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Abstract .  The logic of equality with uninterpreted functions has been 
proposed for verifying abstract hardware designs. The ability to perform 
fast satisfiability checking over this logic is imperative for this verification 
l)aradigm to be successfld. We present symbolic methods for satisfiability 
checking for this logic. The first procedure is based on restricting analysis 
to finite instantiations of the (lesign. The second procedure directly rea- 
sons about equality by introducing Boolean-valued indicator variables for 
equality. Theoretical and experimental evidence shows the superiority of tim 
second approach. 

1 Verifying High-Level Designs Using the Theory of Equality 

A common problem with automatic formal verification is that the computational 
resources required for verification increase rapidly with the size of tile design. State- 
of-the art tools for verification of gate-level designs are not capable of routinely 
verifying designs possessing more than a hundred to two hundred binary-valued 
latches. 

This observation motivates the development of tools which can operate on de- 
signs at a higher level of abstraction. Loosely speaking, the basic premise is that 
abstract designs, being less specified, are simpler and consequently easier to verify. 
Another benefit of this approach is that bugs are caught at earlier stages of the 
design process. 

We arc interested in the vcrification of designs at the high-level. This necessitatcs 
reasoning about designs where a lot of complexity has been abstracted away. The 
use of uninterpreted functions (UIFs) has been proposed as a powerful abstraction 
mechanism for hardware verification [10,14]. Essentially, UIFs allow the verification 
tool to avoid getting bogged down by complex details which are irrelcwmt to the 
property being proved. In our work, we will use abstractions where datapath is 
abstracted away by using unbounded integers, complex combinational functions 
such as multipliers can be abstracted as uninterpreted functions, complex bypass 
circuitry required in pipeline designs can be captured by the compare operator, and 
propositional logic can be used to derive control signals. Moreover, memories can 
also be incorporated inthis framework as partially interpreted functions by adding 
constraints which relate reads and writcs [13]. 

In this context, the primary verification problem we solve is design equivalence; 
this includes such apl)lications as verifying equivalence of l>ipelined and nonpipelined 
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processors. This can be posed as a problem in satisfiability checking for quantifier- 
free formulas involving both equality and UIFs. As shown by Ackermann [1], this 
problem can be reduced to satisfiability checking of quantifier-free formulas involv- 
ing only equality through a suitable generalization of the following: given a formula 
¢ containing terms f (x t )  and f(x2), rel)lace f (x l) and f(x2) and by fresh variables 
yl and Y2 to obtain a formula ¢; then ¢ is satisfiable itf (xl = x2 --~ Yl = Y2) A¢ is 
satisfiable. Tim additional complexity of validity checking for tim theory of equality 

• over propositional logic arises from the fact that the properties of equality need to 
be taken into account. For example, the fornmla (Xl = x2) A (x2 = xa) A --(Xl = xa) 
is not satisfiable, since it violates the transitivity of equality. 

A number of decision procedures exist for the theory of equality with UIFs and 
its extensions. Pioneering work was done by Shostak [13], who considered linear 
arithmetic in conjunction with UIFs. His procedure replaces terms generated from 
UIFs by new variables as previously described; the formula is then converted to a 
conjunctive normal form, and each conjunct is checked for satisfiability using Integer 
Linear Programming. In this way, fornmla satisfiabitity (and, by duality, validity) 
can be checked. 

Extensions to the basic algorithm of Shostak have been made in many recent pa- 
pers on processor verification [3, 10, 2]. Essentially, their approach is a variant of the 
Davis-Putnam procedure for validity checking over propositional logic, with suitable 
extensions for handling the properties of equality. One source of their efficiency is 
the ability to split on subformulas; they also use heuristic rewrite rules for formula 
simplification. Their target application was the verification of pipelined processors. 
Their notion of correctness is based on the equivalence of the machine state of the 
nonpipelined machine after processing an instruction and the state resulting in the 
pipelined machine after execnting the same instruction and flushing it out. (This 
is the standard "comnmtative diagram" approach to verification [3].) Equivalence 
is formulated as in terms of the validity of a quantifier free formula involving both 
equality and UIFs. 

One difference of our work with the work of [2] is that while they use formulas 
to encode tim designs, we use BDDs which also incorporate the constraints that 
are required of the UIFs. If these BDDs can be built and manipulated, the validity 
checking problem is considerably simplified, and should work more robustly than 
a rewrite-based approach. However, a naive method for building these BDDs does 
not work; BDDs become too big. We present a novel encoding technique so that the 
validity checking problem can be efficiently represented using BDDs. 

Hojati et al [8, 9] use finite instantiations to handle UIFs (we also discuss a finite 
instantiation based method in Section 3.1). In [8], they require art explicit invocation 
of Shostak's method to decide equality between two terms containing UIFs; it is not 
described if Shostak's algorithm is used directly or another al)proach is uscd. Their 
results were negative from a computational point of view, and they conjectured this 
was because of the absence of a good variable ordering; our experiments corroborate 
this. We have developed a new al)proach for encoding the UIF verification problem 
with BDDs which results in significantly improved runtime, and enjoys nice theoret- 
ical properties - -  this is the approach presented in this paper (Section 3.2). In our 
preferred method, constraints due to UIFs (based on Ackermann's reduction) are 
directly represented by BDDs. We provide experimental evidence that this nmthod 
performs much better than a finite instantiation based method. 
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1.1 S y m b o l i c  P r o c e d u r e s  for the  T h e o r y  o f  Equa l i ty  

We motivate the use of symbolic procedures for the theory of equality by drawing 
analogies to the problem of verifying the equivalence of gate-level combinational 
netlists. One approach to the equivalence problem is to form a single "product 
netlist" wherein corresponding inl)UtS are tied together, and corresponding outputs 
are XOP~-ed. hmquivalence can then be checked by fornfing a large conjunction of 
propositional fornmlas corresponding to the "characteristic functions" of the gates, 
and a formula asserting that a pair of outputs differ; the designs differ iff the con- 
junction is satisfiable. 

Today, state-of-the-art tools for Boolean verification use BDDs and heavily ex- 
ploit the structure of the design; the original tools were based on case splitting (e.g., 
ATPG-based methods) [11]. Currently, all approaches for verification in the theory 
of equality with UIFs proceed by case splitting on terms occurring in the formula; 
heuristic rewriting of subformulas is also performed. Based on experiences with anal- 
ogous al)proachcs for Boolean verification, we predict that these techniques may not 
be viable as the examples get larger or more complex, especially when the exmn- 
pies are not hand designs but are outputs of automatic CAD tools, e.g., high-level 
synthesis tools. 

2 D e f i n i t i o n s  

Designs will be specified as netlists. Before entering into a formal discussion of syntax 
and semantics for designs, we provide some illustrative examples. The design of 
Figure l(a) takes 4 integer-valued inputs - -  xl,  x2, x3, x4. The signal tl is Boolean- 
valued, and takes the value 1 exactly when xl and x2 are equal. Intuitively, the 
structure labeled with "=" returns 1 when its inputs are equal, and 0 otherwise. 
The signal ut is integer-valued; it is equal to xl when tl is 1, and x2 when tl 
is 0. The structure labeled with MUX operates as a multiplexer. The signal t2 is 
Boolean-valued; it takes the vahm 1 exactly when x4 is equal to ul. 

The design of Figure l(b) is identical to the example presented in Figure l(a), 
except that the 1-input to the multiplexer has been replaced by x2. Observe however, 
that the signals t2 and s2 take the same value for any input, since the 0-inputs to 
the corresponding multiplexers are the same, and the 1-input is selected exactly 
when xl = x2. Figure l(c) is a more complex design containing complex Boolean 
gates. 

x& 

(a) 

X2 

2 

J¢4 

(b) ~' (c) 

Fig. 1. Design examples. 
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Def in i t ion  1. An IE netlist is a directed acyclic graph, where the nodes correspond 
to primitive circuit elements, and the edges correspond to connections between these 
elements. Each node is labeled with a distinct variable wi. The four basic primitive 
circuit elements are primary inputs, multiplexers, equality checkers, and 2-input 
NAND gates. Some nodes are also labcled as being primary outputs. If an edge 
(u, v) exists in tim IE netlist, u is said to bc a fanin of v. 

Nodes will be of two types - -  Boolean-vahmd and integer-valued. Nodes corre- 
sponding to primary inputs and multiplexers are integer typed, and nodes corre- 
sponding to equality checkers and 2-input NAND gates are Boolean. Multiplexers 
are required to have a single Boolean-valued input, and two integer-valued inputs; 
equality checkers should have two integer-valued inputs. A 2-input NAND gate has 
two Boolean-valued inputs. 

Note that the restriction to 2-input NAND gates is not serious, since they are 
functionally complete. Constant-valued nodes and Boolean-valued inputs can also 
be handled in the framework presented above. The technical issues they bring up 
are minor, but impinge on the clarity of presentation; for simplicity we ignore them. 

For an IE netlist, given an input (i.e., a fimction mapt)ing primary input nodes to 
integer valu(,s), one can uniquely compute the values of each node in the IE netlist 
by evaluating the functions at gates in topological order, starting at tile primary 
inputs. More precisely, let t be an input; then ~ uniquely defnes a value t/L(s) to the 
signal s in the IE netlist through the following recursive rules: 

D e f i n i t i o n  2. IE N e t l i s t  S e m a n t i c s  

1. If s is a primary input then vL(s) = L(s). 
2. If s is the output of an equality node with fanins (v,w) then v,(s) = 1 if 

v~(v) = v~(u), and 0 otherwise. 
3. If s is the output of a multiplexer node with fanins (c,v,w) then v~(s) = v~(v) 

if v~(c) = 1, and v~(w) otherwise. 
4. If s is the output of a 2-input NAND with fanins (v,w) then t,~(s) = 1 if 

v~(v) = 0 or v~(u) = 0, and 0 otherwise. 

In this way, a IE netlist D on inputs al, a2 , . . . ,  an and outputs bl, b2, . . . ,  bm defines 
a function ft) : w n --r w m (here w = {0, 1, 2, . . .} is the set of natural numbers). 
Intuitively, two designs are functionally equivalent if in any environment they can 
be used interchangeably; a necessary and sufficient condition for this is for them to 
have identical defined functions. Note that an IE netlist can operate on arbitrary 
inputs and not just integers, since no operation other than equality is applied to 
the integer-valued nodes. 

Observe that for a primary input assignment L, the value taken by any integer- 
valued node in the IE netlist will be the value taken by some primary input. This 
is because there are no functions which can be applied to tile integers propagated 
in the IE netlist; integers can only be compared. Indeed, a stronger claim can be 
asserted - -  the value taken by the node can be traced back to a specific primary 
input which caused it. The proof of the claim is by an inductive argument starting 
at the PIs, where it vacuously holds. Any other integer-valued node must be the 
output of a multiplexer; the result follows by applying induction to the mux inputs. 

We'll define the input xl to flow to s u n d c r  the input assignment L when the 
value taken by s under L is traced back to x/. For example, the input xl flows to 
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ul for the design in Figure l(a) under the input xl = 2,x2 = 2,xs -- 3,x4 -- 4; x2 
does not flow to ul under this assignment, even though the value taken at ul is the 
same as that at x2. 

2.1 Relating Designs, Equa l i ty  wi th  UIFs ,  and  IE Netlists 

As stated in the introduction, we are concerned with designs which operate on un- 
bounded integers, wherein the datapath has been abstracted away using UIFs, and 
equality is the only operation which is applied to integer variables; design inequiv- 
alence can then be cast as the satisfiability of a quantifier-free formula involving 
equality and UIFs. IE netlists can not directly represent UIFs; however, the out- 
puts of the UIF blocks can be replaced by new primary inputs. When comparing 
the resulting IE netlists, these new inputs must satisfy the constraint that if the 
inputs to two instances of the same UIF are equal, then the outputs of the two 
instances are equal; this constraint can be added to the IE circuit using simple cir- 
cuitry (an equality checker and a gate). As is the case for Shostak's procedure [13], 
the soundness and completeness of this construction follows from [1]. 

3 IE Netlist Satisfiability Checking 

IE Netlist Satisfiability Checking consists of taking an IE-netlist mid determining 
if an input assignment exists for which a specified Boolean-valued output can take 
the value 1. 

Note that the usual "product construction" for checking the equivalence of gate- 
level netlists can be applied to the problem of equivalence checking for IE netlists; 
this is illustrated in Figure 2. Observe that thc construction results in exactly one 
Boolcan-wthmd primary output, and so the cquiw~lence probh;m for IE netlists can 
be easily reduced to the IE netlist satisfiability checking. 

x2  ~:1 

x 

a l  

x l  

xd  ' I 

Fig. 2. Product construction for equivalence checking. 

It is natural to ask at this point if there is a decision procedure for IE netlist 
satisfiability checking, and if so, what the computational complexity of the problem 
is. 

3.1 Finite Model Approach 

The existence of a decision procedure follows immediately from the fact that a "finite 
model" folk-theorenl holds for holds for tile existential fragment of the theory of 
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equality: an existential formula in the language of equality is satisfiable iff it is 
satisfiable in some model whose universe has cardinality equal to the number of 
variables occurring in the formula. 

R e d u c t i o n  to C o m b i n a t i o n a l  Sat is f labi l i ty  The problem of determining if 
there is all input to an IE netlist which sets a designated Boolean-valued output to 
1 can be reduced to checking tim satisfiability of an existential sentence in the first 
order logic of pure equality; tile encoding is very similar to that used to convert the 
procedure for reducing Boolean-valued nettist satisfiability to satisfiability of a CNF 
formula from propositional logic. Hence the integer valued variables can be replaced 
by n-valued variables, which in turn can be encoded in ~log(n)] Boolean-valued vari- 
ables. Thus the satisfiability problcnl can be efficiently (polytime) transformed to 
a problem of checking the satisfiability of Boolean-valued netlists. 

3.2 A Better Encoding 

In this section we develop a superior encoding of IE netlist satisfiability instances 
into Boolean netlist satisfiability. We introduce a minimal set of Boolean variables 
- -  one for each distinct comparison which is made between primary inputs. We will 
show that the design functionality can be characterized by Boolean-valued functions 
of these Boolean variables. 

Specifically, for an IE netlist D on inputs xl , . . . ,  xn introduce Boolean variables 
eli for 1 < i < j < n. For a Boolean-valued node s in D, we will construct a Boolean 
function f "  over the set of variables {el2, e l3 , . . - ,  e23, e24, . . . ,  el(n-l),  e(n-1)n}; for 
an integer-valued node t, we will construct a vector of n Boolean-valued functions 

t t [fl f~ " "  f t ]  over the same set of variables. 
Intuitively, the variables eii 's indicate whether the i-th and j - th  integer inputs 

are equal or not. For a Boolean node, the function f at the node is a Boolean function 
of these indicator variables, and it represents the condition under which the circuit 
node evaluates to 1. For an integer node, such as a mux, the k-th component of the 
n-tuple function f represents the condition under which the circuit node assumes 
the value of the k-th integer input. Note the distinction between the primary input 
that flows to s under t, and thc value u,(s); for the input L, it may be the case that 
v,(s) is equal to the value taken by more than one primary inputs, but there will 
still be a unique inllut xk which llows. 

Definition 3. eli Encoded Functions 

1. If s is a primary input, say x~, then f~ = 1 and for j ¢ k, f ]  = 0. 
2. If s is a 2-input NAND gate with inputs u and v, then fs  = ( fu .  fv),. 
3. If s is the output of a mux with control c, and data inputs u, v, then f~ = 

f t .  y~, + (fo) , .  fZ. 
4. If  s is the output of an equality node with inputs u, and v then 

n n 

f,e = E [ j r~  . f~] + E E If/u" f ;  " emin(i'J)max(i,j)] 
i=l i----I i~j 
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E x a m p l e :  Consider the IE netlist shown in Figure 2. The functions at the nodes 
are as follows: 

( f ~ , f ; t , f ~ , f ~ )  = (1,0,0,0) (f~2,f~2,f~2,f~2) = (0, 1,0,0) 
(f~:s, f ; 3 , . f ~ s , g s  ) = (0,0,1,0) ( f ~ ' 4 , f ; 4 , H 4 , H ' )  = (0,0,0,1) 

f i t  = e12 

( f~t , f6 ' t , f~t , f~ ' t )  = (e12,0, e~2,0 ) ( f ~ ' , H t , H t , H  t) = (o, el2,ei2,0 ) 
t fb~ fa l  = e 1 2 . e 1 4  + e12"e34 =e12"e24  + e~2"e34 

I fOul =e12.(e14.e~4 + e14"e24) 

Note that fou~ does not depend on e34. 
Encoding the network using these eij's allows us to directly store the relationship 

between the function nodes and the equality of pairs of inputs. For many validity 
checking applications, it is the equality of intermediate circuit functions whidl is 
exploited in siml)lifying or complicating (by pipeline bypass logic, for example, 
in a l)ipelined implementation) logic circuitry. Encoding the equality by pairwise 
variables allows us to represent relationship between equalities directly by having 
single BDD wtriables for each of these e U varial)les. Of course, as we see later in 
this section, to prevent false negatives, we will need to introduce procedures that 
ensure the transitivity of equality. 

The claim that the functions defined above characterize the IE netlist is formal- 
ized by the following two lemmas: 

L e m m a  1 ( C o m p l e t e n e s s ) .  Let L be an input and s a node in the design. Let ¢ 
be the extension of t to the eq variables, i.e., e(eij) = 1 exactly when t(x,) = t(xj). 
Then if s is Boolean-valued, p (¢ )  = vt(s); if s is integer-valued, then f~(e) = 1 
exactly when xk flowS to s under t. 

The proof follows by an easy induction on the depth of the node from the primary 
inputs. 

The functions computed above are not "sound"; values taken by them may not 
be achievable in the design. This is because the there is no guarantee that the basic 
axioms of equality are satisfied; Figure 2 provides an example. As shown previously, 
the output of the product network is assigned the function e12" (e14" e~4 + e~4" e24). 
However, closer inspection shows that it is not possible to find an input L so that 
the e extension results in ~ el2 and el4 to be 1 and e24 to be 0 or e12 and e24 to be 
1 and el4 to be 0 simultaneously; the transitivity of equality would be violated. 

Def in i t ion  4. An assignment e to the eij variables is said to be consistent if it 
satisfies hl<i<j<k<,,[c(ei~), c(ejk) -~ ~(e~k)]. 

Intuitively, a consistent assignment is one which satisfies the transitivity of equality; 
for consistent assignments, the converse of Lemma 1 holds: 

L e m m a  2 (Soundness ) .  Let e be a consistent assignment to the eij variables. 
Let s be a node in the design. If s is Boolean-valued, there is an input L so that  
fs(e) = v~(s); if s is integer-valued and f~(¢) = 1 then there is an input t so that 
the input xk flows to s under L. 

The proof is based on the fact that ~ yields an equivalence relation on the primary 
inputs, from which the desired input can be constructed. 
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3.3 Satisflability using the e~j encoding 

It follows from these two lemmas that  the functions in Definition 3 characterize 
the IE netlist. In particular, they suggest the following approach to satisfiability 
checking for IE netlists: build BDDs for the eij-encoded Boolean functions, and then 
check if there is a consistent assignment under which tim output  BDD evaluates to 
1. 

Unfortunately, linding a consistent satisfying assignment for a BDD over the eij 
variables will not be easy. The problem we are concerned about  can be formulated 
as follows. 

BDD Satisfiability under Consistency (BDD ConSAT) 
INSTANCE: A BDD on variables eij, l <_ i < j <_ n 
QUESTION:  Is the BDD satisfiable mtder some minterm e satisfying the 
consistency requirement: Al<i<j<k<_n[e(eij). e(ejk) --+ ~(eik)] 

Theorem 1. BDD ConSAT is NP-Complete. 

Proo]. Given all assignment for tile eij variable, both tile BDD and the consistency 
requirement can be evaluated in polynomial time. This tells us the simple fact that  
BDD SAT is in NP. 

We now show BDD ConSAT to be NP-hard by transforming the problem of 
PATH W I T H  FORBIDDEN PAIRS [7] to it. 

INSTANCE: Directed graph G = (V, A), specified vertices s, t E V, collec- 
tion C = {(al ,bt)  . . . .  , (an,bn)} of pairs of vertices from V. 
QUESTION: Is therc a directe(I path from s to t ill G that  contains at most 
one vertex from each pair in C? 

This problem remains NP-complete even under the restriction that  G is acyclic 
with no in- and out-degree exceeding 2 and all the given pairs are disjoint. Our 
transformation will use a version with this restriction. 

Given such an instance of PATH WITH FORBIDDEN PAIRS, we can construct 
an instance of BDD ConSAT as follows. 

First, we will modify the instance of  PATH WITH FORBIDDEN PAIRS such 
that  each vertex appearing in the pairs has exactly one out-edge. This can be done 
as follows. For each vertex v, which appears ill the pairs mid whose out-degree is 
not 1, we will split it into two vertices vl and v2. All in-edges now end on vt and 
all out-edges now start  from v2 aml there is one edge goes from vl to v2. We also 
substitute v by vl in the pairs. It is obvious that the new instance still obeys the 
restriction and it has a "yes" answer if and only if the original one has one. 

Now we will transform the modified DAG into a BDD by labeling and adding 
vertices and edges. First we will add one vertex labeled en+l,,,+2 and an out-edge 
labeled 0 going to s. We also label vertex t as constant 1. For each pair (a/, bi), we 
will label them as ei,,~+l, ei,,~+2, respectively, and their out-edges as 1. For any vertex 
which is still not labeled, we will label it as el,k, where k is an imlex different with 
any previously used one. We will also add a new vertex and label it as constant 
0, and let each vertex whose out-degree is 1 have another edge entering it. The 
unlabeled edges will be lal)eled 1 or 0 arl)itrarily I)ut under the condition that  tile 
out-edges of ally vertex are labeled one 1 and one 0. Because of the restriction we 
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added on tile instance of PATH WITH FORBIDDEN PAIRS, it is easy to check that 
what we have constructed is actually a BDD. However, it might have redundancy 
and can be reduced. But based on the fact that each vertex appearing in the pairs 
has exactly one out-edge, these vertices will not be inferenced. 

Based on our construction, we can now prove that the instance of PATH WITH 
FORBIDDEN PAIRS has yes answer if and only the constructed BDD is satisfiable 
under tile consistent requirement. 

(=~) If there is a path from s to t in G that contains at most one vertex from 
each pair in C, then corresponding vertices will form a path in BDD, which, when 
adding en+l,n+ 2 at ttle head, forms a path from en+l,n+2 to 1. This path gives an 
assignment which satisfies the BDD. We need only prove it obeys the consistent 
requirement. This is trivial because only those vertices appearing in a pair can give 
trouble but the path contains at most one of them. 

(¢=) If the BDD is satisfiable under tile consistent requirement, then there is a 
path goes from en+l,n+2 to 1. It corresponds to a path in G from s to t. This path 
can only contains at most one vertex from each pair. Otherwise, the assignnmnt will 
make ei,n+l = 1 , e i , n + 2  - -  1 but en+l,n+2 ---- 0 ,  which is contradictory with the fact 
that the assignment obeys tim consistent requirement. 

3.4 Heuristically finding a consistent minterm 

We now develop a heuristic for solving the BDD ConSAT problem. First, observe 
that a cube c whose literals are drawn from the set of variables e12, e l3 , . . . ,  e(,~-l), 
naturally gives rise to a partial assignment e¢ to the variables. For example, the 
cube ~ -- el~. • e~4 • e23 corresponds to the partial assignment e~ wtmre e~(el2) = 
1, e~(el4) = 0,c~(e:~a) = 1. 

Lemma 3. For any cube c, if the resulting partial variable assignment ec is consis- 
tent, then there is a minterm in the cube which is consistent. 

Proof. The result follows from the following construction: start  with the partition of 
the set {1, 2 , . . . ,  n} into n distinct equivalence classes; recursively merge equivalence 
classes to which i and j belong if ec(eij) = 1. Call the resulting partition Pc. Since 
ec is consistent, there can not be a and b so that a and b lie in the same equivalence 
class of P~ but ec(eab) = O. Hence the minterm ~ given by ~(eij) = 1 iff i and j lie 
in the same equivalence class of P~ is consistent; furthermore, it lies ill C. 

Tile proof is constructive, and yields an algorithm for checking cube satisfiability; 
efficient querying and l, pdating of the partition can be performed by a variant of 
the union-find algoritlun [5]. Thus, a procedure for finding a consistent minterm in 
a BDD is to iterate over a set of cubes (a "cover") which contains all the minterms 
in the BDD. Such a cover can be derived from the BDD by recursive application of 
the Shannon decomposition, starting from the top variable. 

The iteration time is potentially exponential in tile size of the BDD; the search 
can be made far more efficient by bounding the search. If cube cl contains cube c2, 
and cl has no consistent assignments, then c2 has no consistent assignments. When 
iteratively generating cubes, we prune the search by finding early contradictions; 
this is the source of a major speedup. This is similar to the procedure of Chan 
et al [4] for pruning BDDs over variables corresponding to complex arithmetical 
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constraints. One source of relative efficiency for us is that because we are dealing 
purely with equality, we can incrementally check inconsistency as we explore the 
BDD. 

Another potential way to prune the search is to identify nodes appearing in the 
BDD for which the corresponding subfunction rooted at that node has no satisfying 
~qsignments; we have not experimented with this. 

4 E x p e r i m e n t s  

We implemented the procedure for constructing the eij-encoded functions from an 
IE netlist on top of VIS [6], which is a popular gate-level BDD-based verification 
tool. (For the finite instantiation approach, there was no code to write, since VIS 
has the capability of building BDDs for binary netlists.) 

In order to perform a comparison of the two symbolic methods for IE netlist 
satisfiability checking we f rs t  created a series of examples. These corrcspond to 
verifying processors using commutative diagrams [10]. Specifically, they arise in the 
verification of a pipelined processor; tile approach taken is that of Burch and Dill, 
wherciu a l)ipclined processor is flushed after executing one instruction; the resulting 
state is compared with the state resulting fi'om execution of the same iustructiou ou 
a nonpipelined implementation. Our examples are derived from the comparison of 
the pipelined and non-pipelined version of the 3-stage pipelined ALU used in [3]; this 
design has uninterpreted functions which correspond to the ALU and Reads/Writes 
to the register file. 

Constraints corresponding to the UIFs are added to the designs: for ALU, each 
constraint ensures that if the inputs to a pair of ALUs is the same, the outputs with 
be the same; for Reads/Writes, each constraint ensures that if we read a memory 
address that h,~q been written to, we will read the santo data w,'~ written. Tim five 
examples correspond to different mu,,ber of constraints. The entire set of constraints 
is not necessary to show that the designs are equivalent; PIPE1, PIPE2, PIPE3 all 
contain enough constraints to prove equivalence. (We were able to find a minimal 
set of constraints by starting with no constraints, and iteratively adding constraints 
to eliminate false uegatives.) PIPE3 has more constraints than PwE2, which in 
turn has more than PWE1; this is reflected in the increased computational effort 
to perform verification. The constraints used in PwE4, PII'E5 are not enough to 
to prove equivalence, but they do have soine superfluous constraints, resulting in 
higher verification times. A feel for complexity of the designs can be had from the 
fact that they had al)proximately 28 inputs, 60 equality blocks, 200 2-input NAND 
gates, aml 40 Mux elements. 

Table 1 shows the results we ol)tained. For both approaches, we report the com- 
putational resources expended in verification - -  menmry in the form of peak and 
final BDD size, and total computation time. These experiments were performed 
on a Pentium-200 with 64 Mbytes running Linux. The column headed Satisfiable 
indicates whether the netlist output was satisfiable. Note that for the finite instanti- 
ation approach, the resulting BDD has only one node (the 0 node) when the output 
is not satisfiable; the eij-encoded function for the output is nonempty, but has no 
consistent minterms. 

It is noteworthy that for the finite instantiation approach, the default BDD 
variable ordering would always result in memory overflows; dynamic variable re- 
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ordering [12] had to be enabled for the process to complete. Even so, the example 
P I w 5 . v  would exhaust available memory. For the equality based approach, vari- 
ables are allocated dynamically, and added to the end of the order; no variable 
re-ordering was needed. 

We observed that the number of BDD variables needed for the eii encoded 
fimction approach was never more than twice the number of inputs and hence sub- 
stantially smaller than for the finite instantiation al)l)roach, which always requires 
n- [log(n)] Boolean variables (where n is the number of inputs). This is surprising, 
since the eij encoded approach may need as many as n. (n - 1)/2 Boolean variables. 
However, not all inputs are compared in the design; input comparisons are "sparse". 
We create variables on demand, resulting in the saving. 

The running time for the eli--encoded approach includes both the time to build 
the functions, and to search the output BDD for a consistent minterm; the latter was 
very fast, taking of the order of tens of milliseconds. The results clearly are in favor 
of tile elj encoding; hence, we propose it as the method of choice for BDD-based 
satisfiability checking. 

The runtimes are higher than those reported in [3]; this is not surprising given 
the large overheads associated with initialization of the data structures we use for 
design ret)resentation. The results demonstrate that BDD methods are feasible, 
contradicting prevailing beliefs. In the next section, we point out an enhancement 
which we believe should make the BDD based approach highly competitive with 
the existing formula-based approaches. 

B e n c h m a r k  

PIPE1.V 
PH'E2.V 
PIPE3.V 
PIPE4.V 
PIPE5.V 

Finite Instantialions eij Encoding Satisfiable 
Max BDD Final BDD Time Max BDD Final BDD "rime 

3,932 1 12.5 62 36 0.3 No 
42,875 1 137.2 218 146 0.3 No 
131,889 1 447.0 536 355 0.4 No 
141,016 79,336 590.7 413 376 0.5 Yes 

co ? co 1523 1335 0.5 Yes 

Table 1. Comparing Symbolic Procedures for Equalit);. 

5 Conclus ion 

In summary, our major contribution is the extension of BDD techniques to the 
existential fragment of the theory of equality. Oil tile theoretical side, we have 
developed semantic foundations and addressed complexity issues. Our experiments 
justify the use of symbolic procedures; encoding each comparison of inputs by a 
Boolean variable is superior to the direct mapping of inputs to an appropriately 
sized vector of Boolean-valued variables. 

There are many ways in which this work can be extended. Perhaps the most 
important is the incorporation of the "miter" concept for identifying equivalent 
nodes; this has been extremely successful in the Boolean verification world [11], 
enabling the verification of million gate circuits. We are developing a specification 
language for designs with UIFs, a data structure for representing the same, and a 
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set of routines for restructuring and verifying the design; this will be made available 
to the general public. 

We are currently working on incorporating other interpreted functions and rela- 
tions, such as addition and inequality; this is motivated by the observation that tile 
abstraction of designs to UIFs with equality is too "coarse" for certain applications 
(e.g., replacing increment circuitry for a program counter, by a UIF may result 
in false negatives). It may be possible to get by with a simple approximation; for 
example, certain propertics may depend only on the associative and commutative 
properties of plus. 
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