
Multiple Counters Automata, Safety Analysis and
Presburger Arithmetic

Huber t Comon and Yah Jurski

LSV, ENS Cachan
61 av. president Wilson

94235 Cachan cedex
France

E-mail {comon, jurski}@isv, ens-cachan, fr

A b s t r a c t . We consider automata with counters whose values are up-
dated according to signals sent by the environment. A transition can be
fired only if the values of the counters satisfy some guards (the guards of
the transition). We consider guards of the form yi#yj "+ ci,j where yi is
either x ' or xl, the values of the counter i respectively after and before
the transition, and # is any relational symbol in {=, <, >, >, <}. We
show that the set of possible counter values which can be reached after
any number of iterations of a loop is definable in the additive theory of
N (or Z or R depending on the type of the counters). This result can be
used for the safety analysis of multiple counters automata.

1 I n t r o d u c t i o n

Finite s tate au toma t a provide a nice framework for the verification of reactive
systems. Their main advantage is the equivalence between recognizability and
definability in some decidable logic (e.g. Monadic Second Order Logic or some of
its f ragments such as tempora l logics). This allows to verify fully automatical ly
that some structure defined by an au tomaton satisfies a given formula. Au toma ta
techniques are even optimal for the model checking of tempora l formulas (see
[2]). The counterpar t of these nice propert ies is the relatively weak expressive-
ness of the finite s ta te au t om a t a models. Many actual reactive systems require
additional da ta structures in order to be described in an accurate way. Many
models extending finite a u t o m a t a have been introduced in the literature. The
most well-known one is probably t imed au toma ta [1] which allow to consider
some "real t ime" constraints while keeping the nice decidability propert ies (with
a higher complexity).

One of the most impor tant purpose of verification is the so-called safety anal-
ysis which reduces most of the t ime to the following question: "is a bad state
reachable from the initial configuration ?" For finite s tate au tomata , it is not
difficult to compute all reachable states. This is however a more delicate ques-
tion with infinite s tates systems: the computabi l i ty of reachable configurations
depends on the model under consideration. Here, we aim at contributing to this
question by giving some decidability results. The model we consider is a "mul-
tiple counters au tomaton" . A configuration is not only described by a s tate of

269

the system, but also by the values of finitely many counters which may take
arbitrary (integer or real) values. Such counters (also called clocks in other con-
texts) do not necessary measure the elapsed time (as in timed automata), but
they may as well count some other data such as the distance covered by a car
or the speed of a train. Transitions from a state to another depend also on the
satisfaction of formulas by the actual counter values. Such a model is used in
several papers, such as in [12]. For instance, Minsky machines [13] can be viewed
as such multiple counter automata, which means that teachability is undecidable
in general.

There are two ways to overcome this problem: either we restrict the class
of models we consider or else we consider (lower or upper depending on the
problem) approximations of the model. Essentially, these two points of view are
not different: if we find some appropriate restriction of the models, t.hen this
corresponds to an appropriate class of approximations. The question then is to
find a class which is as expressive as possible and for which reachability is still
decidable. Assume for instance that counters may take integer values. Then we
would like to describe sets of (reachable) configurations by Presburger formulas,
assuming that the guards of the transitions are also expressed in Presburger
arithmetic. This is not always possible because loops in the automaton yield
fixed points which correspond to infinite disjunctions of Presburger formulas
and actually, even with a single state, the set of reachable counters values can
be a non-recursive set of integers (or reals if we consider real-valued counters).

In this paper, we consider a fragment (or an approximation) yielding a de-
cidable class. Our main result is the following: assume that the counters values
before (unprimed names) and after a transition (primed names) are solutions of
conjunctions of atomic formulas of the form x # y ~ + c or x # y + c or x~ # y ~ + c or
x # c or x ' # c where c E Z (resp c E R) and # e {<, >, =, >, <}. Then we show
that the fixed point of iterating a composition of such transitions is expressible

(

in Presburger arithmetic. For automata with multiple nested iterations, then the
same result holds provided that intermediate fixed points are expressible in the
adequate fragment.

Re la t ed w o r k s

There are several authors who considered other fragments and other approxima-
tions. Let us briefly mention them and compare with our result. N. Halbwachs
in [12] considers a similar model. A priori, the fixed point of a loop whose guard
is g(x, x ~) is the set of counters values which satisfy the infinite disjunction (n is

the number of iterations) V (3Xl. . . 3Xn.g(x, Xl) A . . . g(Xn, x~)). N. Halbwachs,
n----0

following [7], considers a widening operation V and he computes an upper ap-
proximation of the above infinite disjunction +~ Vn=o Pi by considering the limit
of Po, PoVP1 ,PoVPIVP2 . . . which is always reached after finitely many steps.
Basically, the widening construction removes some of the constraints of either
argument, until one of the constraint subsumes the other. Several strategies for

270

computing the polyhedron are given in [12]. 1 Consider however the following
example:

Example 1. There is only one state, one loop and two counters: initially the
counters values satisfy 1 < x < 2, 1 < y < 2. The guard of the transition is given
by x + 1 <_ x' <_ x + 2, y + 1 < y' < y + 2. Successive values of the counters
after each iteration are represented in figure 1. Following [12], we would get the

/
/

/t t

p ~ S

S~ ~J

Fig. 1. Successive values of the counters

whole quarter of plan as an upper approximation. The exact computat ion is
however possible, yielding 2y > x A 2x > y (which is depicted on the figure using
dashed lines). The guards satisfy our conditions, hence we will get this exact
computation using our result.

P. Revesz in [15] also considers similar fixed point computation. The guards
are of the form x~ > xj + k with k > 0, which disallows for instance equalities:
it is not possible to express e.g. x' = x + 1." On the other hand, he is able to
handle several loops. The application of this result to verification is investigated
in [11]. It is also extended, allowing periodicity conditions in [17].

B. Boigelot and P. Wolper consider in [4] guards of the form x~ = xi + b plus
additional guards involving only unprimed variables. They also get an exact
fixed point computation in Presburger 's arithmetic. Our result is more general
in the sense that we may also have relations x~#xj + b (i.e. relations between
different counters) and inequalities as well. On the other hand, the precondition
on unprimed variables is more general in [4] than in our result.

L. Fribourg and H. Olsen [10] consider a similar situation as in [4], except
tha t their preconditions are less general. On the other hand, they consider the
case of several loops, which is not the case in [4].

B. Boigelot in [3] characterizes precisely the functions from Z n to Z" of the
form] (x) = Ax + b such that the set of iterations of f is definable in weak
monadic second order logic. This result is the most accurate one for the guards
x' = Ax+b. However, there is no inequality here and no guard relating unprimed
variables.

1 even if the guards in [12] are only linear substitutions, it can be extended to certain
kind of linear inequality, and for instance to our example.

271

In [5], the authors consider guards which can be arbi t rary Presburger for-
mulas. This model is more general than ours. However, they do not have any
decidability result (the model is too expressive). They provide with approxima-
tions computations which yield semi-decision algorithms.

The paper is organized as follows. We start in section 2 with our model
of multiple counters au tomata together with some examples of systems which
are naturally expressed in this framework. We also explain the relationship with
t imed automata. Then we state our main result in section 3. Its proof is sketched
in section 4. It relies on a careful analysis of shortest paths in a graph with an
unbounded number of vertices. We show that shbrtest paths always lay in some
particular sets of paths whose weights can be described by a Presburger formula.
The full paper can be retrieved on
http ://www. isv. ens-cachan, frl-comon/ftp, art icles/mca, ps.

2 M u l t i p l e c o u n t e r s a u t o m a t a

In the following definition as well as in the rest of the paper, we consider integer
valued counters. However, they can be real-valued as well without changing our
results.

D e f i n i t i o n 1. A multiple counters automata is a tuple (Q, qi, C, ~ c_ Q × G(C, C I) ×
Q) where

- Q is a finite set of states
- q~ E Q is an initial state
- C is a finite set of counter names; C ~ is the set of primed counter names.
- G(C, C ~) is the set of guards built on the alphabets C, C ~. A member of

G(C, C') is a conjunction of atomic formulas of one of the forms x # y + c,
x # c where x , y • C U C', ~ E { > , < , = , > , < } . and c E Z. (or in ~)

A configuration of the automaton is a pair (q, v) where q • Q and v is a
mapping from C into N (or Z or R or]~_; as it is easy to see, this will not make
any difference).

The automaton may move from a configuration (q, v) to a configuration
(qt,v~), which we write (q,v) ~ (q~,v ~) if there is a triple (q,g, qr) • ~ such

that v(C), v'(C') ~ g, with the s tandard interpretation of relational symbols.

Example 2. We consider a fragment 2 of the train example of [12]. On this example
b is the number of beacons which have been encountered. It is given by the
environment and measures the covered distance, s is the number of ticks which
are sent by a global counter. Figure 2 shows transitions for which the train is on
t ime an remains on time. g is the guard b ~ = b, # = s + 1, s < b + 8 and h is the
guard b < s + 8, b' = b + 1, # = s. For instance, (1,(2,7)) and (1,(2,8)) are two
possible consecutive configurations since (2, 7), (2, 8) ~ g.

2 This is because of size constraints of this paper. We consider the whole example,as
well as some other examples in detail in the extended version of this paper.

272

h

Fig. 2. A fragment of the train example

Safety analysis reduces to the computation of reachable configurations (or
a superset of the reachable configurations). It is possible to compute this set,
starting with inner loops and trying to compute meta-transitions. The concept
of meta-transition, is presented in [4]. It amounts to consider a (possibly infinite)
succession of elementary transitions of the automaton as a single transition, the
guard being the conjunction of the guards of individual transitions (intermediate
counter values being existentially quantified).

Example 3. Consider example 2. The sequence of transitions g*g (from state 1 to
state 2) can be replaced with a meta-transition g+ whose guard is s _< b + 8, b ~ =
b , # < b + 9, s <_ # - 1 and h*h can be replaced with a meta-transition h +
whose guard is b < s + 8, b < b' - 1,b ~ <_ s + 9, s ~ = s. 3 g+h + itself (which
goes from 1 to itself) can be replaced with the meta transition whose guard
is s < s t - 1, s t < b + 9, b ~ <_ s ~ + 9, b < b t - 1. Now, computing reachable
configurations in state 1 reduces to compute the reachable configurations of a
single state automaton with a single loop containing the computed guard.

Relationship with t imed automata

At a first sight, t imed automata are different from counter au tomata because
the clocks always run at the same speed in the latter model whereas updates of
the clocks seem to be possible only during a transition in the former model.

However, using a trick proposed recently by L. Fribourg [9], it is not difficult
to translate t imed au tomata into (real-valued) counter automata, at the price of
adding a new clock, which is never reset. This translation does not change the
structure of the automaton (transition and states are the same; the invariants
and guards of the t imed au tomata are used to compute the corresponding guard
of the multiple counters automaton). Therefore, t imed automata are a particular
case of multiple clocks automata.

Further on, if we allow drifting clocks, then the simple above translation does
not work any more, as it would yield guards of the form a x x < y ~ f l x x,
which are not allowed in our model.

3 The computation of meta-transitions can be performed using the result of the present
paper.

273

3 F i x e d p o i n t c o m p u t a t i o n s

Computing a meta transition for the composition of two transitions is an easy
task. The main problem is to compute the fixed point of an iteration of a tran-
sition. Our main result, is that this is possible for a single loop, keeping the
decidability of the computed guard:

T h e o r e m 2 . Given a transition (q,g,q), there is an (effectively computable)
Presburger arithmetic formula ¢(C, C') such that v, v' ~ ¢(C, C') if] there exists
an n E N such that

v, v' ~ 3C1, . . . , 3Cn.g(C, C1) A . . . A g(Cn, C')

This result is not obvious as the formula 3n ,3C1 , . . . , 3Cn .g (C , C1)A . . . A
g (Cn ,C ~) does not belong to Presburger arithmetic. It cannot be translated
either (at least in an obvious way) into monadic second order logic: the counters
vectors C1, . . . , Cn are ordered (and their ordering is relevant), hence we cannot
simply associate with each sequence of components a set of integers.

As usual in constraint solving we may represent inequalities x < y + d using
a graph whose vertices are the variables and edges are labeled with the delay d.
(This is used for instance in many scheduling applications, see e.g. [6]). Here we
have an unbounded number of variables: m variables for each of C1, .. •, Cn. m is
known in advance. However, n is unbounded (and actually existentially quanti-
fied). Hence we consider a graph G(g, n) whose number of vertices is unbounded
(n x m). The purpose then is to compute a Presburger formula, which depends
on n, and which expresses minimal paths in such a graph. As the number of ver-
tices is unbounded, it is not possible to apply classical graph algorithms (such
as Bellman-Ford [6]).

In the next section, which is devoted to the proof of this theorem, we develop
a machinery to express these shortest paths; we first define the graph represen-
tation of the problem. Then we fold the unbounded graph into a finite (fixed)
graph and investigate the relations between the graph and its folded version,
showing to which extent paths in one graph are related with paths in the other
graph.

Applications

Let us first state some consequences of the theorem. We say that a multiple
counters automaton (or a part of an automaton) is fiat if there is no nested loop
in the transition graph.

Corollary 3. Let ,4 be a fiat automaton and q, q~ be two states of A. Then there
is a (effectively computable) Presburger/ormula ¢q,q, (x, x') such that v, v '
Ca,q, (x, x') iff (q', v') is accessible from (q, v).

In other words, the binary accessibility relation is definable in Presburger
arithmetic, which yields, thanks to [8]:

274

C o r o l l a r y 4. The Model checking of EF formulas is decidable for (infinite) tran-
sitions systems that are defined by flat automata.

The same results hold for real-valued counters. We only have to replace Pres-
burger arithmetic with another theory; let 7~ be the additive theory of real num-
bers with a predicate Int(x) which is satisfied by all integer values. This first-order
theory is decidable, as it can be expressed in S1S (the monadic second-order
logic), where real numbers are identified with infinite words (see e.g. [16]).

C o r o l l a r y 5. The binary accessibility relation for fiat real-valued multiple counter
automata is definable in T~.

Then, for fiat t imed automata, the same result holds, thanks to Fribourg's
trick [9].

4 Proo f of theorem 2

4.1 W e i g h t e d g r a p h s o f u n b o u n d e d size

First, for any guard, it is possible to assume without loss of generality tha t g
is a conjunction of inequalities x _< y' + d, x' < y + d, x < y + d, x' < y' + d.
Indeed, strict inequalities can be replaced with non-strict inequalities, adding
or removing 1 from the constant 4. Equalities are replaced with two inequalities.
Finally, we can take care of x < c, where c is a constant by adding a dummy
counter whose value is always 0.

We consider weighted (directed) graphs G(g, n) whose vertices are pairs (i, t)
with i C [1..m] and t C [0..n] are integers, n being a parameter n > 1 and
m = [C[. Given a guard g, the set of edges of G(g, n) consists of the following
pairs:

- for i , j E [1..m] and t E [0. .n-1] , (i,t) -~ (j , t + l) iffg contains an inequality
I X i ~ Xj "~ d.

- for i, j e [1..m] and j • [1..n], (i, t) -~ (j, t - 1) iff g contains an inequality

' < xj + d X i _

- for i, j • [1..m] and t • [1.., n], (i, t) -~ (j, t) iff g contains an inequality

i < i + d x i _ xj

- for i, j • [1..m] and t • [0..n - 1], (i, t) -~ (j, t) iff g contains an inequality

xi <_ xj + d.

Example 4. Consider again example 2 and the meta-transition of example 3. The
graph corresponding to the new guard s _< s' - 1, s' _< b + 9, b' < s' + 9, b < b' - 1
is depicted on figure 3.

4 For real-valued interpretations, strict inequalities cannot be removed and we have
to consider in the graph both strict and non-strict inequalities. This complicates a
little bit the picture, however nothing essential is changed.

275

-1 -1 -1

s 9
-1 -1 -1

0 1 2 n-1 n

Fig. 3. The graph corresponding to a meta-transition of example 3

A path from a to b in a graph G is a finite sequence e l , . . . ,eN-1 of edges

ai - ~ ai+l such that al = a and aN = b. A path is sometimes identified with

the sequence of vertices a l , . . . , aN when there is no ambiguity.
Let Ca(C, C') be the formula q C 1 , . . . , 3Cn.g(C, C1)A. . . Ag(Cn-1, C'). Then

proving the theorem amounts to show how to compute a formula which is equiv-
alent to 3n.¢n(C, C').

Let F(i, t, i', t') be the set of all paths from (i, t) to (i', t') in G(g, n). (This
set can be infinite). The weight w(7) of a path ~/is the sum of weights of all
edges along the path.

The following lemma shows that we can eliminate intermediate steps, sticking
to paths from a fixed number of vertices to a fixed number of vertices. However,
the set of paths is still potentially infinite.

L e m m a 6 . v,v ' ~ Cn(C,C ') i f f]or every indices i , j E [1..m]

- for all paths
- for all paths
- for all paths
- for all paths
- for all paths

~/e F(i, 0, j , n), v, v' ~ xi ~ x~ + w(~/)
~/ e F(i ,n , j ,O) , v ,v ' ~ x~ ~ xj +w('y)
7 e F (i , 0 , j , 0), v,v ' ~ x ~ <_x~+w(7)
"7 E F(i , n, j, n), v, v' ~ x i xj + w(7)

~ r (i , n - 1, i , ~ - 1) , w (~) > 0 , / / n > 2.

4 . 2 T h e f o l d e d g r a p h

In this section, we consider the "untimed" version of G(g, n), which corresponds
to identify vertices which only differ in their second components. Basically, we
can compute on this "folded version" H of G(g, n) a formula ~i,j which defines
the set of all weights of paths from i to j .

Let H be the three-coloured weighted graph whose vertices are [1..m] and
whose edges are given by g:

- ~ < ~ + d i s i n g i -~ j i f x i < _ x j + d o r x i xj
1

< xj + d is in g - i d j i f x i _
2
d

- i ~3 j i f x i - < x j ~ + d i s i n g

276

For each edge e in G we associate in an obvious way an edge in H: ;((i, t) -~ (j, t')) =

i d j w i t h k = l i f t = t , , k = 2 i f t , < t a n d k = 3 i f t , > t , zr is extended to
k

paths of G(g, n).

Example 5. Figure 4 shows the folded version of the graph given on figure 3.

-1 -I

Fig. 4. The folded graph

Now, we need not to consider all paths in P(i , t , j , t ') : according to lemma 6,
we may only consider one path of H for each possible weight. Formally, if 7 6
F(i , t , j , t') and c~(7 , e) is the multiplicity of e in 7r(7),

w (7) = = e) × w(e)
e e H

Conversely, if we give the multiplicities ae of each edge e, there is a path
corresponding to these multiplicities, iff they statisfy a given formula. Basically,
such formula can be derived from Parikh's theorem [14]. Tha t is what is stated
in the next lemma. In what follows, a (resp. z) is a vector indexed by the set of
edges of H: a = ((~el,..., ae.) .

L e m m a T . For every i , j , there is a Presburger formula / ' J such that (~ ~ pi,j
if] there is a path 7 from i to j in H such that w(7) = ~ e e H (~e × w(e).

R e m a r k : If H does not involve colour 1 and either does not involve colour
2 or colour 3, then we can already conclude the proof of theorem 2: from lemma
6, and since there is no (non-empty) path in F(i, O, j, O) U F(i, n, j, n) U F(i, n -
1 , i ,n - 1) and either no path in F(i ,O, j ,n) or no path in F(i ,n , j ,O) , we only
have to find an equivalent Presburger formula for 3n. A~er(i,o,j,~) x~ < x~+w('~)
(resp. 3n. A~er(i,mj,o)) x~ <_ xj + w(7)). Such a formula would be

i=I j=l e6H e6H

However, in general, a path in H does not necessary correspond to a path
in G. Relationships between paths of H and paths of G(g, n) can be described
more accurately. If 7 is a path of H , we let Ni(7) be the number of edges of 7
whose colour is i and tit (7) = N3 (7) - N2 (')/).

277

L e m m a 8 . A path 7 in H is the projection of some path in G(g, n) only if
there are 61,62 E g such that 0 < 62 - 61 < n and for every prefix 7' of 7,

e [61..621.
Conversely, i f there are 61,6~ E Z such that 0 < 62 - 61 < n and for every

prefix 7' of 7, 62(7') E [61 + 1..62 - 1], then 7 is the projection of a path in
G(g, n).

Now, the problem is that the property of prefixes given in lemma 8 cannot
be characterized by counting the number of occurrences of each edge in a path
only; we have to exploit the fact that we are only interested in minimal weight
paths. Moreover, we will show that among the paths of minimal weight (relating
two given vertices) there are "regular" ones, for which we can compute the
boundedness condition of lemma 8.

4.3 Exploiting the quasi-ordering on paths

Now, we come to the hard part of the proof which cannot be detailed in this
short paper. Let us only give the milestones. First, we rule out the case of cycles;
if there is a cycle 7 in H such that w(7) _> 0, it is not a minimal weighted path
and if w(7) < 0, the fixed point of the iteration is reached after a computable
bounded number of steps :

L e r a m a 9 . I f there is a cycle 7 in H of length k such that w(7) < 0 and 6t(7) =
k O, then Cn(C, C') is unsatisfiable for n >_ 1 + ~.

Now, we give some transformation rules on paths, which preserve the weight
of minimal weight paths, and whose termination is guaranteed by the cycle-
freeness of G. One transformation consists in locally gathering together elemen-
tary cycles:

L e m m a l 0 . V ~ , 3 B , V k E [0 . .n- B],Vi , j E [0, m],V7 E F (i , k , j , B + k),3 7' E
F (i , k , j , B + k), w('T) = w (~ /) A 7~(~y 1) = c1.(0")C~.c2 with ~ an elementary cycle
of H.

Next, we apply two rules which duplicate or remove elementary cycles, yield-
ing paths of smaller (or equal) weight and which are more "regular" (see fig
5).

3 cycles for 6 iterations

2 cycles for 6 iterations

Or

6 cycles

4 cycles
Fig. 5. how to construct the regular path

278

If the path is long enough, then we get a normal form which is depicted on
figure 6 : the paths rlk and r/~ have a width bounded by a constant B (independent
from n) and Ok, 8~ go from one extremity to the other. They consist themselves
of a path of length bounded by B followed by an iteration of a particular cycle
of H, followed by a bounded length path. Moreover, the number of such paths
~/k is smaller than the number of counters.

B B

~111 01

B B

0 t f n

Fig. 6. Only paths going "back and forth" have to be considered

Then when n is large enough (n >_ 2B), Cn(C, C') is logically equivalent to
a formula

~x B, 3x" - n, ~1 (x, x B) A ~2 (x B) A ~3 (x B , x " - B) ^ ~2 (x" - B) ^ ~1 (x"- n, x')

~1 expresses the constraints generated by B iterations of the loop ~2 ex-
presses the constraints between counters values after B iterations and which
correspond in the graph to paths r/, whose width is bounded by K. ~3 expresses
paths that are the iteration of elementary cycles of H, and which brings from
the (B + i)ths values of the counters to the n - B - j ths values of the counters,
for i, j E [0, B].

5 C o n c l u s i o n

We have shown that the fixed point of a single loop of multiple counters automata
is definable in the additive theory of N (resp.]~, resp. Z). Thanks to this result,
it is possible to compute the exact set of reachable configurations in a number of
situations for which such a computation was unknown. This also provides better
approximations for the general case. The complexity of the resulting reachability
analysis is high (a double exponential in the number of counters since the length
of the formula is exponential in the number of counters in the worst case). It
seems however to be manageable on the examples: the upper bound needs not
to be met on all examples.

279

Acknowledgements

We acknowledge L. Fribourg for many discussions on multiple counters au-
tomata.

References

1. R. Alur and D. Dill. Automata for modeling real-time systems. In Proc. 17th
Int. Coll. on Automata, Languages and Programming, Warwick, LNCS ~3 , pages
322-335. Springer-Verlag, 1990.

2. O. Bernholtz, M. Vardi, and P. Wolper. An automata-theoretic approach to
branching time model checking. In Proc. Computer Aided Verification, 1994.

3. B. Boigelot. Linear operators and regular languages (ii). Unpublished draft, jan
1997.

4. B. Boigelot and P. Wolper. Symbolic verification with periodic sets. In Computer
Aided Verification, Proc. 6th Int. Coherence, LNCS, Stanford, June 1994. Sprin-
ger-Verlag.

5. T. Bultan, R. Gerber, , and W. Pugh. Symbolic model checking of infinite state
systems using presburger arithmetic. In O. Grumberg, editor, Proc. Computer
Aided Verification, volume 1254 of LNCS, Haifa, Israel, 1997. Springer-Verlag.

6. T. Cormen, C. Leiserson, and R. Rivest. Introduction to algorithms. MIT Press,
1990.

7. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among vari-
ables of a program. In Proc. Int. Conf. on Princinples Of Programming Languages
(POPL), 1978.

8. J. Esparza. Decidability of model checking for infinite-state concurrent systems.
Acta Informatica, 34:85-107, 1997.

9. L. Fribourg. A closed form evaluation for extending timed automata. Technical
Report 1998-02, Laboratoire Sp@cification et V@rification, ENS Cachan, Mar. 1998.

10. L. Fribourg and H. Olsen. A decompositional approach for computing least fixed-
point of datalog programs with z-counters. J. Constraints, 1997.

11. L. Fribourg and J. Richardson. Symbolic verification with gap-order constraints.
Research Report LIENS-96-3, Ecole Normale Sup@rieure, Paris, Feb. 1996.

12. N. Halbwachs. Delay analysis in synchronous programs. In Proc. Computer Aided
Verification, LNCS 697, pages 333-346. Springer-Verlag, 1993.

13. M. Minsky. Computation, Finite and Infinite Machines. Prentice Hall, 1967.
14. R. Parikh. On context-free languages. J. ACM, 13, 1966.
15. P. Revesz. A closed form for datalog queries with integer order. In Proc 3rd

International Conference on Database Theory, pages 187-201, Paris, 1990.
16. W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor, Handbook

of Theoretical Computer Science, pages 134-191. Elsevier, 1990.
17. D. Toman, J. Chomicki, and D. S. Rogers. Datalog with integer periodicity con-

straints. In Int. Syrup. on Logic Programming, 1994.

