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Abs t r ac t .  Non-deleting Word-into-Trees Transducers with bounded dif- 
ference are investigated in this paper. Informally, these transducers which 
produce trees from words have the property that the difference of height 
of any couple of trees (the input tree being a word) is bounded. We estab- 
lish the fact that the tree transformations induced by such transducers 
have some good  closure properties. 

1 Introduction 

We extend here a result of Elgot and Mezei [4] about  rational relations with 
the property that  the difference of length of two words in relation is bounded. 
These relations can be seen as the sets obtained by means of computat ions  of 
2- tape-automata  with bounded delay which are also equivalent with letter-to- 
letter 2-au tomata  with terminal function [7]. Mezei and Elgot showed that  such 
rational relations are closed under intersection and set difference. 
We take an interest in a class of (non-deterministic) finite state transducers 
which transform words into trees and verify the property of bounded difference 
(between the heights of any input word and its output  trees). We prove here 
that  the class of t ransformations induced by such transducers is closed under 
intersection and set difference. We cannot hope a similar result for an other 
class of tree transformations when even in the letter-to-letter case (obviously 
with bounded difference) these closure properties are not satisfied 1 
In section 3.2 using syntactic technics, we first normalize our transducers with 
bounded difference, following in such a way works of Frougny and Sakarovitch 
who propose a resynchronization of au toma ta  with bounded delay. Let us note 
that  the transducers we obtain are not letter-to-letter transducers but transduc- 
ers for which states appear at depth one in the right-hand side of the rules.  We 
call them f iat transducers. 

In section 3.4 we show that  word-into-trees letter-to-letter transducers can be 
simulated by au toma ta  with equivalence constraints between direct subterms. 

1 For instance let us consider the letter-to-letter transducers T1 and T2 defined as fol- 
lows : T1 : q(a(x, y)) -+ 8(q'(x), q'(y)), q'(a(x)) --+ a(q'(x)) and q'(5) --+ ~ and 
T2 : q(a(x ,y))  --+ 8(q'(y),q'(x)),  q'(a(x)) -+ a(q'(x)) and q'(d) --+ ~. The 
intersection of the tree transformations associated with T1 and T2 is the set 
{(~(a"(~), a'~(~)), 5(a"(~), a~(a))} which is not realizable by a tree transducer. 
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These automata  belong to the general class of automata  with constraints intro- 
duced by A.C. Caron [2] and denoted by AC. So word-into-trees letter-to letter 
transducers inherit the good properties of AC. 
In the next sections (3.5 and 3.6) we express the intersection and the set differ- 
ence induced by flat word-into-trees transducers in terms of intersection and set 
difference of transformations induced by letter-to-letter word-into-trees trans- 
ducers. 

2 P r e l i m i n a r i e s  

In this section, we just recall definitions and properties used in the following. We 
refer the reader to [8] for tree rewriting systems and to [5] for tree transducers. 

A ranked alphabet is a pair (S,  p) where S is a finite alphabet and p is a mapping 
from S to lh r. Usually, we will write S for short. For any cr of S ,  p(c~) is called 
the rank of e. For any integer n, 2:n denotes the subset of S of letters of rank 
n. For any k _> 1, Xk denotes the set of variables {Xl, .., zk}. 
Given a ranked alphabet S ,  a denumerable set X of variables and a finite set Q 
of unary symbols, T2 (X) denotes the set of all terms (trees) over S and indexed 
by X and Ts(Q(X))  denotes the set of all terms (trees) over S and indexed by 
Q(X), i.e. terms of the form t(ql(xix), . . . ,  qn(Xi~)) (t being a linear term). For 
short, we denote by Ts(Q(x)) the set of terms T~(Q({x})) for any x C X. In 
the particular case T~(O), we will write T~. Let S be a ranked alphabet, t be in 
T~ (X) and Q , . . . ,  t~ be trees over S ,  the result of substituting tl for xi in t is 
denoted by t ( t l , . . . ,  t ,) .  For any tree t, the height (or depth) of t ,  denoted by rr(t), 
is defined by rr(t) = 0 i f t  �9 So or t �9 Xp and 7r(t) = 1 +max{~r(tl),...,Tr(t~)} 
i f t  = e ( t l , . . . , t . ) .  
For any term t, we denote by Y(t) the set of variables which appear in t. 
A rewriting rule over an alphabet cr is a couple (l, r) of terms of T$ (X), usually 
denoted l --~ r, such that  either 7r(1) >_ 1 and ]2(r) C V(l) or l and r are elements 
of T~. A rewriting system S over an alphabet S is a finite set of rewriting rules 
over S.  We write t --+s t ~ if t is rewritten in t t by using one rule of S. By -~s 
we denote the reflexive and transitive closure of--+s. 
A rewriting system S over an alphabet S is noetherian if there does not exist any 
infinite sequence to --+s tl --+s �9 �9 �9 tl --+s �9 �9 �9 A rewriting system. S is confluent, if 

�9 * - -~s  Y Vx, Vy, Vz �9 T~ (X), (z -+s x and z -+s Y) :=r 3t �9 T~ (X) (x t and --~s t). 
Let S be noetherian and confluent; the unique irreducible form of any term t is 

denoted by S(t). 

2 . 1  T r a n s d u c e r s  

A finite state top-down tree transducer is a 5-tuple T = <  ~U, A, Q, I, R > where 
S and A are ranked Mphabets of respectively input and output  symbols, Q is a 
finite set of unary symbols called states, I is the subset of Q of initial states and 
R is a finite set of rules of the form q(~(x l , . . . ,  x=)) -+ t with q E Q, a E Z~ 



179 

and t E Ta(Q(X~)) or of the form q(~r) --+ t with ~ E ~0 and t E Tax 1 
A transducer is fiat if , for every rule, all states appear at depth 1 in the 
right-hand side of the rules. A transducer is letter-to-letter if, for every rule, 
its right-hand side is of the form 5(ql(x~l) , . . .  , q,~(xim)) with 5 E A and for any 
j E [m] xi~ E { x l , . . . , x n } .  
The rules define a rewriting system over 5Y U ~ U Q, so we write t ~ u if t is 
rewritten in u in one step. By -~ we denote the reflexive and transitive closure 
of --+. A sequence of rewriting steps q(t) 2+ u is called a computation. 
For any state q, the transformation realized from q is the set :s = {(t, u) E 

T~ • Ta I q(t) 2+ u}. We denote by T the tree transformation associated with 
T, i.e. the set {(t, u) E T~ x Ta ] qo(t) 4 u, q0 E I}. The domain of a tree trans- 
formation T is the set {t/(t,  u) ff 5~}. Two transducers T and T'  are equivalent 
i f2~= T' .  

A transducer is non-deleting (resp. linear) if, for each rule, variables of the left- 
hand side appear at least (resp. at most) once in the right-hand side. 

We call height difference, or difference for short, of a pair of trees (t, u) the 
integer [rr(t) - re(u)[. A transducer is said to be with bounded difference if there 
exists an integer k such that  the height difference of every pair of trees (t, u) of 
the tree transformation T is smaller or equal to k. 
Note that  in the case of a non-deleting transducer T the height difference of any 
couple of trees (t, u) of T can be defined as re(u) - re(t) (because in this case we 
have rr(u) > re(t)). 

A finite state word-into-trees transducer, denoted by wtt for short, is a finite 
state transducer the input alphabet of which is composed of letters of rank 0 
and of rank 1 only. Input trees can be seen as words. 
In the sequel, we will consider non-deleting Word-into-Trees Transducers with 
Bounded Difference (note that  a deleting transducer is not generally a trans- 
ducer with bounded difference). We denote by W T T ~  the class of all non-deleting 
Word-into-Trees Transducers with Bounded Difference. 

Example 
Let us consider the transducer T = <  Z, A, Q, I, R > of W T T r w h e r e  s --- {~}, 

~1 = {a}, A 0 ---- {~}, A 1 _-- {a}, A 2 ---- {b} and let r be a ground tree over A. 
The sets of states are Q -- {q, q'} and I = {q}. R is composed of the rules 

q(a(x)) --+ b(b(q'(x), r) ,  q'(x)) 2 q'(a(x)) --+ b(r, q'(x)) 
q'(a(x)) --+ a(q'(x)) q'(a) --+ ~t 

2.2 Automata  with Constraints 

In order to handle non-linearity, the classical notion of tree automata  has been 
extended by adding some tests in the rules ([1], [2], [3]). 

1 Rules of the form q(~(x)) -+ q'(x) are not allowed 
2 In these rules x stands for xl 
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Here, we will use tree au tomata  with equivalence tests between direct subterms. 

An equivalence description on n elements is a partit ion of [hi. Let ~ be an equiv- 
alence relation on T~ and let d be an equivalence description on In]. A tuple of 
terms (ti)ic[~] satisfies the equivalence description d if and only if for any X E d, 
for any i and j E X,  t i~tj ,  and for any X and Y in d with X ~ Y,  i E X, j E Y 
implies "~( tiOt j ). 
A bot tom-up automaton with equivalence tests between direct subterms is a 4- 
tuple < Z, Q, F, R > where E is a ranked alphabet, Q is a finite set of states, F 
is the subset of Q of final states and R is a finite set of rules. Rules are usually 

denoted by a(q~, .., q,~) -~ q where d is an equivalence description on [hi. 
Let A be such an automaton,  we have t -+A t' with t = to(a(ql(tl) , . . . ,  qn(t~))), 

d 
. ,  t' = to(q(a(Q,., t~))) if there exists in R a rule of the form a(qt , . . . ,  q~) q 

such that  (ti)ie[~ ] satisfies the equivalence description d. By "~A we denote the 
reflexive and transitive closure of -~A. A tree t is recognized by A if there exists 
a final state q such that  t -~A q(t). The set of all trees recognized by automaton 
A is denoted by E(A). 

An automaton with equivalence constraints is deterministic (resp. complete) if 
and only if for any letter c~ E ~n,  for any n-tuple of states ql . . . .  , q~ and for 
any equivMence description d there exists at most (rasp. at least) one rule of the 

form c~(ql, . . . ,  qn) d q. Using classical methods [2] we can compute a complete 
anddeterminis t ic  automaton from any non-complete and non-deterministic one. 
Moreover the class AC is effectively closed under boolean operations : comple- 
mentation, union and intersection. Especially we can construct the product of 
two such automata  : the composition of the two rules a(ql , . . . ,  qn) -~ q and 

�9 ~' q ,  a(q~, . . ,  q~) --4 being the rule a((ql, q~),... (qn, q~)) c~ '  (q, q,). 

For any equivalence relation 8 ,  we denote by R E C o  the class of automata  
wi'th equivalence tests between direct subterms where the equivalence relation 

is O .  

2.3 A u t o m a t a  w i t h  "Fu l l "  C o n s t r a i n t s  

Let ~ be an equivalence relation. We denote by REC]o the subclass of R E C e  
composed of the automata  such that ,  along any successful run, all the rules which 
are  applied carry a full constraint, i.e an equivalence constraint between all the 

successors of the node. These rules are of the form c~(ql, . . . ,  q~) [1,::g~] q- The 

class RECJoverifies the following property : 

Property  1. The union, intersection and difference of tree languages recogniz- 
able by automata of RECS~are also recognizable by some automaton of REC~.  

H I N T  O F  P R O O F  : 
The completion of an automaton does not affect its successful runs. So we con- 

sider only "complete" automata.  
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Let M1 and M2 be complete automata  of RECfo.  We construct both the au- 
tomaton of union and intersection from the "product" of automata.  For each 
successful run of the automata  of the union or intersection, at least its "projec- 
tion" on the first or the second component coincides with a successful run of M1 
or M2, what means that  a full constraint is satisfied on each node. 
Now, to obtain the automaton of the difference, we build the "product" of au- 
tomaton M1 with the automaton which recognizes the complement of the set 
recognized by M2. For each successful run of this automaton,  its "projection" 
on the first component coincides with a successful run of M1, what means that  
a full constraint is satisfied on each node. [] 

3 N o n - d e l e t i n g  W o r d - i n t o - T r e e s  T r a n s d u c e r s  w i t h  

B o u n d e d  D i f f e r e n c e  

3.1 I t  is d e c i d a b l e  w h e t h e r  a n o n - d e l e t i n g  w t t  is w i t h  b o u n d e d  
d i f f e r e n c e  

We show that  the problem of the bounded difference in W T T ~  can be reduced 
to the problem of bounded difference for finite state transducers of words. 
From any transducer T = <  Z, A, Q, qo, RT > with bounded difference, we can 
construct the transducer T ~ = <  ~,  A ~, Q, q0, RT, > where 
q(~(x)) --+ t(ql(x), . . . ,qn(x)) E RT =~ q(c~(x)) ---+ c%(~l~ql(x),...,gt.qn(x)) E 
RT, with crn E A~,3 E A] so that  the q~(z)'s are at the same depth in both 
rules. 

Obviously T is with bounded difference iff T ~ is with bounded difference. Note 
that  now, for each (u, v) E ~'7, all the branches ofv are of depth greater than 7r(u). 

From T',  we construct L = <  Z, {~, @}, 2q • Q, ({q0}, q0), RL > where the set 
RL is the result of the algorithm : 

Beginning with the state ({q0}, q0), we iterate the following procedure while new 
states appear. 
For each new state ({q l , . . . ,  qn}, qi) : 
* we introduce the rules ( {q l , . . . ,  q,}, qi)a(z) --+ ~t(({q~,. . . ,  q~}, qis)(x)) in RL 
if and only if 

VAG [n] 3 q~a(x)-+t~(q~l(x),q~(x), . . . )  GRT, and 
{q~, q2,"" ', qk} = U;=l{qzl, qa2,. . .} and 
l is the depth of  qlj in ti in the rule qia(x) -+ ti(qi~(x),..., qlj(x),...) E RT, 

�9 we introduce the rules ({ql, q2 , . . . ,  qn}, q~)-5 --+ (~t# in RL if and only if ( V)~ C [n] 3 q),-5 --+ t;~ E RT 
and l is the depth of  some branch of  tj in the rule qi -5 -+ ti E RT, 

It is obvious that  we get the property : 

V(w, t) E T~ • Ta : qow - ~  t ~ ({q0}, qo)w --~*L ~ for all n length of some 
branch of t. So, if L verifies the bounded difference property then T ~ verifies also 



182 

A 

this property. Conversely if ({q0}, qo)w --+*L ~ #  there exists (w, t) E T '  so that  
t has one branch of length n. So if L does not verify the property of bounded 
difference, T '  does not verify it. 

Proper ty2 .  It is decidable to determine whether a word-into-trees transducer 
T verifies or not the property of bounded difference. 

PROOF : 
T induces a t ransformation with bounded difference if and only if L is also a 
finite state transducer of words with bounded difference which is decidable (see 
for example [7]). [] 

Note that ,  as it is the case for any top-down tree transducer, emptiness is de- 
cidable for the t ransformation induced by any word-into-trees transducer. 

3 .2  N o r m a l i z a t i o n  o f  a t r a n s d u c e r  6 f W T T r  

In this section, we show that  we can associate with any transducer T of W T T r  
a flat transducer T which realizes the same transformation.  The idea is to sub- 
st i tute a flat  rule for every rule of T for which the states of the right-hand side 
appear  a t  a depth greater than 1 ; the delay in the construction of the output  
tree is memorized in new states. To construct these new states we need to define 

Q as the set {qi of rank 0 / q i  e Q}. 
For instance, from the rule q(a(x)) --+ b(b(q'(z), T), q'(z)) of T (in example of 
section 2:1), we construct the rule q(a(z)) --+ b ( ~ ( z ) ,  q'(x)); the new state 

~ memorizing the delay in the construction of the output  tree. At the next 

step of the transformation,  from this state ~ ,  the output  tree b(., r)  will 
be produced, a new delay being eventually memorized. 
Let p be such a new state. We will have p(cr(x)) aS the left-hand side of a rule 
of 7- if, for every state 4 appearing in p, q(cr(x)) is the left-hand side of a rule of T. 

C o n s t r u c t i o n  o f  a f iat  t r a n s d u c e r  
With T = < r ,  A, Q, q0, R > we associate the flat transducer 7" = <  Z,  A, Q, q0, 7E > 

constructed by the following algorithm : 

begin Q0 = Q1 = {q0}; T ~ = ~ ;  n---- 1; 
For every letter cr of Z which is t ransformed from q0 

Case  cr o f  r ank  0 
From every rule q0(~r) --~ ~ of R with ~ E Tn, we add in ~ the rule q0(c~) -+ ~. 

Case ~ of rank i 
From every rule q0(cr(x)) -+ $ ( u l , . . . ,  u ,)  of R where 6 e An and for any j E [n] 
uj e Ta(Q(x)) (for some j we can have uj = r E Ta  or uj = q'(x), q' E Q), 
we add in n the rule q0(sr(x)) -+ ~ ( f i l , . . . ,  fin) so that  for any j C In], 
either fij = uj if uj E T a  or uj E Q(z) (if uj = q'(x) then q' is added to Qn) 
or ~j = ~hj(z); ~j, obtained from uj by substituting 4 for q(z), is a tree of T~(~); 

in this case, ~j is added to Qn. 
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REPEAT 

n = n + l ;  Q • =  Qn-1 
For every state q 6 Q ~ - I  - Q~-~ 
Case q 6 Q 

For every letter of Z which is t ransformed from q, we proceed<~s, in the initial 
step of this algorithm. 

Case q ~ Q 
In this case, q = 7 ( r l , . . . , r , ~ )  with 7 6 ,5 and r l , . . . , r m  6 Tz~Q) (for 
some j 6 [m] we can have rj = 7- 6 Ta or rj  = fi/p �9 Q). 
Let Pl, . . . , / ~  be the elements of Q that  appear  in q. 
For every letter cr of Z which is t ransformed from q (i.e. which!can be 
transformed in T from the states P l , . . .  ,P,~) : 

Case o" of rank 0 

from every set of rules of R {pi(~)--+ • ,& �9 Ta}  
we add in 7~ q(~r) --+ 7 (~1 , . . . ,  ~m) where either b = rj  if rj --N:T�9 Ta 
or ~j is obtained by substituting 6i for any fii in rj .  
Case cr of rank 1 

From every set of rules of n {p~(~(~)) ~ u~, i �9 N, u; �9 T,~(Q(x))} 
we add in 7~ the rule q(~(x)) --+ 7(~1 , . . . ,~m)  with ~j = rj i f r j 6  Ta 
or ~j = sj(x) where sj,  tree over Ta((~), is obtained by substi tuting ff~ to 
every fii in rj. 

UNTIL Qn = Qn-1-  end 

It  is easy to observe that  this algorithm will end as the transducer T f r o m  which 
the flat transducer 7- is constructed is a transducer with bounded difference. 
In such a transducer, rules for which, in the right-hand side, states appear  at a 
depth greater than 1 can be applied only a finite number  of times. 

E x a m p l e  

Let us consider the transducer defined in section 2.1. The flat transducer equiv- 
alent with it is defined as follows : 

q(a(x)) --+ b ( ~ ( x ) ,  q'(x)) 
q'(a(x)) --+ a(q'(x)) 
q' ( (t ) --+ 6t 

~ ( a ( x ) )  -~ b ( ~ i x ) ,  T) 

~ ( a ( x )  ) --+ a ( ~ ( x ) )  

(Trees written into boxes are new states) 

q'(a(x)) ~ b(7-, q'(x)) 

~ ( a ( ~ ) )  ~ b([-d~(~), 7-) 
~ ( a ( x )  ) --+ b(7",[-a~(x)) 
[-~-~(a(x)) -+ a ( ~ ( x ) )  

We have q(a(a(~) ) ) --+T b(b(q' (a(~) ), 7-), q' (a(~) ) ) -~T b(b(a(q' (~t) ), 7-), a(q' (~t) ) ) 
-~T b(b(a(a), r) ,  a(a)) when we will have in t h e f l a t  form of T q(a(a(~))) -+7- 
b ( ~ ( a ( ~ )  ), q' (a(a) ) ) -5,7- b ( b ( ~ ( ~ t ) ,  7-), a(q'(~t) ) ) -:+7- b(b(a(a), 7-), a(a)) 
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With this correspondence between the computations in T and the computations 
in 7- we can establish that  T and 7- are equivalent transducers. So, we conclude 

T h e o r e m  1. W T T ~ =  f la t  W T T ~ .  

3 . 3  T h e  # - f o r m s  o f  a F l a t  T r a n s d u c e r .  

For any natural number #, we associate with any flat transducer T = <  Z,  A, Q, qo, 
RT > of W T T ~  a transducer T ~ = <  Z ' ,  A ' ,Q '  = Q u {q~},q~0, RT, > of 
W T T ~ w h e r e  RT, ,  Z I, AI are constructed as follows: 

- any rule of RT on letters of non-null arity is also a rule of RT,  ; so Z~ = Z1 
and A C A~; 

- for any rule of the form qoa(x) --+ t in RT, we have the rule q~oa(x) --+ t in 

RT,;  
- for any (u, v) in T with ~r(u) < #, we have the rule q~ou -+ v in RT, where 

u, v are now considered as letters of respectively Z~ and A~; 
- for any state q in Q, for any (u, v) in Tq with r (u)  = #, we have the rule 

qu --+ v in RT,  where u, v are now considered as letters of respectively Z ~ 

and A I. 
Computations in T and T~ are nearly identical with only the slight difference 
that  computations on the input word or a suffix of the input word of length less 
than or equal to # are realized in T~ in one step. 

3.4 C o r r e s p o n d e n c e  b e t w e e n  L e t t e r - t o - l e t t e r  w t t  a n d  A u t o m a t a  o f  

RECfo  

We establish, in this part,  the fact that  the computations of a letter-to-letter 
wtt can be simulated by the runs of an automata  with constraints, and there- 
fore, the transformation realized by such a transducer can be encoded into an 

automaton-definable set of trees. 
Let us consider the class of letter-to-letter wtt from Tz into Ta .  We associate 
with the pair of alphabets ~ ,  A the alphabet denoted ~ | A such that  : 

Vi [Z | A]i = Z1 x Ai  and [ ~ @ A ] 0 = Z 0  x A 0 .  
So, we define two noetherian and confluent rewriting systems 7 and ~ composed 

of the following rules : 
V(a, fl) �9 [Z | A]i (a, fl) ( x , x , . . . , x )  ~-+ a(x)  is a rule ~  v" 

i t i m e 8  

V(a, f l ) � 9 1 7 4  (a, f l ) ~ - ~ a i s a r u l e o f %  
V(a, fl) � 9 1 7 4  (a, f l ) ( x l , x 2 , . . . , x i ) ~ + f l ( x l , z 2 , ' " , x i ) i s a r u l e ~  
V(a,fl) � 9 1 7 4  (a, f l ) ~ + f l i s a r u l e o f T .  
Any term w of T~| has a normal form for ~/which be denoted by 3~(w), and a 

normal form for ~ denoted by ~(w). 
Let O be the equivalence relation on T~| such that  t o t '  ca -/(t) = -y(t'). We 
associate with T = <  Z,  zi, Q, qo, RT > (letter-to-letter wtt) the bot tom-up au- 

tomaton of REC/o MT = <  Z | zh, Q, q0, T > where 
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7-={(~,f l)(ql , . . . ,qn)[]- ' : :~n] q / q ~ -+ fl(q](x), . . . ,qn(x)) E RT}. 
The elements of s are roughly speaking a kind of "superposition" of the 
components of the couples (u, v) of T. But, as the transducer T can duplicate 
an input and then process its copies differently, we read along all the branches 
of an dement  w of s exactly the same sequence u of labels of Z which 
corresponds to the input word. The constraints of equivalence between all the 
successors ([1, 2 , . . . ,  n]) upon all the rules ensures this property. Now, if we con- 
sider only the second component of the nodes (symbols of A), we ge t  an ouput 
tree v for the input word u as the transitions of 7- are compatible with those of 
RT (we get together the input and output symbols and the transformations of 
states are the same)�9 So we obtain : 

Proper ty3 .  Every letter-to-letter wtt T can be simulated by an automaton M 
of REC]e. What means that : 

V(u,v) E T  3 w E s  such that T(w) = u and-~(w) = v and 
Vw E s (7(w),~(w)) E T. 

E x a m p l e  

Let T = <  {a, 7}, {a, b, ~}, {q}, q, RT > be a letter-to-letter wtt where RT con- 
tains the rules: qa(x) -+ a(q(x))ib(q(x), q(x)) and q~ --+ ~. 
Then MT = <  {(a, a), (a, b), (7, 7)}, {q}, q, 7- > where 7- contains the transitions 

(a,a)q-+ q (a,b)(q,q) [~-~]q and (7,7)--+q. 

a, a) 

J 
(a, 

%. jJ'++ '%\ 

(7,7) (7,7) 

(a, b) 
�9 . 7  " ~ " ~  

(a, b) 
~ 

7 "+" ",\ 
(a,a) (a,a) 

J J 
(7,7) 

Left-mentionned 
is the tree w of s corresponding to 
(aaaT, b(ab(7,-d), b(aT, a-d))) E T. 
Observe that along all its branches, we read 
the same sequence aaa7 on the first com- 
ponents of the labels of the nodes. 

Conversely, with any automaton M = <  Z | A, Q, F, 7- > of REC]o, we can 
associate the letter-to-letter wtt T - <  Z, A, Q u {p}, p, }~T > where 

RT -= {q o~(x) -+ fl(ql(x), . . . ,qn(x)) / (o~,fl)(qz,...,qn) [1'22) :n] q E 7-} 

U {p o~(x) --+ f l(ql(x), . . . ,qn(x))  / (cr,fl)(q],... , qn) [1,::~n] q E 7- and q E F} 
U {q / -+ q E 7-}. 

So, we have obviously 

Proper ty  4. Every automaton of RECfo can be interpreted as a letter-to-letter 
wtt. 
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3 . 5  I n t e r s e c t i o n  o f  F l a t  T r a n s d u c e r s  

Let T1 = <  Z , A ,  QI,qo,  RT~ > and T2 = <  Z , z~ ,S2 ,  so,RT~ > be two fiat trans- 
ducers of W T T ~ .  
In the following, we will only consider normal computations of a couple (u, v) 
where u = x lx2  ..... xn(x i  �9 bY). A computation will be "norma~' in our sense if 
it begins by the rewriting of all the occurrences of x~, next those of x~ and so 
on until those of x,~ and one process the rewritings of the different occurrences 
of xl from left to right. 
Let (u, v) be an element of T~ ~ T~, r be a normal computation of (u, v) in T1 
and r be a normal computation of (u, v) in T2: 

I. At each step of the computation, the obtained trees ti (resp. t~) can be de- 

composed into a tree tl (resp. t~) of Tzx (X) composed with a n-uple t i of trees 
of Q I ( T ~ )  (resp. of Q2(T~)) .  So r and r can be developped as: 

~ --). ~ - - 4  ~ - +  

r : qo u --+ t l  t l -+ t2 t2-+ . . .  --4 t j  tj--+ . . .  --+ v 
~ - . +  ~ ---~ ~ - +  

s 0  u - +  t l  . . .  . . .  v 

5 That  ;) and f o r i � 9  = t j  Suppose that  there exists j such that  t j r  t j  
means that,  during the j - 1 first steps, the rules applied in both computations 
rewrite the same symbol of ~ into the same tree of T~ (X), and at the j th step : 
- the rule used in r is of the form : 

q a(x)  -+ b(rl,  r~ , . . . ,  r~) with ri = qi(x) or ri = r~ �9 T,~ 
- the rule used in r is of the form : 

I s a(x)  -+ b ( r ~ , g , . . . , r ~ )  with r[ = s i (x)  or v[ = r i �9 Ta 
but at least one k ( �9  [hi) is such that  (vk = qk(x) and v~ = r~) or (r~ = 

= 

The consequence is that,  at this point of the computations, the length of the 
suffix u' of u which has not been yet transformed is less than 7r(rk)(or ~r(r~)) 
because qk u' --+* u' -+* rk). T~ rPk (or sk T~ 

II .  The "p-forms" of the transducers allow us to erase these local differences 

between these two computations : 
Let be 9 -- max(91,92)  + 1 where 01 = m a x { l r ( d i ) / 3  l~ -+ di �9 RT~} and 
0~ = rnax{r (d~) /3  l~ -+ d~ �9 RT:} .  Let T~ and T~ be the ~-forms ofT1 and T2. 
So, from r we deduce the computation ~b~ : q0 ut * i " ' Y  T ~  v t  

and from r we deduce the computation r : s~ u' --+T~* v'. 
A 

Then, we have immediatly (u', v') ~ T~ N T~2 and at each step of the computa- 
tions r and r the applied rules rewrite the same symbol of Z '  into t h e  s ame  

tree of Ta, (X). 

I I I .  Now, from T~ and T~, we construct the letter-to-letter wtt  L1 = <  ~ ,  A", Q~, 
q~o,RL~ > and L~ --< ~ ' , A " , S ' , J o ,  RL~ :> in which each term of Tzv(X) which 
appears in the right-hand side of the rules of T~ (resp. T~) is now considered as 

a single symbol : 
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- q a(x) + t(ql(x), . . . ,q~(x)) E RT~ =~ q a(x) --~ t (ql (x) , . . . ,q , (x))  E RL~ 
- s a(x)--+ t (s l (x) , . . . , sn(x) )  E RT~ ~ s a ( x ) ~  t(s~(x), . . . ,sn(x))  E RL2 
and t E A' .  
So, from r we deduce the computation r : q~ u' --+* v", and from r we L1 

A h 

deduce the computation ~/e,L --+* v'.  ~2 : slo u' Then, we have (u / ,v ' )  E L1 M L2. L2 

IV.  Thus, as L1, L2 are letter-to-letter transducers of W T T ~ ,  they can be sim- 
ulated by automata  of RECfo:  ML1 and ML2 (see section 3.4). 

As RECfois closed under intersection, s N s is also an automaton- 
definable set of trees. Let MLlnL2 be the automaton which recognizes f~(ML1) N 
s 

V. Let E be the canonical injection from XY | A" into Z x A. From MLlnL2, it 
is easy to construct a flat transducer I1,2 of W T T ~  from T.~ into Ta  such that  

w E s r E(W) E I1,2. 

Lemma 1. The class of transformations realized by transducers of WTT~ 
closed under intersection. 

From the previous constructions, we get I1,2 = T1 V) T2. 

is 

3.6 Set  D i f f e r e n c e  

Let T1 =< ~,  A, Q1, q0, RT1 > and T2 =< ~,  A, $2, so, RT2 > be flat transduc- 
ers of W T T r .  

We want to state that ~ - ~ is also a transformation realized by a transducer 
of W T T ~ .  Whereas consider ~11 - T'22, we take an interest in Tll - ( ~  N T-~I) or 
more exactly in the elements which belong to ~11 and not to (T'~2 M ~ ) .  Let I1,2 
a transducer of W T T ~  such 11,2 = (T2 M T1). 
In order to compare computations in T1 and in I1,2, as previously, we use the '% 
forms" of these transducers where 8 = max(01,82)+1 with 01 = max {~r(di)/3 li --~ 
d~ E RT1} and t~2 = max{rc(d~)/3 l~ --+ d~ E RI~,2}. 
Following the same arguments as in the previous section, we get the following 
property : 

The computations of a same couple in T~ and in I e 1,2 are, with the exception of 
the states, the same. 
Now, from T~ and I e 1,2, we construct the letter-to-letter transducers T~ 'L and 

I~, 'L of W T T ~  in which each term of Ta, which appear in the right-hand side 
of rule of T~ (resp. I~,~) is considered as a single symbol of A".  

These transducers can be simulated by automata  MT~,L , MI~,L of R E C  ] that  
we rename respectively M1 and M1,2. 

From M1 and M1,2, it is possible to construct an automaton of RECIo which 
recognizes the elements of s which do not belong to s Let us call 
this automaton M1-2. This automaton can be decoded into a transducer T1-2 
o f  W T T  r . 
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Z e m m a  2. The class of transformations induced by transducers of W T T r i s  
closed under set difference. 
HINT OF PROOF : 
We prove that,  for T1, T2 transducers of W T T r ,  we have T1-2 = :F1 - Tz. 
�9 Let (u, v) be an element of T1-2. It is obvious that  (u, v) E T1, but suppose 

that it belongs to T2. 
Let (u', v') be a couple of ~ '  • A' which corresponds to (u, v). So the computa- 
tions of (u', v') in T~ and T~ will be the same and then (u', v') will be encoded 
into a word w which should belong to t:(M12). So w ~ / : (M1 -2 )  which contra- 

dicts the hypothesis that  (u, v) E T1-2. 
�9 Conversely, let (u, v) e TI-:F2. So (u, v) has no corresponding (u', v') e T~NT~, 
therefore no corresponding (u', v') E ~ , L  N ~re'L and finally no corresponding 
w E f~(MT~,~). Any corresponding w to (u, v) is in / : (M1).  Thus any correspond- 

ing w to (u, v) is in l:(M1-2) what means that  (u, v) e T1-2-C] 

As a straightforward consequence of the previous result, we get our main theo- 
rem and its immediate corollary : 

Theorem 2. The class of transformations induced by transducers of W T T r i s  
closed under union, intersection and set difference. 
Corollary 1. The equivalence of two transducers T1, T2 of W T T r i s  decidable. 
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