
The Role  of Key-Po ints  in Finding Contours  * 

O. Henricsson and F. Heitger 

Communication Technology Laboratory, 
Swiss Federal Institute of Technology ETH 

CH-8092 Ziirich, Switzerland 

Abst rac t .  This paper describes a method for aggregating local edge 
evidences into coherent pieces of contour. An independent representation 
of corner and junction features provides suitable stop-conditions for the 
aggregation process and allows to divide contours into meaningful sub- 
strings, right from the beginning. The active role of corner and junction 
points makes the contours converge onto them and greatly reduces the 
problems associated with purely edge-based methods. A second stage is 
concerned with completing established contours across regions that are 
less well-defined by contrast. The algorithm suggested uses the attributes 
of established structures (e.g. direction of termination) as well as local 
orientation and edge evidences to constrain possible completions in a 
rigorous way. 
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1 I n t r o d u c t i o n  

Intensity discontinuities are considered one of the primary image features that 
allow to segment a scene into meaningful parts. Based on the assumption that 
object boundaries are generally smooth and mostly contrast defined, much ef- 
fort has been devoted to design suitable edge detectors (e.g. [3]) that reliably 
indicate these 1-D intensity discontinuities. The deficiencies of edge-maps, such 
as fragmentation, gaps at junctions, as well as clutter and faulty connections 
are well known. Also, object boundaries are not guaranteed to be contrast de- 
fined. To obtain more complete and unambiguous boundary definitions, addi- 
tional processing is needed that  accounts for more global relationships among 
image features. 

Perceptual grouping methods have demonstrated a promising potential in 
this respect. Most approaches use geometrical criteria (e.g. distance, co-curvi- 
linearity, symmetry) to group local edge evidences into larger entities, thus also 
separating salient structures from clutter [11, 19, 14, 6]. The use of binary edge- 
maps as input, however, neglects information that  could assert the validity of 
connections on grounds other than geometry. 

2-D image features, such as junctions, corners and line-ends represent an- 
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other important  class of image information that  can serve the definition of 
object boundaries. With respect to this task the role of these features is 
a dual one: First, they reflect promi- 
nent events in the course of a boundary 
that  allow to divide it into "natural" 
parts and to extract  meaningful shape ~ -~ 
decompositions [2, 13]. A corner or a \ - -  
junction together with the directions \ / 
of their constituent components often ~ 1/ 
characterizes an object more succinctly I [ 
than edge fragments. Fig. 1 illustrates 
this aspect. Second, 2-D features occur 
abundantly in situations of occlusion ( ~ ~ > 
and within this context they can serve 
to indicate object contours even if the 
contrast is vanishing or null. A model of 
visual cortical contour processing that  
infers such contours as well as figure Fig. 1.: The information at corners and 
ground direction from termination ev- junctions (left) is often more important 
idences has been presented earlier [9]. for object definition than edge fragments 
Because the 2-D features are so signifi- (right). 
cant, we use the term key-points. 

In this paper we want to discuss the role that  an independent representa- 
tion of such key-points can take in aggregating local edge evidences to larger, 
coherent pieces of contour (called contour-strings in the sequel). The goal is to 
represent the contrast defined image features as a collection of meaningful parts, 
subdivided at locations of high key-point evidence. Of course, this idea is not 
new, but  previous implementations used post-processing of binary edge-maps to 
achieve segmentation (e.g. [13]), rather than utilizing independent representa- 
tions of 2-D features. We will show that  the complementary nature of edges and 
key-points can provide a bet ter  and more stable definition of image structures. 

In a first instance key-points serve as stop-conditions for the aggregation 
process which is started at points that  can most reliably be classified as "edge" 
points. In a second stage, the key-points that  are connected to contour-strings 
serve as "bridge-heads" for closing gaps across regions of low or vanishing con- 
trast.  Connections are only accepted if they satisfy a variety of geometrical 
constraints, but  also provide evidence for residual contrast definition. 

For the moment,  we deliberately exclude completions of the "illusory con- 
tour" type as described in [9]. The boundaries obtained with the present ap- 
proach are therefore still incomplete. However, this complies with the general 
philosophy of the present approach: Contour-strings are established in a strictly 
hierarchical fashion, starting with the most reliable ones and using the infor- 
mation of already established structures to expand into more uncertain regions. 
Decisions are adapted to the level of uncertainty, with weaker evidences requiring 
more constraints to satisfy than stronger ones. 
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2 Filtering and Key-point Detection 

2.1 Fil ters  

We convolve the image with filters of even and odd symmetry (6 orientations, 
channels) and combine their output to response modulus (square-root of oriented 
energy), an approach similar to [5, 16, 15, 1, 17]. The filters have the following 
properties (see [8, 18] for a detailed description): They form a quadrature pair, 
are polar separable in the Fourier domain, and the response modulus yields a 
unified response to edges and lines. 

In this paper we use both the modulus representations and their 2nd deriv- 
atives perpendicular to channel direction. The second derivative enhances the 
negative curvature occurring at modulus peaks and has further shown smaller 
gaps at junctions with non-maximum suppression. We denote the modulus maps 
with J~4 and the second derivative maps A/[ (2). 

Non-maximum suppression is applied on clipped 2nd derivative channels, i.e. 
local maxima in a direction perpendicular to the dominant channel orientation. 
This binary map (denoted Af) is used as a seed structure for the contour aggre- 
gation. 

2.2 Key-points 

Key-points are defined as strong 2D intensity variations, i.e. the signal not only 
varies in one direction, but also in other directions. We implemented a detection 
scheme based upon a model of visual cortical end-stopped cells. 

In principle, the 1st and 2nd derivatives in the direction of modulus chan- 
nels are used, the 1st derivatives being sensitive to the termination of oriented 
structures (line-ends, corners, junctions) and the 2nd derivatives to blobs and 
strong curvature. 1st and 2nd derivatives are combined to localize the key-points. 
A compensation map is used to eliminate spurious responses to 1D structures 
(straight edges, lines). The key-point detection scheme is described in detail in 
[8, 18]. We denote the set of detected key-points E and the 3 • 3 surround by ](:~. 
Reliable detection as well as accurate localization of key-points is a prerequisite 
for the contour aggregation as described below. 

2.3 Local Or ien ta t ion  and Edge Qual i ty  

The response modulus in the six channels is used to determine the local orien- 
tation of the underlying structure. We use the real and imaginary coefficients of 
the first Fourier harmonic to approximate the local orientation, (similar to the 
approaches of [4, 10]). 

Oloc = ~ t a n -  , w h e r e  0Ioc e [-~,  3] 

Because we use filters that are polar separable in the Fourier domain, the 
response magnitudes in the different orientation channels are entirely determined 
by the orientation of an edge/line and the orientation tuning of the filters, defined 
as ~ ( r  = cosn(r  
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The residual between the actual response distribution and the edge/line pre- 
diction is then used as a measure for edge quality (cf. [18] for details). =1( 

Residual = ~ M k  ~(]Otoc - Okl) 

1 
Q(Ozoc) = 1 + Residual , [0 < Q(O~o~) < 1] (1) 

Edge quality will be used for selecting appropriate start points for contour ag- 
gregation as will be explained below'. 

3 Contour Aggregation 

The contour aggregation algorithm can be described as a process linking initial 
edge-markings into coherent contour-strings. The selection of the appropriate 
track is based upon (1) connectivity, (2) modulus strength, and (3) key-point 
markings. 

3.1 Select ing Star t=points  

Adequate start points are positions with high edge quality and low influence 
from surrounding key-points. Such points have per definition (1) a well defined 
local orientation, as needed for the start condition. 

The normalized difference of modulus and key-point value is used to define 
the key-point influence. The product of edge quality and key-point influence 
yields a suitable start measure, 

S ( x , y )  = Q(x 'Y )2  " ~:~ .... (z,y)+~:(z,y)] ,(x,y) e A /  

0 , o t h e r w i s e  

where M m a z ( x ,  Y) is the response modulus in the dominant orientation channel, 
and ]~(x, y) the key-point map value. Notice that only points marked by non- 
maximum suppression (H) are used as start points. 

The start points are transferred to a sorted list, the first entry being the point 
with the highest start value. The contour aggregation algorithm successively 
picks the currently best start point from the sorted list. After a contour segment 
has been established, all start points along the segment are eliminated to prevent 
multiple chaining of the same contour-string. 

3.2 Chaining Algor i thm 

Contour aggregation (pixel chaining) is done by locally evaluating a small set 
of valid paths within directional masks as depicted in Fig. 2. The evaluation is 
a two stage process, (1) a priority is assigned to each path, and (2) a path value 
depending on the priority is assigned, as shown in Table 1. The current position 
P0 and the chaining history defines the chaining direction, a E [-~r, ~r]. At the 
start point, the chaining direction is initialized as one of the two opposing direc- 
tions defined by the local orientation map. Each a is associated with a two-level 
directional mask j ,  defined in eight possible directions (j3(j) = j {). Within each 
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mask there are nine distinct paths extend- 
ing from P0 through a pixel P1 in level one 
to a neighboring pixel P2 in level two. Each 
path i = 0, 1 , . . .  ,8 within the mask j is thus 
defined by the triplet [P0, Pl ( i ) ,  P2(i)] and 
evaluated according to the table below. The 
function f penalizes paths deviating from 
the current chaining direction a. In a first 
selection the path(s) with the highest prior- 
ity is(are) selected. If there is more than one 
path, the value of E ( i )  determines the selec- 
tion. The selected path i t defines the next 
pixel PI(i ') and an updated chaining direc- 
tion a ~. The chaining continues until one of 
the following stop conditions is encountered. 

Fig. 2.: Two-level directional 
masks. The other six masks are only 
rotated versions of the two. 

- P0 E K,  the current position is a key-point. At priority level 3 the chaining 
algorithm captures the key-point position in a deterministic fashion and the 
stop condition is set. 

- priority 0, termination without key-point marking. 
- collision with another, already established, contour-string. 

When the chaining algorithm encounters a stop condition it generates a stop 
marker of the corresponding type. 

P r i o r i t y  

3 
C o n d i t i o n  E v a l u a t i o n / A c t i o n  

P0 E Ks Key-Point capture, no path evaluation. 

(P~(i) e {N,/cs}) n 

(P2(~) e {N,~,t:s}) 

1 (Pl(i) e N) n 

(P2(i) ~ (Af,/C, ICs}) 

0 Pl(~) ~ {N ,~ : ,~ s }  

Table. 1. Chaining algorithm. 

Normal chaining, evaluating 
[ 

E(i)  (2) P i (2) P. i - ~Mmo=( 1()) +Mm~=( 2())) /(p(j),~(i)) 
~/(i) is the direction of the path i and 

f (fl(j),  ~/( i) ) = cos(fl( j)  - 7(  i) ). 

terminating in the next step, evaluating 

E(i)  (2) . = Mma=(Pl(~)) 

path terminated 

The chaining algorithm generates contour-strings and stop markers in a con- 
nected fashion, inferring a graph-like data  structure. Each contour-string is de- 
limited at both ends with a key-point. The order of a key-point is defined as 
the number of contours strings connected to it. Apart from cross references, 
semi-global attributes are assigned to contour-strings and key-points (Table 2). 

3.3 Pos t -p roce s s ing  of  E s t a b l i s h e d  C o n t o u r - s t r i n g s  

The established contour-strings can still have strong orientation discontinuities. 
We therefore divide each contour-string with orientation discontinuities into sub- 
strings by using the algorithm suggested by Medioni [13]. The points marked by 
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feature type attribute 
contour-string - length, 

- integrated modulus response (contrast) 
- type and polarity of contrast, 
- termination directions (linear and quadratic fits) 

key-point - order = number of connected contours, 
- termination direction of connected contour, 
- key-point value (contrast dependent) 
- key-point type 

Table. 2. Attributes of contours and key-points. 

the algorithm are further tested by linear fits on the contour-strings to either 
side of the marked point. If the angular difference of the two opposing directions 
is large enough (> ~), the point is accepted as an additional key-point. 

Contour-strings that  are connected to a key-point of order > 2 and that  have 
a low integrated modulus value when compared to the remaining contour-strings 
are pruned. An additional requirement is that  the contour-string is not connected 
to any other structure. Thus, unnecessary high orders of key-points due to these 
spurious contour-strings are precluded. Furthermore, short and isolated contour- 
strings are pruned as well if their integrated modulus is below a given threshold 
(we use 1% of the global average). All pruned structures are transferred to a stack 
and can be used for later processing. The pruning of spurious contour-strings is 
important  with respect to gap-closing and a robust vertex classification. 

4 Bridging Gaps Supported by Contrast Evidences 

Recapitulating the process history of the present contour representation~ we 
started with the initial edge map and applied the chaining algorithm as an 
aggregation process yielding a graph-like representation of the contours. The 
key-points were used as natural stop-markers during the chaining process. A 
pruning stage was applied to retain only significant structures. 

Fig. 3. Cut-out from the aerial image in Fig. 7, showing poor contrast definition. 

We can now use the information gained with the contour aggregation process 
to find other contour strings that are less well defined by contrast, (a typical ex- 
ample is shown in Fig. 3). In other words, already established structures are used 
to constrain possible extensions across areas of low or vanishing contrast. We 
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have tacitly assumed that  all important  image structures are in some sense con- 
nected to key-points, thus possible contrast defined connections are only allowed 
between pairs of key-points. However, bridging contrast defined gaps between 
pairs of key-points extends also to connections that  do not comply with co- 
curvilinearity constraints. Our approach to close contrast defined gaps consists 
of four stages. 

Pre-selection: all connections are checked and those which (1) exceed a prede- 
fined distance, (2) are already established or (3) intersect with already es- 
tablished contour string, are eliminated. The pre-selection stage is fast and 
greatly reduces the number of connections that  are further analyzed. This 
stage is done without analyzing the connection for contrast evidences. 

Classification: each remaining connection is classified as either two-, one-, none- 
sided, depending on distance and angular criteria (see below). 

Evaluation: collecting contrast evidences along the connection line. Connections 
not passing predefined criteria are eliminated. 

Selection: the remaining connections compete in a local winners-take-all proce- 
dure, leaving only the most significant connections. 

4.1 C l a s s i f i c a t i o n  A c c o r d i n g  t o  G e o m e t r i c a l  C r i t e r i a  

The connections surviving the pre-selection stage are classified as either two-, 
one- or none-sided depending on angular criteria, as shown in Fig. 4. The classi- 
fication is done by analyzing the termination directions of the contour strings in 
relation to a given connection. Analyzing key-point A we have n attached con- 

/. K 

A, / /  \ \  

q ' - - - ' _ ,d  

keypoint 

contour string 

connection llne 

termination direction 

Fig. 4. Examples of connection classification (with parameters below), two-sided KM 
(or MK), one-sided LM, and none-sided ML, LK, KL, KN, NK, NM, MN. 

tour strings al,  . . . ,  a,~ with their respective termination angles a l ,  . - - ,  c~n. Each 
connection from key-point A to B defines a direction, flA~B- The connection AB 
(A --~ B) is one-sided if, 

d 2 
mini (lfln--.B - a l l )  _< (-~ - c ) .  e - ~  + c (2) 

where d is the Euklidian distance between A and B. The parameters a and c 
control distance and angular criteria. (we used a = 5.0 and c = 15~ If the con- 
nection BA (B --. A) also satisfies (2) we have a two-sided connection. If neither 
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AB nor BA satisfy (2) the connection is classified as none-sided. This classifica- 
tion is thought to also reflect the level of uncertainty of a given connections the 
most certain being the two-sided and the least certain the none-sided. 

4.2 E v a l u a t i n g  t h e  C o n n e c t i o n s  for  C o n t r a s t  E v i d e n c e s  

The remaining connections are then tested for contrast evidences. We use two 
maps for this purpose; (1) the modulus channel that  best matches the orientation 
connection between the key-points and (2) the local orientation map. 

If there exists a smooth contrast defined structure between the key-pointss 
we assume that  (1) it is best defined by the modulus channel matching the 
connection orientation and (2) tha t  the average deviation between the connection 
orientation and the locM orientation along the connection line will be small. 

Local maxima are searched for along scan-lines orthogonal to the orientation 
of the connection. As a potential structure between the key-points is expected 
to have low or vanishing contrast, we also expect the local maxima markings to 
have a high positional uncertainty (due to noise). Furthermore~ the connection 
is constrained to go through the two key-points but must not necessarily be 
straight. This suggests the use of a lenticular-shaped region to search for local 
maxima as depicted in Fig. 5. 

Local maxima found along each orthogonal scan line are marked as illustrated 
in Fig. 5. Not only the number of maxima markings, compared to the number 
of scan lines (ratio), is important  but 
also their spatial distribution (scatter). 
Maxima markings are approximated 
with a second degree polynomial, con- 
straining the fit-curve to go through 
the key-points. The mean squared er- 
ror between the maxima markings and 
the fitted polynomial serves as a mea- 
sure for scatter. Note however, that  
this measure does not discriminate be- 
tween scatter due to noise and inter- 

o local maxima marking 

keypoint with attached contour 

[ orthogonal scan line 

. . . .  connection line 

Fig. 5.: Evaluation of a connection. 

ferences stemming from neighboring structures. A connection is only accepted 
when both, the local maxima analysis (ratio, scatter) and the orientation analysis 
(average deviation of local orientation) individually pass given thresholds. 

4.3 S e l e c t i o n  T h r o u g h  C o m p e t i t i o n  

The connections remaining at this stage are few and must all have a residual 
contrast definition. We further reduce the number of connections by local com- 
petion, allowing only one connection from a given key-point to another. Notices 
however, that  this winner-takes-all approach still allows a given key-point to re- 

ceive connections from other key-points. We let the competition take place only 
within the classes two-, one- and none-sided and the selection among the them 
is strictly hierachical, with the two-sided connection having the highest priority. 
The competition is based upon geometrical criteria and the evidence for resid- 
ual contrast definition. A measure refiecting contrast definition is calculated by 
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additively combining the ratio of maxima markings, the scatter and the average 
deviation of local orientation (see above). The geometrical criterion penalizes 
deviations from collinearity and applies only to one- and two-sided connections. 
As a measure we use the cosine of the enclosed angle(s) between the connection 
line and the termination direction(s) of the contour strings. 

5 R e s u l t s  

In this section we show the results that can be obtained with our approach, using 
two rather complex images, an aerial and a telephone image. In addition we also 
show feature maps such as the 2nd derivative of response modulus taken in the 
dominant orientation and key-point map. (Fig. 6, 7, and 8). Image dimensions 
are 256 x 256 with 8-bit grey-level resolution. Tests were carried out on SUN 
Sparc 2 and 10 stations using ANSI-C programming language. 

The gap closing algorithm successively reduces the number of connections. 
We have confirmed this by counting the number of connections in each stage. For 
the aerial image there were initially 223729 (4732 ) connections and remaining 
after pre-selection 3450, evaluation 995, and selection 89. 

6 C o n c l u s i o n s  

We have presented a contour aggregation scheme on three distinct levels. The 
first level is concerned with linking local edge evidences into coherent contour- 
strings. An independent representation of key-points is used to define appropriate 
stop-conditions for the linking process. Knowing the location of corners and 
junctions also alleviates the problem of reconstructing them from edge map 
evidences, although the latter approach has proven quite successful [12]. 

The second level is a pruning stage, intended to eliminate spurious contours 
attached to corners and junctions as well as isolated contour fragments of low 
contrast. The pruning is important for (1) obtaining more stable classifications 
of corners junctions etc. and for (2) eliminating spurious contours that may block 
gap closing in the successive stage. 

The third level deals with bridging gaps that are caused by poor contrast de- 
finition. The suggested algorithm not only incorporates geometrical information 
of already established structures, but also residual low-level contrast evidences 
for making a final decision. We have shown that this strategy effectively selects 
completions between pairs of key-points that are weakly defined by contrast. 
Currently we can only deal with fairly straight completions, but we intend to 
expand the scheme also for curved segments. A distinctive feature of the present 
approach is that a given completion must not necessarily comply with geometric 
(e.g. collinearity) constraints, as long as there is sufficient contrast definition. 
Some examples for this have been shown in Fig. 7. 

In general, we believe that before invoking any type of perceptual grouping 
it is necessary to first find stable representations of the contrast defined features 
and their connectivity. Having this basis, it seems much easier to infer structures 
that are not defined by contrast and to discriminate between different completion 
types (e.g. foreground or background structures). 
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Fig. 6. (A) original aeria/image, (B) local orientation coded with grey-va/ues ranging 
from black 0 ~ via grey 90 ~ to white 180 ~ (C) key-point map~ (D) clipped negative 
second derivative of modulus, (E) initial edge-map, and (F) the resulting contour rep- 
resentation after the gap closing procedures. 



381 

Fig. 7. (A) cut-out from Fig. 6, (B) initial edge-map, (C) the resulting contour repre- 
sentation after the gap closing procedures, (D) two-sided connections bridged by the 
gap closing algorithm, (E) one-sided connections, and (F) none-sided connections. 

Fig. 8. (A) original telephone image, (B) initial edge-map, and (C) resulting contour 
representation after the gap-closing procedures 
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