , (x)) E RL~
- s a(x)--+ t (s l (x) , . . . , sn(x)) E RT~ ~ s a (x) ~ t(s~(x), . . . ,sn(x)) E RL2
and t E A' .
So, from r we deduce the computation r : q~ u' --+* v", and from r we L1

A h

deduce the computation ~/e,L --+* v'. ~2 : slo u' Then, we have (u / ,v ') E L1 M L2. L2

IV. Thus, as L1, L2 are letter-to-letter transducers of W T T ~ , they can be sim-
ulated by automata of RECfo: ML1 and ML2 (see section 3.4).

As RECfois closed under intersection, s N s is also an automaton-
definable set of trees. Let MLlnL2 be the automaton which recognizes f~(ML1) N
s

V. Let E be the canonical injection from XY | A" into Z x A. From MLlnL2, it
is easy to construct a flat transducer I1,2 of W T T ~ from T.~ into Ta such that

w E s r E(W) E I1,2.

Lemma 1. The class of transformations realized by transducers of WTT~
closed under intersection.

From the previous constructions, we get I1,2 = T1 V) T2.

is

3.6 Set D i f f e r e n c e

Let T1 =< ~, A, Q1, q0, RT1 > and T2 =< ~, A, $2, so, RT2 > be flat transduc-
ers of W T T r .

We want to state that ~ - ~ is also a transformation realized by a transducer
of W T T ~ . Whereas consider ~11 - T'22, we take an interest in Tll - (~ N T-~I) or
more exactly in the elements which belong to ~11 and not to (T'~2 M ~) . Let I1,2
a transducer of W T T ~ such 11,2 = (T2 M T1).
In order to compare computations in T1 and in I1,2, as previously, we use the '%
forms" of these transducers where 8 = max(01,82)+1 with 01 = max {~r(di)/3 li --~
d~ E RT1} and t~2 = max{rc(d~)/3 l~ --+ d~ E RI~,2}.
Following the same arguments as in the previous section, we get the following
property :

The computations of a same couple in T~ and in I e 1,2 are, with the exception of
the states, the same.
Now, from T~ and I e 1,2, we construct the letter-to-letter transducers T~ 'L and

I~, 'L of W T T ~ in which each term of Ta, which appear in the right-hand side
of rule of T~ (resp. I~,~) is considered as a single symbol of A".

These transducers can be simulated by automata MT~,L , MI~,L of R E C] that
we rename respectively M1 and M1,2.

From M1 and M1,2, it is possible to construct an automaton of RECIo which
recognizes the elements of s which do not belong to s Let us call
this automaton M1-2. This automaton can be decoded into a transducer T1-2
o f W T T r .

188

Z e m m a 2. The class of transformations induced by transducers of W T T r i s
closed under set difference.
HINT OF PROOF :
We prove that, for T1, T2 transducers of W T T r , we have T1-2 = :F1 - Tz.
�9 Let (u, v) be an element of T1-2. It is obvious that (u, v) E T1, but suppose

that it belongs to T2.
Let (u', v') be a couple of ~ ' • A' which corresponds to (u, v). So the computa-
tions of (u', v') in T~ and T~ will be the same and then (u', v') will be encoded
into a word w which should belong to t:(M12). So w ~ / : (M1 -2) which contra-

dicts the hypothesis that (u, v) E T1-2.
�9 Conversely, let (u, v) e TI-:F2. So (u, v) has no corresponding (u', v') e T~NT~,
therefore no corresponding (u', v') E ~ , L N ~re'L and finally no corresponding
w E f~(MT~,~). Any corresponding w to (u, v) is in / : (M1). Thus any correspond-

ing w to (u, v) is in l:(M1-2) what means that (u, v) e T1-2-C]

As a straightforward consequence of the previous result, we get our main theo-
rem and its immediate corollary :

Theorem 2. The class of transformations induced by transducers of W T T r i s
closed under union, intersection and set difference.
Corollary 1. The equivalence of two transducers T1, T2 of W T T r i s decidable.

R e f e r e n c e s

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

B. Bogaert and S. Tison. Equality and disequality constraints on direct sub-
terms in tree automata. Proceedings of STACS 1992. LNCS 577, pp 161-171.
A.C. Caron. Structures et d~cision en r~criture. Ph.D. thesis. University of

Lille 1. 1993.
A.C. Caron, J.L. Coquid~ and M. Dauchet. t~ncompassment Properties and
Automata with Constraints. Proceedings o/RTA '93. LNCS 690, pp 328-341.
C.C. Elgot and J.E. Mezei. On relations defined by generalized finite au-
tomata. In IBM J. Res. Develop.. Nber 9, pp 47-68, 1965.
J. Engelfriet. Bottom-up and top-down tree transformations: a comparison.
Mathematical system theory. Vol 9. pp 198-231. 1975.
J. Engelfriet. Some open questions and recent results on tree transducers and
tree languages. In Formal language theory ed. by R. V. Book, Academic press

1980, pp 241-286.
C. Frouguy and J. Sakarovitch. Synchronised rational relations of finite and
infinite words. In Theoretical Computer Science. Nber 108, pp 45-82. 1993.
G. Huet. Confluent reductions: Abstract properties and applications to term
rewriting system. J.A.C.M. ~7. pp 797-821. 1980.

