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A b s t r a c t .  We consider automata with counters whose values are up- 
dated according to signals sent by the environment. A transition can be 
fired only if the values of the counters satisfy some guards (the guards of 
the transition). We consider guards of the form yi#yj  "+ ci,j where yi is 
either x '  or xl, the values of the counter i respectively after and before 
the transition, and # is any relational symbol in {=, <, >, >, <}. We 
show that the set of possible counter values which can be reached after 
any number of iterations of a loop is definable in the additive theory of 
N (or Z or R depending on the type of the counters). This result can be 
used for the safety analysis of multiple counters automata. 

1 I n t r o d u c t i o n  

Finite s tate  au toma t a  provide a nice framework for the verification of reactive 
systems. Their  main advantage is the equivalence between recognizability and 
definability in some decidable logic (e.g. Monadic Second Order Logic or some of 
its f ragments  such as tempora l  logics). This allows to verify fully automatical ly 
that  some structure defined by an au tomaton  satisfies a given formula. Au toma ta  
techniques are even optimal  for the model checking of tempora l  formulas (see 
[2]). The counterpar t  of these nice propert ies is the relatively weak expressive- 
ness of the finite s ta te  au t om a t a  models. Many actual  reactive systems require 
additional da ta  structures in order to be described in an accurate way. Many 
models extending finite a u t o m a t a  have been introduced in the literature. The 
most  well-known one is probably  t imed au toma ta  [1] which allow to consider 
some "real t ime" constraints while keeping the nice decidability propert ies (with 
a higher complexity).  

One of the most  impor tant  purpose of verification is the so-called safety anal- 
ysis which reduces most  of the t ime to the following question: "is a bad state 
reachable from the initial configuration ?" For finite s tate  au tomata ,  it is not 
difficult to compute  all reachable states. This is however a more delicate ques- 
tion with infinite s tates systems: the computabi l i ty  of reachable configurations 
depends on the model under consideration. Here, we aim at  contributing to this 
question by giving some decidability results. The model we consider is a "mul- 
tiple counters au tomaton" .  A configuration is not only described by a s tate  of 
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the system, but also by the values of finitely many counters which may take 
arbitrary (integer or real) values. Such counters (also called clocks in other con- 
texts) do not necessary measure the elapsed time (as in timed automata), but 
they may as well count some other data such as the distance covered by a car 
or the speed of a train. Transitions from a state to another depend also on the 
satisfaction of formulas by the actual counter values. Such a model is used in 
several papers, such as in [12]. For instance, Minsky machines [13] can be viewed 
as such multiple counter automata, which means that teachability is undecidable 
in general. 

There are two ways to overcome this problem: either we restrict the class 
of models we consider or else we consider (lower or upper depending on the 
problem) approximations of the model. Essentially, these two points of view are 
not different: if we find some appropriate restriction of the models, t.hen this 
corresponds to an appropriate class of approximations. The question then is to 
find a class which is as expressive as possible and for which reachability is still 
decidable. Assume for instance that counters may take integer values. Then we 
would like to describe sets of (reachable) configurations by Presburger formulas, 
assuming that the guards of the transitions are also expressed in Presburger 
arithmetic. This is not always possible because loops in the automaton yield 
fixed points which correspond to infinite disjunctions of Presburger formulas 
and actually, even with a single state, the set of reachable counters values can 
be a non-recursive set of integers (or reals if we consider real-valued counters). 

In this paper, we consider a fragment (or an approximation) yielding a de- 
cidable class. Our main result is the following: assume that the counters values 
before (unprimed names) and after a transition (primed names) are solutions of 
conjunctions of atomic formulas of the form x # y  ~ + c or x # y  + c or x~ # y  ~ + c or 
x # c  or x ' # c  where c E Z (resp c E R) and # e {<, >, =, >, <}. Then we show 
that the fixed point of iterating a composition of such transitions is expressible 

( 

in Presburger arithmetic. For automata with multiple nested iterations, then the 
same result holds provided that intermediate fixed points are expressible in the 
adequate fragment. 

Re la t ed  w o r k s  

There are several authors who considered other fragments and other approxima- 
tions. Let us briefly mention them and compare with our result. N. Halbwachs 
in [12] considers a similar model. A priori, the fixed point of a loop whose guard 
is g(x, x ~) is the set of counters values which satisfy the infinite disjunction (n is 

the number of iterations) V (3Xl. . .  3Xn.g(x, Xl) A . . .  g(Xn, x~)). N. Halbwachs, 
n----0 

following [7], considers a widening operation V and he computes an upper ap- 
proximation of the above infinite disjunction +~ Vn=o Pi by considering the limit 
of Po, PoVP1 ,PoVPIVP2 . . .  which is always reached after finitely many steps. 
Basically, the widening construction removes some of the constraints of either 
argument, until one of the constraint subsumes the other. Several strategies for 



270 

computing the polyhedron are given in [12]. 1 Consider however the following 
example: 

Example 1. There is only one state, one loop and two counters: initially the 
counters values satisfy 1 < x < 2, 1 < y < 2. The guard of the transition is given 
by x + 1 <_ x' <_ x + 2, y + 1 < y'  < y + 2. Successive values of the counters 
after each iteration are represented in figure 1. Following [12], we would get the 

/ 
/ 

/t t 

p ~ S  

S~ ~J 

Fig. 1. Successive values of the counters 

whole quarter of plan as an upper approximation. The exact computat ion is 
however possible, yielding 2y > x A 2x > y (which is depicted on the figure using 
dashed lines). The guards satisfy our conditions, hence we will get this exact 
computation using our result. 

P. Revesz in [15] also considers similar fixed point computation. The guards 
are of the form x~ > xj + k with k > 0, which disallows for instance equalities: 
it is not possible to express e.g. x' = x + 1." On the other hand, he is able to 
handle several loops. The application of this result to verification is investigated 
in [11]. It is also extended, allowing periodicity conditions in [17]. 

B. Boigelot and P. Wolper consider in [4] guards of the form x~ = xi + b plus 
additional guards involving only unprimed variables. They also get an exact 
fixed point computation in Presburger 's  arithmetic. Our result is more general 
in the sense that  we may also have relations x~#xj  + b (i.e. relations between 
different counters) and inequalities as well. On the other hand, the precondition 
on unprimed variables is more general in [4] than in our result. 

L. Fribourg and H. Olsen [10] consider a similar situation as in [4], except 
tha t  their preconditions are less general. On the other hand, they consider the 
case of several loops, which is not the case in [4]. 

B. Boigelot in [3] characterizes precisely the functions from Z n to Z"  of the 
form ] (x )  = Ax + b such that  the set of iterations of f is definable in weak 
monadic second order logic. This result is the most accurate one for the guards 
x' = Ax+b.  However, there is no inequality here and no guard relating unprimed 
variables. 

1 even if the guards in [12] are only linear substitutions, it can be extended to certain 
kind of linear inequality, and for instance to our example. 
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In [5], the authors consider guards which can be arbi t rary Presburger for- 
mulas. This model is more general than ours. However, they do not have any 
decidability result (the model is too expressive). They provide with approxima- 
tions computations which yield semi-decision algorithms. 

The paper is organized as follows. We start  in section 2 with our model 
of multiple counters au tomata  together with some examples of systems which 
are naturally expressed in this framework. We also explain the relationship with 
t imed automata.  Then we state our main result in section 3. Its proof is sketched 
in section 4. It relies on a careful analysis of shortest paths in a graph with an 
unbounded number of vertices. We show that  shbrtest paths always lay in some 
particular sets of paths whose weights can be described by a Presburger formula. 
The full paper can be retrieved on 
http ://www. isv. ens-cachan, frl-comon/ftp, art icles/mca, ps. 

2 M u l t i p l e  c o u n t e r s  a u t o m a t a  

In the following definition as well as in the rest of the paper, we consider integer 
valued counters. However, they can be real-valued as well without changing our 
results. 

D e f i n i t i o n  1. A multiple counters automata is a tuple (Q, qi, C, ~ c_ Q × G( C, C I) × 
Q) where 

- Q is a finite set of states 
- q~ E Q is an initial state 
- C is a finite set of counter names; C ~ is the set of primed counter names. 
- G(C, C ~) is the set of guards built on the alphabets C, C ~. A member of 

G(C, C') is a conjunction of atomic formulas of one of the forms x # y  + c, 
x # c  where x , y  • C U  C',  ~ E { > , < , = , > , < } .  and c E Z. (or in ~) 

A configuration of the automaton is a pair (q, v) where q • Q and v is a 
mapping from C into N (or Z or R or ]~_; as it is easy to see, this will not make 
any difference). 

The  automaton may move from a configuration (q, v) to a configuration 
(qt,v~), which we write (q,v) ~ (q~,v ~) if there is a triple (q,g, qr) • ~ such 

that  v(C), v'(C') ~ g, with the s tandard interpretation of relational symbols. 

Example 2. We consider a fragment 2 of the train example of [12]. On this example 
b is the number of beacons which have been encountered. It  is given by the 
environment and measures the covered distance, s is the number of ticks which 
are sent by a global counter. Figure 2 shows transitions for which the train is on 
t ime an remains on time. g is the guard b ~ = b, # = s + 1, s < b + 8 and h is the 
guard b < s + 8, b' = b + 1, # = s. For instance, (1,(2,7)) and (1,(2,8)) are two 
possible consecutive configurations since (2, 7), (2, 8) ~ g. 

2 This is because of size constraints of this paper. We consider the whole example,as 
well as some other examples in detail in the extended version of this paper. 
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h 

Fig. 2. A fragment of the train example 

Safety analysis reduces to the computation of reachable configurations (or 
a superset of the reachable configurations). It is possible to compute this set, 
starting with inner loops and trying to compute meta-transitions. The concept 
of meta-transition, is presented in [4]. It amounts to consider a (possibly infinite) 
succession of elementary transitions of the automaton as a single transition, the 
guard being the conjunction of the guards of individual transitions (intermediate 
counter values being existentially quantified). 

Example  3. Consider example 2. The sequence of transitions g*g (from state 1 to 
state 2) can be replaced with a meta-transition g+ whose guard is s _< b + 8, b ~ = 
b , #  < b + 9, s <_ # - 1 and h*h can be replaced with a meta-transition h + 
whose guard is b < s + 8, b < b' - 1,b ~ <_ s + 9, s ~ = s. 3 g+h + itself (which 
goes from 1 to itself) can be replaced with the meta transition whose guard 
is s < s t - 1, s t < b + 9, b ~ <_ s ~ + 9, b < b t - 1. Now, computing reachable 
configurations in state 1 reduces to compute the reachable configurations of a 
single state automaton with a single loop containing the computed guard. 

Relationship with t imed automata 

At a first sight, t imed automata  are different from counter au tomata  because 
the clocks always run at the same speed in the latter model whereas updates of 
the clocks seem to be possible only during a transition in the former model. 

However, using a trick proposed recently by L. Fribourg [9], it is not difficult 
to translate t imed au tomata  into (real-valued) counter automata,  at the price of 
adding a new clock, which is never reset. This translation does not change the 
structure of the automaton (transition and states are the same; the invariants 
and guards of the t imed au tomata  are used to compute the corresponding guard 
of the multiple counters automaton).  Therefore, t imed automata  are a particular 
case of multiple clocks automata.  

Further on, if we allow drifting clocks, then the simple above translation does 
not work any more, as it would yield guards of the form a x x < y ~ f l x  x, 
which are not allowed in our model. 

3 The computation of meta-transitions can be performed using the result of the present 
paper. 
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3 F i x e d  p o i n t  c o m p u t a t i o n s  

Computing a meta transition for the composition of two transitions is an easy 
task. The main problem is to compute the fixed point of an iteration of a tran- 
sition. Our main result, is that this is possible for a single loop, keeping the 
decidability of the computed guard: 

T h e o r e m 2 .  Given a transition (q,g,q),  there is an (effectively computable) 
Presburger arithmetic formula ¢(C, C') such that v, v' ~ ¢(C, C') if] there exists 
an n E N such that 

v, v' ~ 3C1, . . .  , 3Cn.g( C, C1) A . . . A g( Cn, C') 

This result is not obvious as the formula 3n ,3C1 , . . . , 3Cn .g (C ,  C1)A  . . .  A 
g (Cn ,C  ~) does not belong to Presburger arithmetic. It cannot be translated 
either (at least in an obvious way) into monadic second order logic: the counters 
vectors C1, . . . ,  Cn are ordered (and their ordering is relevant), hence we cannot 
simply associate with each sequence of components a set of integers. 

As usual in constraint solving we may represent inequalities x < y + d using 
a graph whose vertices are the variables and edges are labeled with the delay d. 
(This is used for instance in many scheduling applications, see e.g. [6]). Here we 
have an unbounded number of variables: m variables for each of C1, .. •, Cn. m is 
known in advance. However, n is unbounded (and actually existentially quanti- 
fied). Hence we consider a graph G(g, n) whose number of vertices is unbounded 
(n x m). The purpose then is to compute a Presburger formula, which depends 
on n, and which expresses minimal paths in such a graph. As the number of ver- 
tices is unbounded, it is not possible to apply classical graph algorithms (such 
as Bellman-Ford [6]). 

In the next section, which is devoted to the proof of this theorem, we develop 
a machinery to express these shortest paths; we first define the graph represen- 
tation of the problem. Then we fold the unbounded graph into a finite (fixed) 
graph and investigate the relations between the graph and its folded version, 
showing to which extent paths in one graph are related with paths in the other 
graph. 

Applications 

Let us first state some consequences of the theorem. We say that a multiple 
counters automaton (or a part of an automaton) is fiat if there is no nested loop 
in the transition graph. 

Corollary 3. Let ,4 be a fiat automaton and q, q~ be two states of A.  Then there 
is a (effectively computable) Presburger/ormula ¢q,q, (x, x') such that v, v '  
Ca,q, (x, x') iff (q', v') is accessible from (q, v). 

In other words, the binary accessibility relation is definable in Presburger 
arithmetic, which yields, thanks to [8]: 
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C o r o l l a r y  4. The Model checking of EF formulas is decidable for (infinite) tran- 
sitions systems that are defined by flat automata. 

The same results hold for real-valued counters. We only have to replace Pres- 
burger arithmetic with another theory; let 7~ be the additive theory of real num- 
bers with a predicate Int(x) which is satisfied by all integer values. This first-order 
theory is decidable, as it can be expressed in S1S (the monadic second-order 
logic), where real numbers are identified with infinite words (see e.g. [16]). 

C o r o l l a r y  5. The binary accessibility relation for fiat real-valued multiple counter 
automata is definable in T~. 

Then, for fiat t imed automata,  the same result holds, thanks to Fribourg's 
trick [9]. 

4 Proo f  of theorem 2 

4.1 W e i g h t e d  g r a p h s  o f  u n b o u n d e d  size 

First, for any guard, it is possible to assume without loss of generality tha t  g 
is a conjunction of inequalities x _< y' + d, x' < y + d, x < y + d, x' < y' + d. 
Indeed, strict inequalities can be replaced with non-strict inequalities, adding 
or removing 1 from the constant 4. Equalities are replaced with two inequalities. 
Finally, we can take care of x < c, where c is a constant by adding a dummy 
counter whose value is always 0. 

We consider weighted (directed) graphs G(g, n) whose vertices are pairs (i, t) 
with i C [1..m] and t C [0..n] are integers, n being a parameter  n > 1 and 
m = [C[. Given a guard g, the set of edges of G(g, n) consists of the following 
pairs: 

- for i , j  E [1..m] and t E [0. .n-1] ,  (i,t) -~ ( j , t + l )  iffg contains an inequality 
I X i ~ Xj "~ d. 

- for i, j e [1..m] and j • [1..n], (i, t) -~ (j, t - 1) iff g contains an inequality 

' < xj + d X i _  

- for i, j • [1..m] and t • [1.., n], (i, t) -~ (j, t) iff g contains an inequality 

i <  i + d  x i _ xj 

- for i, j • [1..m] and t • [0..n - 1], (i, t) -~ (j, t) iff g contains an inequality 

xi <_ xj + d. 

Example 4. Consider again example 2 and the meta-transition of example 3. The 
graph corresponding to the new guard s _< s' - 1, s' _< b + 9, b' < s' + 9, b < b' - 1 
is depicted on figure 3. 

4 For real-valued interpretations, strict inequalities cannot be removed and we have 
to consider in the graph both strict and non-strict inequalities. This complicates a 
little bit the picture, however nothing essential is changed. 
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-1 -1 -1 

s 9 . . . . . . .  
-1 -1 -1 

0 1 2 n-1 n 

Fig. 3. The graph corresponding to a meta-transition of example 3 

A path from a to b in a graph G is a finite sequence e l , . . .  ,eN-1 of edges 

ai - ~  ai+l such that  al = a and aN = b. A path is sometimes identified with 

the sequence of vertices a l , . . . ,  aN when there is no ambiguity. 
Let Ca(C, C') be the formula q C 1 , . . . ,  3Cn.g(C, C1)A. . .  Ag(Cn-1,  C').  Then 

proving the theorem amounts to show how to compute a formula which is equiv- 
alent to 3n.¢n( C, C'). 

Let F(i,  t, i', t') be the set of all paths from (i, t) to (i', t') in G(g, n). (This 
set can be infinite). The weight w(7) of a path ~/is the sum of weights of all 
edges along the path. 

The following lemma shows that  we can eliminate intermediate steps, sticking 
to paths from a fixed number of vertices to a fixed number of vertices. However, 
the set of paths is still potentially infinite. 

L e m m a 6 .  v,v '  ~ Cn(C,C ' )  i f f  ]or every indices i , j  E [1..m] 

- for all paths 
- for all paths 
- for all paths 
- for all paths 
- for all paths 

~/e F(i,  0, j ,  n), v, v' ~ xi ~ x~ + w(~/) 
~/ e F( i ,n , j ,O) ,  v ,v '  ~ x~ ~ xj  +w('y) 
7 e F ( i , 0 , j ,  0), v,v '  ~ x ~  <_x~+w(7)  
"7 E F(i ,  n, j, n), v, v' ~ x i xj + w(7 ) 

~ r ( i ,  n - 1, i ,  ~ - 1 ) ,  w ( ~ )  > 0 , / / n  > 2. 

4 . 2  T h e  f o l d e d  g r a p h  

In this section, we consider the "untimed" version of G(g, n), which corresponds 
to identify vertices which only differ in their second components. Basically, we 
can compute on this "folded version" H of G(g, n) a formula ~i,j which defines 
the set of all weights of paths from i to j .  

Let H be the three-coloured weighted graph whose vertices are [1..m] and 
whose edges are given by g: 

- ~ < ~ + d i s i n g  i -~ j i f x i < _ x j + d o r x  i xj 
1 

< xj + d  is in g - i d j i f  x i _ 
2 
d 

- i ~3  j i f x i - < x j ~  + d i s i n g  
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For each edge e in G we associate in an obvious way an edge in H: ;((i, t) -~ (j, t')) = 

i d j w i t h k = l i f t = t , , k = 2 i f t , < t a n d k = 3 i f t , > t ,  zr is extended to 
k 

paths of G(g, n). 

Example 5. Figure 4 shows the folded version of the graph given on figure 3. 

-1 -I 

Fig. 4. The folded graph 

Now, we need not to consider all paths in P( i , t , j , t ' ) :  according to lemma 6, 
we may only consider one path of H for each possible weight. Formally, if 7 6 
F( i , t , j ,  t') and c~(7 , e) is the multiplicity of e in 7r(7), 

w ( 7 )  = = e) × w(e )  
e e H  

Conversely, if we give the multiplicities ae of each edge e, there is a path 
corresponding to these multiplicities, iff they statisfy a given formula. Basically, 
such formula can be derived from Parikh's theorem [14]. Tha t  is what is stated 
in the next lemma. In what follows, a (resp. z) is a vector indexed by the set of 
edges of H: a = ((~el,..., ae.) .  

L e m m a T .  For every i , j ,  there is a Presburger formula / ' J  such that (~ ~ pi,j 
if] there is a path 7 from i to j in H such that w(7 ) = ~ e e H  (~e × w(e). 

R e m a r k :  If H does not involve colour 1 and either does not involve colour 
2 or colour 3, then we can already conclude the proof of theorem 2: from lemma 
6, and since there is no (non-empty) path in F(i,  O, j, O) U F(i,  n, j,  n) U F(i,  n - 
1 , i ,n  - 1) and either no path in F(i ,O, j ,n)  or no path in F(i ,n , j ,O) ,  we only 
have to find an equivalent Presburger formula for 3n. A~er(i,o,j,~) x~ < x~+w('~) 
(resp. 3n. A~er(i,mj,o)) x~ <_ xj + w(7)). Such a formula would be 

i=I j=l e6H e6H 

However, in general, a path in H does not necessary correspond to a path 
in G. Relationships between paths of H and paths of G(g, n) can be described 
more accurately. If 7 is a path of H ,  we let Ni(7) be the number of edges of 7 
whose colour is i and tit (7) = N3 (7) - N2 (')/). 
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L e m m a 8 .  A path 7 in H is the projection of some path in G(g, n) only if 
there are 61,62 E g such that 0 < 62 - 61 < n and for every prefix 7' of 7, 

e [61..621. 
Conversely, i f  there are 61,6~ E Z such that 0 < 62 - 61 < n and for every 

prefix 7' of 7, 62(7') E [61 + 1..62 - 1], then 7 is the projection of a path in 
G(g, n). 

Now, the problem is that the property of prefixes given in lemma 8 cannot 
be characterized by counting the number of occurrences of each edge in a path 
only; we have to exploit the fact that we are only interested in minimal weight 
paths. Moreover, we will show that among the paths of minimal weight (relating 
two given vertices) there are "regular" ones, for which we can compute the 
boundedness condition of lemma 8. 

4.3 Exploiting the quasi-ordering on paths 

Now, we come to the hard part of the proof which cannot be detailed in this 
short paper. Let us only give the milestones. First, we rule out the case of cycles; 
if there is a cycle 7 in H such that w(7) _> 0, it is not a minimal weighted path 
and if w(7) < 0, the fixed point of the iteration is reached after a computable 
bounded number of steps : 

L e r a m a 9 .  I f  there is a cycle 7 in H of length k such that w(7 ) < 0 and 6t(7) = 
k O, then Cn(C, C')  is unsatisfiable for n >_ 1 + ~. 

Now, we give some transformation rules on paths, which preserve the weight 
of minimal weight paths, and whose termination is guaranteed by the cycle- 
freeness of G. One transformation consists in locally gathering together elemen- 
tary cycles: 

L e m m a l 0 .  V ~ , 3 B , V k  E [0 . .n-  B],Vi , j  E [0, m],V7 E F ( i , k , j , B  + k),3 7' E 
F ( i ,  k , j ,  B + k), w('T) = w ( ~ / )  A 7~(~y 1) = c1.(0")C~.c2 with ~ an elementary cycle 
of H.  

Next, we apply two rules which duplicate or remove elementary cycles, yield- 
ing paths of smaller (or equal) weight and which are more "regular" (see fig 
5). 

3 cycles for 6 iterations 

2 cycles for 6 iterations 

Or 

6 cycles 

4 cycles 
Fig. 5. how to construct the regular path 
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If the path is long enough, then we get a normal form which is depicted on 
figure 6 : the paths rlk and r/~ have a width bounded by a constant B (independent 
from n) and Ok, 8~ go from one extremity to the other. They consist themselves 
of a path of length bounded by B followed by an iteration of a particular cycle 
of H,  followed by a bounded length path. Moreover, the number of such paths 
~/k is smaller than the number of counters. 

B B 

~111 01 

B B 

0 t f n 

Fig. 6. Only paths going "back and forth" have to be considered 

Then when n is large enough (n >_ 2B), Cn(C, C') is logically equivalent to 
a formula 

~x B, 3x" - n, ~1 (x, x B) A ~2 (x B) A ~3 (x B , x " -  B) ^ ~2 (x" - B) ^ ~1 (x"-  n,  x') 

~1 expresses the constraints generated by B iterations of the loop ~2 ex- 
presses the constraints between counters values after B iterations and which 
correspond in the graph to paths r/, whose width is bounded by K.  ~3 expresses 
paths that  are the iteration of elementary cycles of H,  and which brings from 
the (B + i)ths values of the counters to the n - B - j ths  values of the counters, 
for i, j E [0, B]. 

5 C o n c l u s i o n  

We have shown that  the fixed point of a single loop of multiple counters automata 
is definable in the additive theory of N (resp. ]~, resp. Z). Thanks to this result, 
it is possible to compute the exact set of reachable configurations in a number of 
situations for which such a computation was unknown. This also provides better 
approximations for the general case. The complexity of the resulting reachability 
analysis is high (a double exponential in the number of counters since the length 
of the formula is exponential in the number of counters in the worst case). It 
seems however to be manageable on the examples: the upper bound needs not 
to be met on all examples. 
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