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Abs t rac t .  Regularization offers a powerful framework for signal recon- 
struction by enforcing weak constraints through the use of stabilizers. 
Stabilizers are functionais measuring the degree of smoothness of a sur- 
face. The nature of those functionals constrains the properties of the 
reconstructed signal. In this paper, we first analyze the invariance of 
stabilizers with respect to size, ~ransformation and their ability to con- 
trol scale at which the smoothness is evaluated. Tikhonov stabilizers are 
widely used in computer vision, even though they do not incorporate 
any notion of scale and may result in serious shape distortion. We first 
introduce an extension of Tikhonov stabilizers that offers natural scale 
control of regularity. We then introduce the intrinsic stabilizers for pla- 
nar curves that apply smoothness constraints on the curvature profile 
instead of the parameter space. 

1 I n t r o d u c t i o n  

Most tasks in computer  vision can be described as inferring geometric and phys- 
ical properties of three dimensional objects from two dimensional images. A 
characteristic of those inverse problems is their ill-posed nature[PT84]. Assump- 
tions about  the scene, such as smoothness or shape must be made to retain the 
"best"  solution within the range of prior knowledge. Regularization transforms 
an ill-posed problem into a well-posed minimization problem by constraining the 
solution to belong to a set of allowed functions. If the problem is formalized as 
Av = d, where A is an operator  describing the image formation process and d 
is a function describing the data  extracted from the image, then the regularized 
problem consists in minimizing a functional of the form[BTT87]: 

E(v)  = A. S(~,) + D(~) = AIIP~II ~ + liAr - dll ~ (1) 

IIP'II~ evaluates the smoothness of the solution v and is called a stabilizing 
functional or stabilizers. ] ]Av-  4112 evaluates the distance between the solution 
to the data. The regularizing parameter  )~ weights the relative importance of 
smoothness with respect to the closeness of fit. 

Variational principles involving smoothness constraints are widely used in 
computer  vision ranging from surface reconstruction[BK86], segmentation with 
active contours[KWW88] and surfaces[DItI91b]. Geometric modeling primitives 
such as splines under tension [Sch66], Beta-Spline[BT83] proposed in computer- 
aided-design are derived from variational principles similar to the interpolation 
approach of regularization. 

In this paper, we first analyze the different smoothness measures with regard 
to five criteria of invariance. Then~ we extend the notion of stabilizing functionals 
to differential stabilizers by transforming the variational principle of equation 
(1) into the problem of solving a differential equation. Finally, we propose a 
generalization of Tikhonov stabilizers that  provides both spatial control of the 
smoothness constraint and intrinsic shape formulation. 
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2 S m o o t h n e s s  M e a s u r e s  

2.1 I n v a r i a n c e  

We have retained five criteria that  characterize the notion of smoothness as it is 
generally conceived for the human perception of shape: 

- I n v a r i a n c e  w i t h  r ig id  m o t i o n .  For all isometries T, a smoothness measure 
S(v) should verify: S(T~,) = S(v). 

- I n v a r i a n c e  w i t h  size. The smoothness of an object is independent on how 
far the viewer is from the object, assuming an infinite perceptual resolution. 
Therefore, a smoothness measure should verify: S(h,) = S(•), VI e IR. 

- I n v a r i a n c e  w i t h  r e s p e c t  t o  p a r a m e t e r i z a t i o n .  Shape is clearly indepen- 
dent of the way a curve or surface is described but relies only on its intrinsic 
geometric parameters.  We would therefore expect for every mapping M from 
~ C ~ d  (d = 1 or 2), to ~ C ~d ,  that  S( - (u) )  = S ( , ( M ( w ) ) ) .  

- D e p e n d a n c e  w i t h  inner-sca le .  Smoothness is clearly relative to the scale 
at which it is considered. A sensible smoothness measure should therefore 
be a function of scale. 

- S p h e r e  Inva r i ance .  This criterion states that  circles and spheres should 
be among the curves or surfaces of least energy. Besides that  spheres en- 
close the notion of ideal shape, this criterion ensures natural deformations 
against external constraints. For instance, if a stabilizer does not accept cir- 
cles as optimum, the approximating spline minimizing equation 1 would be 
a circle, generally of smaller radius. Consequently, the spline will tend to 
consistently deform toward its center of curvature, especially where the cur- 
vature is high. This smoothing distortion is known as the "shrinking effect". 
Several methods have been proposed to overcome this undesirable effect of 
linear smoothing: Lowe[Low88] and Oliensis[Oli93] studied algorithms for 
compensating the shrinkage entailed by Gaussiau smoothing. 

2 . 2  Q u a d r a t i c  S m o o t h n e s s  M e a s u r e  

Most regularized problems in computer vision, are based on a quadratic smooth- 
ness measure. The first advantage of quadratic measures is that  functional anal- 
ysis provides a solid theoretical framework for studying convexity, stability and 
convergence. The corresponding Euler-Lagrange equation is a quasi-linear dif- 
ferential equations and in the particular case of the interpolation and approx- 
imation surface reconstruction problem, the analytical form of solutions are 
known explicitly. Let S(~,) = flad (P~)2du be a quadratic functional over a 

set of multidimensional function v : IR d ~ ]R p. P is a linear, symmetric, and 
translation invariant operator and therefore the functional may be written as 
S(~,) = f~t~ ]P(S)]2]P(s)] 2ds where ~(s) is the Fourier transform of ~(u). The 
measure S(~) can be interpreted as the power signal of the transformed signal 
in the frequency domain. When P is a high pass filter, and under unrestrictive 
conditions, S(~) is a semi-norm over a well-defined class of functions ~ ,  with a 
finite dimensional null space[GJP93]. 

Tikhonov and Arsenin[TA87] used the qth-order weighted Sobolev semi- 
norms restricted on Sobolev spaces as a stabilizing functional for regularizing 
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an ill-posed problem. The qth-order weighted multivariate formulation general- 
ized by Duchon[Duc77] writes as: 

s ( . )  = du 
- -  j l + . . . + j d = m  

(2) 

where Wm(U)are n o n  negative functions that  control the non-homogeneity or the 
continuity of the surface. 

2.3 H a r m o n i c  F u n c t i o n s  

Curves of surfaces minimizing the Tikhonov stabilizers are harmonic or i terated 
harmonic functions. Harmonic functions correspond to the "most  conservative" 
interpolation possible in terms of parameterization. Harmonic functions have the 
unique property that  the value at the center of a ball in the parameter  space is 
equal to the mean value taken over the ball : 

VR e ]R +, Vu e ]R d u(u) - 1 j /  u(v)dB~ (3) 

where B~ is the ball of radius R centered on u. This mean value property uniquely 
characterizes harmonic functions and indeed corresponds to a highly desirable 
property for solving interpolation problems. The mean value property may be 
expressed too in terms of mean value over a sphere S~t centered on u rather than 
over a ball B~. 

2 . 4  I n v a r i a n c e  o f  T i k h o n o v  S t a b i l i z e r s  

Tikhonov stabilizers have the following properties: 

- I n v a r i a n c e  w i t h  r ig id  m o t i o n .  The multivariate Tikhonov stabilizers have 
been especially designed for their isometric invariance. 

- D e p e n d e n c e  on  size. For all stabilizers E(lu) = /2E(u). However, for a 
solution u*of a given set of data  constraints and end conditions, the scaled 
solution is solution of the scaled problem. 

- D e p e n d e n c e  on  p a r a m e t e r i z a t i o n .  Tikhonov stabilizers are not posed in 
terms of intrinsic parameters and consequently fairness of the reconstructed 
surfaces is not guaranteed. 

- I n d e p e n d e n c e  w i t h  inner -sca le .  The smoothness measure is estimated on 
infinitely small neighborhood around each point of a surface. The regulariza- 
tion parameter  A weights the smoothing effect on the regularized surface and 
thereupon controls the scale at which the surface is smoothed. However, it 
couples both notion of "scale" and "closeness of fit" that  are clearly distinct. 

- S p h e r e s  a r e  n o t  o p t i m a l .  Circles and Spheres do not minimize the Tikhonov 
smoothness measures. Furthermore, in [DHI91a], we have proved that  none 
of the quadratic stabilizers accept circles as optimal curves. Consequently, 
shrinkage is inherent to linear filtering. 
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2.5 Physical ly-based Smoothness  Funetionals 

Many natural phenomena may be modelled through variational principles and 
the energy of deformations of physical system may be used as smoothness mea- 
sures. For instance, an elastic spanned between two points reaches its equilibrium 
when minimizing its length: 

The first variation of this first order stabilizing functional is 5S(u) = --aT and du 
curves of least energy are lines. 

The mechanical spline energy is derived from the physical deformation of a 
thin beam attached at specified points: 

f0 ~~ f0 ~~ (x~y~ - y~x~) 2 
= (4) 

This energy was proposed by Blake and Zisserman[Bla87] to achieve a view- 
point invariant surface reconstruction. Curves minimizing the sum of their square 
curvature or mechanical splines have been studied by many authors including 
Horn[tIor83] and they verify the following intrinsic equation: 

d [ 2dkN] ds ( d2k\ 
5 S ( u ) = ~ u  k2T + ~ss J = ~  k3 + 2 ~ J )  N = 0  

This intrinsic smoothness functional does not accept circles as optimal curves 
and furthermore is not size invariant. 

3 Dif ferent ia l  Stabi l izer  

A necessary condition for u to minimize E(u) = A. S(u) + D(y) is the vanishing 
of the first variation 5E(u) = A.SS(u)+SD(u) = 0. Since E(u)is formulated as a 
variational principal, 5E(u) is derived through the Euler-Lagrange equation. In 
general, solutions of a variational problem are recovered by solving the associated 
Euler-Lagrange equation, hence making abstraction of the actual minimization 
problem. In practice, the energy to minimize in non-convex, and the solution of 
Euler-Lagrange equation leads local minima. 

It is therefore natural to extend the framework of regularization by replacing 
the necessary condition ~. 5S(u) + 5D(u) = 0 by the more general condition 

;~. or(u) + 5D(u) = 0 (5) 

where: 

- a(u) is an operator from a specified functional space ~- into .T. We will call 
o-(u) a Differential Stabilizer (DS). 

- SO(u) is the first variation of D(u) --- IIAu -dl l  2. 
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We will call stabilization the t ransformation of the problem Av = d into the 
following problem: 

Among all v E 5 v, that  verifyA �9 ~(~) + 6D(v) = 0 
Find vXthat minimizes : (6) 

= + - 

Instead of solving a minimization problem , stabilization proposes to solve the 
differential equation ), �9 rr(v) + 6D(y) = 0, and then to discriminate among 
solutions by minimizing the cost function C(v).  In general, stabilization is not 
equivalent to minimizing the cost function CO, ). However, when the differential 
stabilizer ~r(v) is a linear, symmetr ic  and positive operator  on a Hilbert space, 
then a (v)  corresponds to the first variation of the functional S(~) = f~d o'(~)~,du 
and hence stabilization is equivalent to regularization. 

The  incentive behind stabilization is to provide a wider range of smoothness 
functional for solving inverse problems. We can justify this approach with an 
analogy with mechanics theory. The laws of mechanics are based on the mini- 
mization of the Lagrangian L = T - U where T is the kinetic energy and U the 
to ta l  potential  energy of the system. The Euler-Lagrange equation correspond- 
ing to the minimization of L is the law of motion m_P = F. However, some forces 
do not derived from a potential  field such as viscous or friction forces, such tha t  
it is not always possible to set the problem in terms of minimization of energy 
but  only in te rms of force equilibrium. Hence, the differential stabilizer r  may 
be seen as an internal force enforcing shape constraints while 6D(~,) may be seen 
as an external force enforcing accuracy. 

Several propert ies are desirable for a DS to render feasible and computable 
solutions. In addition to invariance with rigid motion, size, parameterizat ion,  we 
add the notion of sphere invarianee as well as stability and convergence. 

4 Intrinsic Polynomial Stabilizer 

4.1 Control led-Scale  Extens ions  of  T ikhonov  Stabilizers 

We now propose an extension of the Tikhonov functionals described in section 
2.2 by introducing the notion of "scale-sensitive derivatives". For instance, we 
can evaluate the first derivative on a curve ~(u) at different scale with the ratio 
(y(u + r) - v ( u -  r))/2r where 7 controls the scale at which we consider the curve 
geometry. A smoothness measure of the first order at scale 7 on closed curves 
then writes as: 

f (~(u + r) - v(u - r))  ~ 
S ( y ) - -  J n -  4r 2 du 

+ 27)  2T) 

2r 2 4r 2 

The curves of least energy verifying ~(u) --- ,0,+2,)+~(u-2r) 4,- , are therefore har- 
monic, i.e. lines for a univariate function, we further extent the Tikhonov sta- 
bilizers by allowing the scale pa ramete r  7 to vary spatially along the curve. In 
general, the scale pa ramete r  should be large at the center of the set /2 where 
the surface is defined and should be decreasing near the boundary  082. Table 
1 summarizes  the different controlled-scale differential stabilizers generalizing 
Tikhonov functionals. 
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Controlled-Scale Weak String a(v) = ~2 (v(u) - v(u + r(u)) +2 v(u-  r(u)). ) 

Controlled-Scale Thin Rod a(u) = 2 (~,~(u) - ~(~+~(~))+'~(~-~(~))-) 

Controlled-Scale Membrane a(u) - r - ~  

Controlled-Scale Thin Plate a(v) - r(u) 

Table 1. The controlled-scale extensions of Tikhonov stabilizers 

Those controlled-scale differential stabilizers fully generalizes the Tikhonov 
stabilizers since they converge toward the Tikhonov stabilizers as r (u) converges 
toward zero. 

Using an analogy with mechanics, those "smoothing forces" can be inter- 
preted as spring forces exerted between a surface point and the centroid of the 

curve , ( v ) , v  e S~ (~). Instead of considering the centroid of the curve u(v) sur- 
rounding a point, we can consider the centroid of the area it encloses. We then 
obtain another set of smoothing functionals that  rely on the same notion of 
"scaled derivatives", but leads to smoother deformations because it averages 
over a larger extent. The uniform controlled-scale differential stabilizers are de- 
fined as: 

Uniform Controlled-Scale Weak String 

Uniform Controlled-Scale Thin Rod 

Uniform Controlled-Scale Membrane 

Iniform Controlled-Scale Thin Plate 

f~+~(~) v(v)dv 

~ ( . )  = - ~ ( ~ ) +  - 

-~(~) = ~ ( ~ )  + 

Table 2. The uniform controlled-scale extensions of Tikhonov stabilizers 

Solutions of the differential equation 5 typically use finite differences or fi- 
nite elements methods with iterative schemes such as Gauss-Seidel relaxation. 
Controlled-scale stabilizers involve inverting a banded positive definite matr ix 
whose bandwidth depends on the scMe parameter r(u). The computational com- 
plexity for solving those systems is the same that  for regular Tikhonov stabilizers 
but  the rate of convergence is significantly increased since constraints propagate 
faster along the curve. 

For sparse data  approximation, smoothness should not be evaluated over the 
discontinuity entailed by each data  constraint. For appropriate approximation 
over data  points P~, the scale parameters r~ should be picked such that  smoothing 
does not occur across discontinuities (see Figure (t)) .  
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a) b) 

c) d) 

Fig. 1. a) Approximation of data points with the controlled-scale thin rod stabilizers 
and varying scale parameter; b) Distribution of the scale parameters along the curve. 
The parameter at each "attached" nodes is one, and vary linearly otherwise; c) Result 
of the same approximation with almost constant scale parameters ; d) Distribution of 
the scale parameters corresponding to c): r~ = Min(5,  i, N - i) 

4.2 Intrinsic Polynomial  Stabilizer 

The Intrinsic Polynomial Stabilizer[DHI91a] (IPS) are differential stabilizers act- 
ing on planar curves. They are invariant to rigid motion, parameterization, they 
are scMe sensitive and they accept circles as optimal curves. Another interesting 
feature is their intrinsic nature which makes them sensitive to shape regardless 
of the parameterization. Our approach consists in linearly filtering the curvature 
space instead of linearly filtering the parameter  space. 

More precisely, given a curve ~(u), we choose to filter the derivative of the 
tangent  polar angle ~ = k(u)~-~.d~ Given a differential stabilizer al(dd--~-) applied 

on the rate of turn ~u(u), we define a differential stabilizer a applied on the 
parametric  equation: 

d2 s 
(7) 

The Intrinsic Polynomial  Stabilizers are derived directly from equation (7), with 
(rl corresponding to uniform controlled-scale differential stabilizers of different 
orders: 

d2s 
IPS order zero CrzPS0(L') = ~u2T (8) 

d 2 s T ds de  N IPS order one cripsl(v) = ~ u  2 + ~uu ~uu (9) 

d2s T ds J~-~(~) d ~  J | 
IPS ~ tw~ C~Ips2 ( ' )  = ~u2 +~uu ( u ) -  ~r  (-u-~) ] N(10)  

The IPS of order one correspond to the weak string differential stabilizer. 

= 0  The curves tha t  nullify the IPS of order n verify both ~ = 0 and cr 1 dr 
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and therefore are curves whose curvature profile is a polynomial of degree 2n - 3 
of the arc-length. For n = 0, the "smoothest" curve verify only d~s d--~ = 0 which 
does not constraint the shape of a curve, only its parameterization. For second 
order stabilizers the curve of least energy are Cornu's Spirals or Clothoids. 

Intrinsic Polynomial Stabilizers can be seen as merely scale-sensitive Tikhonov 
stabilizers regularizing the curvature profile instead of the parametric equation. 
They are circle-invariant which prevents any "shrinking effect" during filtering. 

a) b) c) 

d) e) f) 
O 

g) h) i) 

Fig. 2. a) Interpolation with the thin rod stabilizer; b) Its curvature profile; c) inter- 
polation with IPS of order two; the curve is C 2 continuous; d) Its curvature profile is 
piecewise linear; e) Interpolation with IPS of order three the curve is C4; f) Its curva- 
ture is piecewise cubic; g) Approximation with a thin rod; h) Approximation with IPS 
of order one; i) Approximation with IPS of order two (same regularization parameter) 

We use an explicit finite difference scheme for solving approximation, inter- 
polation, and segmentation problem. The expression of the stabilizer is simple 
enough to render real-time deformations of an active contour on a Sun4 work- 
station. Figure (2) compares the interpolation and approximation solutions for 
the thin rod, IPS of order two and IPS of order three. The curvature profile 
shows clearly that IPS release smoother and natural-looking shapes than the 
linear thin rod stabilizer. 

4.3 S h a p e  c o n s t r a i n t s  

Another interesting type of internal constraints for solving computer vision prob- 
lems, is shape. For instance, in order to track deformable object, one would 
like to have a template with enough shape constraints for correctly matching 
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the target  but  with enough flexibility to adapt  to perspective distortion and 
target  deformation[BACZ93]. Weighted Intrinsic Polynomial Stabilizers create 
complex-shaped deformable templates  with controlled-rigidity. Those templates  
natural ly  converge toward their initial shape when not submit ted to any external 
constraints. 

Given a curve and its curvature profile: k = f ( s ) ,  we first determine the 
ex t rema  of curvature.  If we compute the weight function as w ( u )  = 1 / I f ' ( u ) l  , 
then solutions of the weighted weak membrane  differential stabilizer or(u) = 
-~-ff~[w(u)u~,] = 0 between two ext rema are the functions u(u)  = a f ( u )  + b. A 
stabilizer enforcing shape prior on a contour is defined as following: 

with ~h dr ( d~ ) equals to: 

d28 

d d 2 
~u[w(u) d~ ]  with w ( u )  = 1 / I / ' ( u ) l  if y ( u )  is between two extrema. 

- f ( u )  - dd~ u if f ( u )  is an ex t remum of curvature. 

This method applies to any C 2 continuous contour. The previous stabilizer 
can be extended further by integrating for notion of scale at which the shape 
is defined. In Figure (3), we use the smoothed shape of France to illustrate the 
shape prior ability of intrinsic stabilizers. After constraining the position of seven 
nodes, the curve reaches a state of equilibrium with a trade-off between natural  
shape and closeness of fit. 

\ 

a) 

r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  , 

1 

b) 

Fig. 3. a)Initial curve with its rest shape; b) Curve solution of an approximation prob- 
lem under the influence of the weighted intrinsic polynomial stabilizer. The curve is 
constrained by seven springs attached to the black squares. Under the influence of the 
stabilizer, the curve shape is similar to its prior shape. 

5 C o n c l u s i o n  

The controlled-scale stabilizers, on one hand, provide an additional set of pa- 
rameters ,  the scale parameters ,  tha t  influences both the convergence rate and 
the smoothness of the reconstructed signal. Intrinsic stabilizers on the other 
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hand, provide a complete control of the curvature profile of a curve and con- 
sequently its shape. A promising application of shape-control is the creation of 
smoothly deformable templates for target tracking. Finally, intrinsic splines for 
which curvature is a polynomial function of arc-length are of great interest for 
computer-aided design because of their natural appearance. 

Acknowledgments 

I would like to thank M. H~bert, K. Ikeuchi, and N. Ayache for stimulating dis- 
cussions. This work was supported in part by a grant from Dig i t a l  E q u i p m e n t  
C o r p o r a t i o n .  

References 

[BACZ93] 

[BK86] 

[Bta87] 
[BT831 

[BTT871 

[DiiI91a] 

[DIII91b] 

[DucT7] 

[GJP931 

[Hor83] 

[KWT88] 

[LowS8] 

[Oli931 

[PT84] 

[PVY85] 

[Sch66] 

[TA87] 

R. Blake A.and Curwen and Zisserman. Affine-invariant contour tracking 
with automatic control of spatiotemporal scale. In Proc. of the Fourth Int. 
Conf. on Computer Vision (ICCV~93), pages 66-75, Berlin, 1993. 
T.E. Boult and J.R. Kender. Visual surface reconstruction using sparse 
depth data. In Int. Conf. on Computer Vision and Pattern Recognition 
(CVPR'86), pages 68-76, 1986. 
A. Blake, A. Zisserman. Visual Reconstruction. MIT Press, 1987. 
II.G. Barsky and J.M. Tenenbaum. Local control of bias and tension in 
beta-splines. A CM Trans. on Graphics, 109-134, 1983. 
M. Bertero, Poggio T., and V. Torte. Ill-Posed Problems in early vision. 
Technical Report A.I. Memo 924, M.I.T., A.L Laboratory, May 1987. 
If. Delingette, M. Hebert, and K. Ikeuchl. Energy functions for regulariza- 
tion algorithm. In Proe. SPIE., Geometric Methods in Computer Vision, 
Vol. 1570, pages 104-115, 1991. 
H. Delingette, M. IIebert, and K. Ikeuchi. Shape representation and image 
segmentation using deformable surfaces. In IEEE Computer Vision and 
Pattern Recognition (CVPR91), pages 467-472, June 1991. 
J. Duchon. Splines minimizing rotation-invariant semi-norms in sobolev 
spaces. In Constructive Theory of Functions of several Variables, pages 85- 
100, 1977. 
F. Girosi, M. Jones, and T. Poggio. Priors, Stabilizers and Basis Functions: 
from regularization to radial, tensor and additive splines. Technical Report, 
M.I.T., A.I. Laboratory, 1993. 
B.K.P. IIorn. The curve of least energy. A CM Transactions on Mathematical 
Software, 1983. 
M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models. 
International Journal of Computer Vision, 1:321-331, 1988. 
D.G. Lowe. Organization of smooth image curves at multiple scales. In 
Proc. of the Second Int. Conf. on Computer Vision, 1988. 
J. Oliensis. Local reproducible smoothing without shrinkage. In IEEE 
Transactions on Pattern Analysis and Machine Intelligence, 1993. 
T. Poggio and V. Torre. Ill-posed problems and regularization analysis in 
early vision. In IUS Workshop, pages 257-263, 1984. 
T. Poggio, H. Voorhees, and A. Yuille. A Regularized Solution to Edge 
Detection. Technical Report, M.I.T., A.I. Laboratory, 1985. 
D.G. Schwelkert. An interpolation curve using a spllne in tension. Journal 
of Math. Phys., 312-317, 1966. 
A.N. Tikhonov and V.A. Arsenin. Solutions of Ill-Posed Problems. Winston, 
1987. 


