
B D D Based Procedures for a Theory of Equality
with Uninterpreted Functions

Anuj Goel 1 , Khurram Sajid 2, Hal Zhou l, Adnan Aziz 1, and Vigyan Singhal a

I The University of Texas at Austin
2 Intei Corporation

a Cadence Berkeley Labs

Abstract . The logic of equality with uninterpreted functions has been
proposed for verifying abstract hardware designs. The ability to perform
fast satisfiability checking over this logic is imperative for this verification
l)aradigm to be successfld. We present symbolic methods for satisfiability
checking for this logic. The first procedure is based on restricting analysis
to finite instantiations of the (lesign. The second procedure directly rea-
sons about equality by introducing Boolean-valued indicator variables for
equality. Theoretical and experimental evidence shows the superiority of tim
second approach.

1 Verifying High-Level Designs Using the Theory of Equality

A common problem with automatic formal verification is that the computational
resources required for verification increase rapidly with the size of tile design. State-
of-the art tools for verification of gate-level designs are not capable of routinely
verifying designs possessing more than a hundred to two hundred binary-valued
latches.

This observation motivates the development of tools which can operate on de-
signs at a higher level of abstraction. Loosely speaking, the basic premise is that
abstract designs, being less specified, are simpler and consequently easier to verify.
Another benefit of this approach is that bugs are caught at earlier stages of the
design process.

We arc interested in the vcrification of designs at the high-level. This necessitatcs
reasoning about designs where a lot of complexity has been abstracted away. The
use of uninterpreted functions (UIFs) has been proposed as a powerful abstraction
mechanism for hardware verification [10,14]. Essentially, UIFs allow the verification
tool to avoid getting bogged down by complex details which are irrelcwmt to the
property being proved. In our work, we will use abstractions where datapath is
abstracted away by using unbounded integers, complex combinational functions
such as multipliers can be abstracted as uninterpreted functions, complex bypass
circuitry required in pipeline designs can be captured by the compare operator, and
propositional logic can be used to derive control signals. Moreover, memories can
also be incorporated inthis framework as partially interpreted functions by adding
constraints which relate reads and writcs [13].

In this context, the primary verification problem we solve is design equivalence;
this includes such apl)lications as verifying equivalence of l>ipelined and nonpipelined

245

processors. This can be posed as a problem in satisfiability checking for quantifier-
free formulas involving both equality and UIFs. As shown by Ackermann [1], this
problem can be reduced to satisfiability checking of quantifier-free formulas involv-
ing only equality through a suitable generalization of the following: given a formula
¢ containing terms f (x t) and f(x2), rel)lace f (x l) and f(x2) and by fresh variables
yl and Y2 to obtain a formula ¢; then ¢ is satisfiable itf (xl = x2 --~ Yl = Y2) A¢ is
satisfiable. Tim additional complexity of validity checking for tim theory of equality

• over propositional logic arises from the fact that the properties of equality need to
be taken into account. For example, the fornmla (Xl = x2) A (x2 = xa) A --(Xl = xa)
is not satisfiable, since it violates the transitivity of equality.

A number of decision procedures exist for the theory of equality with UIFs and
its extensions. Pioneering work was done by Shostak [13], who considered linear
arithmetic in conjunction with UIFs. His procedure replaces terms generated from
UIFs by new variables as previously described; the formula is then converted to a
conjunctive normal form, and each conjunct is checked for satisfiability using Integer
Linear Programming. In this way, fornmla satisfiabitity (and, by duality, validity)
can be checked.

Extensions to the basic algorithm of Shostak have been made in many recent pa-
pers on processor verification [3, 10, 2]. Essentially, their approach is a variant of the
Davis-Putnam procedure for validity checking over propositional logic, with suitable
extensions for handling the properties of equality. One source of their efficiency is
the ability to split on subformulas; they also use heuristic rewrite rules for formula
simplification. Their target application was the verification of pipelined processors.
Their notion of correctness is based on the equivalence of the machine state of the
nonpipelined machine after processing an instruction and the state resulting in the
pipelined machine after execnting the same instruction and flushing it out. (This
is the standard "comnmtative diagram" approach to verification [3].) Equivalence
is formulated as in terms of the validity of a quantifier free formula involving both
equality and UIFs.

One difference of our work with the work of [2] is that while they use formulas
to encode tim designs, we use BDDs which also incorporate the constraints that
are required of the UIFs. If these BDDs can be built and manipulated, the validity
checking problem is considerably simplified, and should work more robustly than
a rewrite-based approach. However, a naive method for building these BDDs does
not work; BDDs become too big. We present a novel encoding technique so that the
validity checking problem can be efficiently represented using BDDs.

Hojati et al [8, 9] use finite instantiations to handle UIFs (we also discuss a finite
instantiation based method in Section 3.1). In [8], they require art explicit invocation
of Shostak's method to decide equality between two terms containing UIFs; it is not
described if Shostak's algorithm is used directly or another al)proach is uscd. Their
results were negative from a computational point of view, and they conjectured this
was because of the absence of a good variable ordering; our experiments corroborate
this. We have developed a new al)proach for encoding the UIF verification problem
with BDDs which results in significantly improved runtime, and enjoys nice theoret-
ical properties - - this is the approach presented in this paper (Section 3.2). In our
preferred method, constraints due to UIFs (based on Ackermann's reduction) are
directly represented by BDDs. We provide experimental evidence that this nmthod
performs much better than a finite instantiation based method.

246

1.1 S y m b o l i c P r o c e d u r e s for the T h e o r y o f Equa l i ty

We motivate the use of symbolic procedures for the theory of equality by drawing
analogies to the problem of verifying the equivalence of gate-level combinational
netlists. One approach to the equivalence problem is to form a single "product
netlist" wherein corresponding inl)UtS are tied together, and corresponding outputs
are XOP~-ed. hmquivalence can then be checked by fornfing a large conjunction of
propositional fornmlas corresponding to the "characteristic functions" of the gates,
and a formula asserting that a pair of outputs differ; the designs differ iff the con-
junction is satisfiable.

Today, state-of-the-art tools for Boolean verification use BDDs and heavily ex-
ploit the structure of the design; the original tools were based on case splitting (e.g.,
ATPG-based methods) [11]. Currently, all approaches for verification in the theory
of equality with UIFs proceed by case splitting on terms occurring in the formula;
heuristic rewriting of subformulas is also performed. Based on experiences with anal-
ogous al)proachcs for Boolean verification, we predict that these techniques may not
be viable as the examples get larger or more complex, especially when the exmn-
pies are not hand designs but are outputs of automatic CAD tools, e.g., high-level
synthesis tools.

2 D e f i n i t i o n s

Designs will be specified as netlists. Before entering into a formal discussion of syntax
and semantics for designs, we provide some illustrative examples. The design of
Figure l(a) takes 4 integer-valued inputs - - xl, x2, x3, x4. The signal tl is Boolean-
valued, and takes the value 1 exactly when xl and x2 are equal. Intuitively, the
structure labeled with "=" returns 1 when its inputs are equal, and 0 otherwise.
The signal ut is integer-valued; it is equal to xl when tl is 1, and x2 when tl
is 0. The structure labeled with MUX operates as a multiplexer. The signal t2 is
Boolean-valued; it takes the vahm 1 exactly when x4 is equal to ul.

The design of Figure l(b) is identical to the example presented in Figure l(a),
except that the 1-input to the multiplexer has been replaced by x2. Observe however,
that the signals t2 and s2 take the same value for any input, since the 0-inputs to
the corresponding multiplexers are the same, and the 1-input is selected exactly
when xl = x2. Figure l(c) is a more complex design containing complex Boolean
gates.

x&

(a)

X2

2

J¢4

(b) ~' (c)

Fig. 1. Design examples.

247

Def in i t ion 1. An IE netlist is a directed acyclic graph, where the nodes correspond
to primitive circuit elements, and the edges correspond to connections between these
elements. Each node is labeled with a distinct variable wi. The four basic primitive
circuit elements are primary inputs, multiplexers, equality checkers, and 2-input
NAND gates. Some nodes are also labcled as being primary outputs. If an edge
(u, v) exists in tim IE netlist, u is said to bc a fanin of v.

Nodes will be of two types - - Boolean-vahmd and integer-valued. Nodes corre-
sponding to primary inputs and multiplexers are integer typed, and nodes corre-
sponding to equality checkers and 2-input NAND gates are Boolean. Multiplexers
are required to have a single Boolean-valued input, and two integer-valued inputs;
equality checkers should have two integer-valued inputs. A 2-input NAND gate has
two Boolean-valued inputs.

Note that the restriction to 2-input NAND gates is not serious, since they are
functionally complete. Constant-valued nodes and Boolean-valued inputs can also
be handled in the framework presented above. The technical issues they bring up
are minor, but impinge on the clarity of presentation; for simplicity we ignore them.

For an IE netlist, given an input (i.e., a fimction mapt)ing primary input nodes to
integer valu(,s), one can uniquely compute the values of each node in the IE netlist
by evaluating the functions at gates in topological order, starting at tile primary
inputs. More precisely, let t be an input; then ~ uniquely defnes a value t/L(s) to the
signal s in the IE netlist through the following recursive rules:

D e f i n i t i o n 2. IE N e t l i s t S e m a n t i c s

1. If s is a primary input then vL(s) = L(s).
2. If s is the output of an equality node with fanins (v,w) then v,(s) = 1 if

v~(v) = v~(u), and 0 otherwise.
3. If s is the output of a multiplexer node with fanins (c,v,w) then v~(s) = v~(v)

if v~(c) = 1, and v~(w) otherwise.
4. If s is the output of a 2-input NAND with fanins (v,w) then t,~(s) = 1 if

v~(v) = 0 or v~(u) = 0, and 0 otherwise.

In this way, a IE netlist D on inputs al, a2 , . . . , an and outputs bl, b2, . . . , bm defines
a function ft) : w n --r w m (here w = {0, 1, 2, . . .} is the set of natural numbers).
Intuitively, two designs are functionally equivalent if in any environment they can
be used interchangeably; a necessary and sufficient condition for this is for them to
have identical defined functions. Note that an IE netlist can operate on arbitrary
inputs and not just integers, since no operation other than equality is applied to
the integer-valued nodes.

Observe that for a primary input assignment L, the value taken by any integer-
valued node in the IE netlist will be the value taken by some primary input. This
is because there are no functions which can be applied to tile integers propagated
in the IE netlist; integers can only be compared. Indeed, a stronger claim can be
asserted - - the value taken by the node can be traced back to a specific primary
input which caused it. The proof of the claim is by an inductive argument starting
at the PIs, where it vacuously holds. Any other integer-valued node must be the
output of a multiplexer; the result follows by applying induction to the mux inputs.

We'll define the input xl to flow to s u n d c r the input assignment L when the
value taken by s under L is traced back to x/. For example, the input xl flows to

248

ul for the design in Figure l(a) under the input xl = 2,x2 = 2,xs -- 3,x4 -- 4; x2
does not flow to ul under this assignment, even though the value taken at ul is the
same as that at x2.

2.1 Relating Designs, Equa l i ty wi th UIFs , and IE Netlists

As stated in the introduction, we are concerned with designs which operate on un-
bounded integers, wherein the datapath has been abstracted away using UIFs, and
equality is the only operation which is applied to integer variables; design inequiv-
alence can then be cast as the satisfiability of a quantifier-free formula involving
equality and UIFs. IE netlists can not directly represent UIFs; however, the out-
puts of the UIF blocks can be replaced by new primary inputs. When comparing
the resulting IE netlists, these new inputs must satisfy the constraint that if the
inputs to two instances of the same UIF are equal, then the outputs of the two
instances are equal; this constraint can be added to the IE circuit using simple cir-
cuitry (an equality checker and a gate). As is the case for Shostak's procedure [13],
the soundness and completeness of this construction follows from [1].

3 IE Netlist Satisfiability Checking

IE Netlist Satisfiability Checking consists of taking an IE-netlist mid determining
if an input assignment exists for which a specified Boolean-valued output can take
the value 1.

Note that the usual "product construction" for checking the equivalence of gate-
level netlists can be applied to the problem of equivalence checking for IE netlists;
this is illustrated in Figure 2. Observe that thc construction results in exactly one
Boolcan-wthmd primary output, and so the cquiw~lence probh;m for IE netlists can
be easily reduced to the IE netlist satisfiability checking.

x2 ~:1

x

a l

x l

xd ' I

Fig. 2. Product construction for equivalence checking.

It is natural to ask at this point if there is a decision procedure for IE netlist
satisfiability checking, and if so, what the computational complexity of the problem
is.

3.1 Finite Model Approach

The existence of a decision procedure follows immediately from the fact that a "finite
model" folk-theorenl holds for holds for tile existential fragment of the theory of

249

equality: an existential formula in the language of equality is satisfiable iff it is
satisfiable in some model whose universe has cardinality equal to the number of
variables occurring in the formula.

R e d u c t i o n to C o m b i n a t i o n a l Sat is f labi l i ty The problem of determining if
there is all input to an IE netlist which sets a designated Boolean-valued output to
1 can be reduced to checking tim satisfiability of an existential sentence in the first
order logic of pure equality; tile encoding is very similar to that used to convert the
procedure for reducing Boolean-valued nettist satisfiability to satisfiability of a CNF
formula from propositional logic. Hence the integer valued variables can be replaced
by n-valued variables, which in turn can be encoded in ~log(n)] Boolean-valued vari-
ables. Thus the satisfiability problcnl can be efficiently (polytime) transformed to
a problem of checking the satisfiability of Boolean-valued netlists.

3.2 A Better Encoding

In this section we develop a superior encoding of IE netlist satisfiability instances
into Boolean netlist satisfiability. We introduce a minimal set of Boolean variables
- - one for each distinct comparison which is made between primary inputs. We will
show that the design functionality can be characterized by Boolean-valued functions
of these Boolean variables.

Specifically, for an IE netlist D on inputs xl , . . . , xn introduce Boolean variables
eli for 1 < i < j < n. For a Boolean-valued node s in D, we will construct a Boolean
function f " over the set of variables {el2, e l3 , . . - , e23, e24, . . . , el(n-l), e(n-1)n}; for
an integer-valued node t, we will construct a vector of n Boolean-valued functions

t t [fl f~ " " f t] over the same set of variables.
Intuitively, the variables eii 's indicate whether the i-th and j - th integer inputs

are equal or not. For a Boolean node, the function f at the node is a Boolean function
of these indicator variables, and it represents the condition under which the circuit
node evaluates to 1. For an integer node, such as a mux, the k-th component of the
n-tuple function f represents the condition under which the circuit node assumes
the value of the k-th integer input. Note the distinction between the primary input
that flows to s under t, and thc value u,(s); for the input L, it may be the case that
v,(s) is equal to the value taken by more than one primary inputs, but there will
still be a unique inllut xk which llows.

Definition 3. eli Encoded Functions

1. If s is a primary input, say x~, then f~ = 1 and for j ¢ k, f] = 0.
2. If s is a 2-input NAND gate with inputs u and v, then fs = (fu . fv),.
3. If s is the output of a mux with control c, and data inputs u, v, then f~ =

f t . y~, + (fo) , . fZ.
4. If s is the output of an equality node with inputs u, and v then

n n

f,e = E [j r~ . f~] + E E If/u" f ; " emin(i'J)max(i,j)]
i=l i----I i~j

250

E x a m p l e : Consider the IE netlist shown in Figure 2. The functions at the nodes
are as follows:

(f ~ , f ; t , f ~ , f ~) = (1,0,0,0) (f~2,f~2,f~2,f~2) = (0, 1,0,0)
(f~:s, f ; 3 , . f ~ s , g s) = (0,0,1,0) (f ~ ' 4 , f ; 4 , H 4 , H ') = (0,0,0,1)

f i t = e12

(f~t , f6 ' t , f~t , f~ ' t) = (e12,0, e~2,0) (f ~ ' , H t , H t , H t) = (o, el2,ei2,0)
t fb~ fa l = e 1 2 . e 1 4 + e12"e34 =e12"e24 + e~2"e34

I fOul =e12.(e14.e~4 + e14"e24)

Note that fou~ does not depend on e34.
Encoding the network using these eij's allows us to directly store the relationship

between the function nodes and the equality of pairs of inputs. For many validity
checking applications, it is the equality of intermediate circuit functions whidl is
exploited in siml)lifying or complicating (by pipeline bypass logic, for example,
in a l)ipelined implementation) logic circuitry. Encoding the equality by pairwise
variables allows us to represent relationship between equalities directly by having
single BDD wtriables for each of these e U varial)les. Of course, as we see later in
this section, to prevent false negatives, we will need to introduce procedures that
ensure the transitivity of equality.

The claim that the functions defined above characterize the IE netlist is formal-
ized by the following two lemmas:

L e m m a 1 (C o m p l e t e n e s s) . Let L be an input and s a node in the design. Let ¢
be the extension of t to the eq variables, i.e., e(eij) = 1 exactly when t(x,) = t(xj).
Then if s is Boolean-valued, p (¢) = vt(s); if s is integer-valued, then f~(e) = 1
exactly when xk flowS to s under t.

The proof follows by an easy induction on the depth of the node from the primary
inputs.

The functions computed above are not "sound"; values taken by them may not
be achievable in the design. This is because the there is no guarantee that the basic
axioms of equality are satisfied; Figure 2 provides an example. As shown previously,
the output of the product network is assigned the function e12" (e14" e~4 + e~4" e24).
However, closer inspection shows that it is not possible to find an input L so that
the e extension results in ~ el2 and el4 to be 1 and e24 to be 0 or e12 and e24 to be
1 and el4 to be 0 simultaneously; the transitivity of equality would be violated.

Def in i t ion 4. An assignment e to the eij variables is said to be consistent if it
satisfies hl<i<j<k<,,[c(ei~), c(ejk) -~ ~(e~k)].

Intuitively, a consistent assignment is one which satisfies the transitivity of equality;
for consistent assignments, the converse of Lemma 1 holds:

L e m m a 2 (Soundness) . Let e be a consistent assignment to the eij variables.
Let s be a node in the design. If s is Boolean-valued, there is an input L so that
fs(e) = v~(s); if s is integer-valued and f~(¢) = 1 then there is an input t so that
the input xk flows to s under L.

The proof is based on the fact that ~ yields an equivalence relation on the primary
inputs, from which the desired input can be constructed.

251

3.3 Satisflability using the e~j encoding

It follows from these two lemmas that the functions in Definition 3 characterize
the IE netlist. In particular, they suggest the following approach to satisfiability
checking for IE netlists: build BDDs for the eij-encoded Boolean functions, and then
check if there is a consistent assignment under which tim output BDD evaluates to
1.

Unfortunately, linding a consistent satisfying assignment for a BDD over the eij
variables will not be easy. The problem we are concerned about can be formulated
as follows.

BDD Satisfiability under Consistency (BDD ConSAT)
INSTANCE: A BDD on variables eij, l <_ i < j <_ n
QUESTION: Is the BDD satisfiable mtder some minterm e satisfying the
consistency requirement: Al<i<j<k<_n[e(eij). e(ejk) --+ ~(eik)]

Theorem 1. BDD ConSAT is NP-Complete.

Proo]. Given all assignment for tile eij variable, both tile BDD and the consistency
requirement can be evaluated in polynomial time. This tells us the simple fact that
BDD SAT is in NP.

We now show BDD ConSAT to be NP-hard by transforming the problem of
PATH W I T H FORBIDDEN PAIRS [7] to it.

INSTANCE: Directed graph G = (V, A), specified vertices s, t E V, collec-
tion C = {(al ,bt) , (an,bn)} of pairs of vertices from V.
QUESTION: Is therc a directe(I path from s to t ill G that contains at most
one vertex from each pair in C?

This problem remains NP-complete even under the restriction that G is acyclic
with no in- and out-degree exceeding 2 and all the given pairs are disjoint. Our
transformation will use a version with this restriction.

Given such an instance of PATH WITH FORBIDDEN PAIRS, we can construct
an instance of BDD ConSAT as follows.

First, we will modify the instance of PATH WITH FORBIDDEN PAIRS such
that each vertex appearing in the pairs has exactly one out-edge. This can be done
as follows. For each vertex v, which appears ill the pairs mid whose out-degree is
not 1, we will split it into two vertices vl and v2. All in-edges now end on vt and
all out-edges now start from v2 aml there is one edge goes from vl to v2. We also
substitute v by vl in the pairs. It is obvious that the new instance still obeys the
restriction and it has a "yes" answer if and only if the original one has one.

Now we will transform the modified DAG into a BDD by labeling and adding
vertices and edges. First we will add one vertex labeled en+l,,,+2 and an out-edge
labeled 0 going to s. We also label vertex t as constant 1. For each pair (a/, bi), we
will label them as ei,,~+l, ei,,~+2, respectively, and their out-edges as 1. For any vertex
which is still not labeled, we will label it as el,k, where k is an imlex different with
any previously used one. We will also add a new vertex and label it as constant
0, and let each vertex whose out-degree is 1 have another edge entering it. The
unlabeled edges will be lal)eled 1 or 0 arl)itrarily I)ut under the condition that tile
out-edges of ally vertex are labeled one 1 and one 0. Because of the restriction we

252

added on tile instance of PATH WITH FORBIDDEN PAIRS, it is easy to check that
what we have constructed is actually a BDD. However, it might have redundancy
and can be reduced. But based on the fact that each vertex appearing in the pairs
has exactly one out-edge, these vertices will not be inferenced.

Based on our construction, we can now prove that the instance of PATH WITH
FORBIDDEN PAIRS has yes answer if and only the constructed BDD is satisfiable
under tile consistent requirement.

(=~) If there is a path from s to t in G that contains at most one vertex from
each pair in C, then corresponding vertices will form a path in BDD, which, when
adding en+l,n+ 2 at ttle head, forms a path from en+l,n+2 to 1. This path gives an
assignment which satisfies the BDD. We need only prove it obeys the consistent
requirement. This is trivial because only those vertices appearing in a pair can give
trouble but the path contains at most one of them.

(¢=) If the BDD is satisfiable under tile consistent requirement, then there is a
path goes from en+l,n+2 to 1. It corresponds to a path in G from s to t. This path
can only contains at most one vertex from each pair. Otherwise, the assignnmnt will
make ei,n+l = 1 , e i , n + 2 - - 1 but en+l,n+2 ---- 0 , which is contradictory with the fact
that the assignment obeys tim consistent requirement.

3.4 Heuristically finding a consistent minterm

We now develop a heuristic for solving the BDD ConSAT problem. First, observe
that a cube c whose literals are drawn from the set of variables e12, e l3 , . . . , e(,~-l),
naturally gives rise to a partial assignment e¢ to the variables. For example, the
cube ~ -- el~. • e~4 • e23 corresponds to the partial assignment e~ wtmre e~(el2) =
1, e~(el4) = 0,c~(e:~a) = 1.

Lemma 3. For any cube c, if the resulting partial variable assignment ec is consis-
tent, then there is a minterm in the cube which is consistent.

Proof. The result follows from the following construction: start with the partition of
the set {1, 2 , . . . , n} into n distinct equivalence classes; recursively merge equivalence
classes to which i and j belong if ec(eij) = 1. Call the resulting partition Pc. Since
ec is consistent, there can not be a and b so that a and b lie in the same equivalence
class of P~ but ec(eab) = O. Hence the minterm ~ given by ~(eij) = 1 iff i and j lie
in the same equivalence class of P~ is consistent; furthermore, it lies ill C.

Tile proof is constructive, and yields an algorithm for checking cube satisfiability;
efficient querying and l, pdating of the partition can be performed by a variant of
the union-find algoritlun [5]. Thus, a procedure for finding a consistent minterm in
a BDD is to iterate over a set of cubes (a "cover") which contains all the minterms
in the BDD. Such a cover can be derived from the BDD by recursive application of
the Shannon decomposition, starting from the top variable.

The iteration time is potentially exponential in tile size of the BDD; the search
can be made far more efficient by bounding the search. If cube cl contains cube c2,
and cl has no consistent assignments, then c2 has no consistent assignments. When
iteratively generating cubes, we prune the search by finding early contradictions;
this is the source of a major speedup. This is similar to the procedure of Chan
et al [4] for pruning BDDs over variables corresponding to complex arithmetical

253

constraints. One source of relative efficiency for us is that because we are dealing
purely with equality, we can incrementally check inconsistency as we explore the
BDD.

Another potential way to prune the search is to identify nodes appearing in the
BDD for which the corresponding subfunction rooted at that node has no satisfying
~qsignments; we have not experimented with this.

4 E x p e r i m e n t s

We implemented the procedure for constructing the eij-encoded functions from an
IE netlist on top of VIS [6], which is a popular gate-level BDD-based verification
tool. (For the finite instantiation approach, there was no code to write, since VIS
has the capability of building BDDs for binary netlists.)

In order to perform a comparison of the two symbolic methods for IE netlist
satisfiability checking we f rs t created a series of examples. These corrcspond to
verifying processors using commutative diagrams [10]. Specifically, they arise in the
verification of a pipelined processor; tile approach taken is that of Burch and Dill,
wherciu a l)ipclined processor is flushed after executing one instruction; the resulting
state is compared with the state resulting fi'om execution of the same iustructiou ou
a nonpipelined implementation. Our examples are derived from the comparison of
the pipelined and non-pipelined version of the 3-stage pipelined ALU used in [3]; this
design has uninterpreted functions which correspond to the ALU and Reads/Writes
to the register file.

Constraints corresponding to the UIFs are added to the designs: for ALU, each
constraint ensures that if the inputs to a pair of ALUs is the same, the outputs with
be the same; for Reads/Writes, each constraint ensures that if we read a memory
address that h,~q been written to, we will read the santo data w,'~ written. Tim five
examples correspond to different mu,,ber of constraints. The entire set of constraints
is not necessary to show that the designs are equivalent; PIPE1, PIPE2, PIPE3 all
contain enough constraints to prove equivalence. (We were able to find a minimal
set of constraints by starting with no constraints, and iteratively adding constraints
to eliminate false uegatives.) PIPE3 has more constraints than PwE2, which in
turn has more than PWE1; this is reflected in the increased computational effort
to perform verification. The constraints used in PwE4, PII'E5 are not enough to
to prove equivalence, but they do have soine superfluous constraints, resulting in
higher verification times. A feel for complexity of the designs can be had from the
fact that they had al)proximately 28 inputs, 60 equality blocks, 200 2-input NAND
gates, aml 40 Mux elements.

Table 1 shows the results we ol)tained. For both approaches, we report the com-
putational resources expended in verification - - menmry in the form of peak and
final BDD size, and total computation time. These experiments were performed
on a Pentium-200 with 64 Mbytes running Linux. The column headed Satisfiable
indicates whether the netlist output was satisfiable. Note that for the finite instanti-
ation approach, the resulting BDD has only one node (the 0 node) when the output
is not satisfiable; the eij-encoded function for the output is nonempty, but has no
consistent minterms.

It is noteworthy that for the finite instantiation approach, the default BDD
variable ordering would always result in memory overflows; dynamic variable re-

254

ordering [12] had to be enabled for the process to complete. Even so, the example
P I w 5 . v would exhaust available memory. For the equality based approach, vari-
ables are allocated dynamically, and added to the end of the order; no variable
re-ordering was needed.

We observed that the number of BDD variables needed for the eii encoded
fimction approach was never more than twice the number of inputs and hence sub-
stantially smaller than for the finite instantiation al)l)roach, which always requires
n- [log(n)] Boolean variables (where n is the number of inputs). This is surprising,
since the eij encoded approach may need as many as n. (n - 1)/2 Boolean variables.
However, not all inputs are compared in the design; input comparisons are "sparse".
We create variables on demand, resulting in the saving.

The running time for the eli--encoded approach includes both the time to build
the functions, and to search the output BDD for a consistent minterm; the latter was
very fast, taking of the order of tens of milliseconds. The results clearly are in favor
of tile elj encoding; hence, we propose it as the method of choice for BDD-based
satisfiability checking.

The runtimes are higher than those reported in [3]; this is not surprising given
the large overheads associated with initialization of the data structures we use for
design ret)resentation. The results demonstrate that BDD methods are feasible,
contradicting prevailing beliefs. In the next section, we point out an enhancement
which we believe should make the BDD based approach highly competitive with
the existing formula-based approaches.

B e n c h m a r k

PIPE1.V
PH'E2.V
PIPE3.V
PIPE4.V
PIPE5.V

Finite Instantialions eij Encoding Satisfiable
Max BDD Final BDD Time Max BDD Final BDD "rime

3,932 1 12.5 62 36 0.3 No
42,875 1 137.2 218 146 0.3 No
131,889 1 447.0 536 355 0.4 No
141,016 79,336 590.7 413 376 0.5 Yes

co ? co 1523 1335 0.5 Yes

Table 1. Comparing Symbolic Procedures for Equalit);.

5 Conclus ion

In summary, our major contribution is the extension of BDD techniques to the
existential fragment of the theory of equality. Oil tile theoretical side, we have
developed semantic foundations and addressed complexity issues. Our experiments
justify the use of symbolic procedures; encoding each comparison of inputs by a
Boolean variable is superior to the direct mapping of inputs to an appropriately
sized vector of Boolean-valued variables.

There are many ways in which this work can be extended. Perhaps the most
important is the incorporation of the "miter" concept for identifying equivalent
nodes; this has been extremely successful in the Boolean verification world [11],
enabling the verification of million gate circuits. We are developing a specification
language for designs with UIFs, a data structure for representing the same, and a

255

set of routines for restructuring and verifying the design; this will be made available
to the general public.

We are currently working on incorporating other interpreted functions and rela-
tions, such as addition and inequality; this is motivated by the observation that tile
abstraction of designs to UIFs with equality is too "coarse" for certain applications
(e.g., replacing increment circuitry for a program counter, by a UIF may result
in false negatives). It may be possible to get by with a simple approximation; for
example, certain propertics may depend only on the associative and commutative
properties of plus.

References

1. Wilhelm Ackermann. Solvable Cases of the Decision Problem. Studies in Logic and
the Foundations of Matlmmatics. North-Ilolland, Amsterdam, 1954.

2. C. Barrett, D. Dill, and Jeremy Levitt. Validity Checking for Combinations of Theories
with Equality. In Proc. of the Formal Methods in CAD Conf., November 1996.

3. J. Burch and D. Dill. Autmnatic Verification of Microl)rocessor Control. In Proe. of
the Computer Aided Verification Conf., July 1994.

4. W. Chan, R. Anderson, P. Deame, and D. Notkin. Combining Constraint Solving and
Symbolic Model Checking for a Class of Systems with Non-linear Constraints. In Proc.
of the Computer Aided Verification Conf., July 1997.

5. T. H. Corrnen, C. E. Leiserson, and R. H. Rivest. Introduction to Algorithms. MIT
Press, 1989.

6. R. K. Brayton et al. VIS: A system for Verification and Synthesis. In Proc. of the
Computer Aided Verification Conf., July 1996.

7. M. R. Garey and D. S. Johnson. Computers and Intractability. W. H. Freeman and
Co., 1979.

8. R. Hojati, A. Isles, D. Kirkpatrick, and R. Brayton. Verification Using Finite Instan-
tiations and Uninterpreted Functions. In Proe. of the Formal Methods in CAD Conf.,
November 1996.

9. R. Hojati, A. Kuehhnann, S. German, and I£. Brayton. Validity Checking in the
Theory of Equality Using Finite Instantiations. In Proc. Intl. Workshop on Logic
Synthesis, May 1997.

10. Robert B. Jones, David Dill, and Jerry R. Burch. Efficient Validity Checking for
Processor Validation. In Proc. Intl. Conf. on Computer-Aided Design, pages 2-6,
1995.

11. Andreas Kuehhnaml and Florian Krohm. Equivalence Checking Using Cuts and
Heaps. In Proe. of the Design Automation Conf., June 1997.

12. R. Rudell. Dynamic Variable Ordering for Binary Decision Diagrams. In Proc. Intl.
Conf. on Computer-Aided Design, pages 42-47, November 1993.

13. R. E. Shostak. A practical decision l)rocedure for arithmetic with function symbols.
Journal of the ACM, 26(2):351-360, 1979.

14. Mandayam Srivas and Mark Bickford. Formal verification of a pipelined microproces-
sor. IEEE Software, 7(5):52-64, September 1990.

