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Abs t rac t .  While estimating both components of optical flow based on 
the postulated validity of the Optical Flow Constraint Equation (OFCE), 
it has been tacitly assumed so far that the partial derivatives of the 
gray value distribution - which are required for this approach at the 
pixel positions involved - are independent from each other. [Nagel 94] 
has shown in a theoretical investigation how dropping this assumption 
affects the estimation procedure. The advantage of such a more rigorous 
approach consists in the possibility to replace heuristic tests for the local 
detection of discontinuities in optical flow fields by well known stochastic 
tests. First results from various experiments with this new approach are 
presented and discussed. 

1 I n t r o d u c t i o n  

Most a t tempts  to estimate optical flow so far took only partial account of the 
stochastic nature of the observed digitized image sequences. As a consequence, 
heuristic procedures to cope with signal variations as well as 'intuitive' choices 
of threshold parameters have been used to select results upon which further in- 
ferences had to be based. A careful discussion about the assumptions underlying 
various approaches towards the estimation of optical flow can be found, too, in 
[Fleet 92] and in [Nagel 92]. [Barron et al. 92] offer an in-depth comparison be- 
tween various approaches. In the following, therefore, we concentrate on recent 
approaches towards the segmentation of estimated optical flow fields. 

In cases of relative motion between camera and scene background, one can 
a t tempt  to segment the field of view based on significant discontinuities in the 
optical flow field. [Spoerri & Ullman 87] discuss local computations to detect 
motion boundaries. [Bouthemy & Francois 93] and [Irani et al. 92] have exploited 
the evaluation of more than two or three consecutive frames from an image 
sequence in order to acquire clues to regions corresponding to the images of 
moving objects. [Thompson ~ Pong 90] compare - in qualitative terms - various 
approaches towards the segmentation of images of moving objects from the image 
of moving background. A valuable update on detecting images of moving objects 
can be found in [Letang et al. 93]. More recent approaches have been reported 
by [Wang & Adelson 93], [Gu et al. 93], [Torr & Murray 92], and [Kollnig et al. 
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94]. None of these approaches investigates the influence of uncertainties in the 
raw digitized gray values on the final segmentation results in a stringent manner. 

[Negahdaripour ~ Lee 92] tessellate frames from an image sequence and 
estimate optical flow as well as its first spatial derivatives within each image 
region by a fit to the Optical Flow Constraint Equation (OFCE), see [Horn 
86]. They do not, however, take into account that the estimates for the spatio- 
temporal gray value gradient at neighboring pixel positions are not independent 
from each other. 

In most cases, the assumption is not even made explicit that the partial 
derivatives Og(x, y, t)/Ox, Og(x, y, t)/Oy, and Og(x, y, t)/Ot of the gray value dis- 
tribution g(x, y, t) at neighboring pixel positions are treated as independent es- 
timates. Each such estimate is tacitly associated with an error taken to be an 
independently identically distributed (i.i.d.) sample from a Gaussian and then 
used in a Least Squared Error approach - see, for example, [Burr et al. 91], 
[Campani ~; Verri 92], [Torr ~ Murray 92], and [Otte ~ Nagel 94]. [Gu et al. 
93], however, at least mention this assumption explicitly in their study to seg- 
ment images of moving objects from those of moving background, see also [Etoh 
& Shirai 93]. Similarly, [Weber ~z Malik 93] emphasize the fact that all partial 
derivatives of the gray value distribution used for estimating optical flow are 
in principle corrupted by noise, not only the temporal derivative. They treat, 
however, each estimated spatio-temporal partial derivative of the gray value dis- 
tribution as being an independent measurement. 

Some authors explicitly posit that the deviation from an exact validity of 
the OFCE at each pixel position is i.i.d. Gaussian, for example [Bouthemy ~: 
Francois 93]. An analogous remark is made by [Simoncelli et al. 91]. Similarly, 
[Chou ~ Chen 93] point out that noise could be taken into account by associating 
their version of the OFCE with a suitably chosen noise term. [Bouthemy & 
Santillana Rivero 87] postulated that the difference between a constant optical 
flow for a region and a local estimate, projected onto the local gradient direction, 
is i.i.d. Gaussian. [De Micheli et al. 93] pointed out that in case the Hessian is 
well conditioned, the technique to estimate optical flow from second order spatial 
derivatives of the gray value distribution 'can be computed ~tmost independently 
at any pixel position' - if one neglects the correlation between adjacent estimates 
introduced by a smoothing step in their approach. 

In his study of uncertainty in Low-Level Vision, [Szeliski 89], [Szeliski 90] 
does not treat the influence of uncertainties of the individual gray values on the 
uncertainty of the resulting optical flow estimates. His approach clearly shows 
that i.i.d. Gaussian noise is assumed for each estimate of the gradient at a loca- 
tion ~,  but the interrelationship between the various gray values contributing 
to gradient estimates at adjacent pixel positions is not treated in detail. 

Based on well established approaches of estimation theory, [Nagel 94] de- 
scribes an estimation of optical flow vector fields which takes the dependencies 
between estimates of partial derivatives of gray values into account. 

2 N o t a t i o n  
A vector in the spatio-temporal domain of image plane location (x, y) at time t 
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is denoted by a bold face character, i.e. x = (x, y , t )  T = (xl,  x2,x3) T where 
the latter notation is used if a coordinate should be referenced by a running 
index. 

It is assumed that  the irradiance distribution g(z ,  y, t) impinging at the image 
plane location (x, y) at t ime t is transduced into a gray value gobs erred(X, y, t).  
The continuum x = (x, y, t) r is sampled at grid position x~.~,~.  = (xkso.~o, 
y k , a m ~ o , t ~ , m ~ ) T w i t h  n~mpl~ = n~m~zo  X nys~mp~o X nt~,~z~ and k~ampt~ C 
{1, ..., n~a~npz~}. Let g ( ~ , ~ , ~ )  denote the undistorted irradiance value at the 
raster position xk . . . .  ~o. The sensing process is assumed to distort the incom- 
ing signal by noise 5 g ( ~ o ~ , ~ )  which is taken to be independently identically 
distributed with zero mean and variance c~, thus 

+ (1) 

The pixel position at the center of the sampling area is indicated by the position 
vector x0,~,, = (x0~,~,y0,o~,t0 . . . .  )T with t0,o,, = to. We select a subset from 
the digitized image around location x0~o,~ in order to estimate the optical flow 
vector. This subset is denoted as the test area around ~0~,. and comprises 
- for example - a cube of pixels around the central pixel x0~., in the image 
plane at t ime to. The other pixel positions are serialized in raster scan order 
starting at the northwest position of x0,o~, - but in the preceding frame - with 
j test  = 1, ..., nt~st - 1, skipping ~0,o~ since this center pixel of the test area is 
taken to be the first in this serialization. 

It is postulated that  the structure of the impinging irradiance distribution is 
such that  the Optical Flow Constraint Equation (OFCE) [Horn 86] is satisfied 
at location ~,~.,. Although other constraint equations - see, e.g., [Negahdaripour 
& Yu 93] - could be introduced, the emphasis of this study can be demonstrated 
based on the well-known OFCE. We thus have 

@ = 0 . ( 2 )  

Moreover, it is assumed that  the optical flow vector u (~)  varies only linearly 
within the test area, i.e. 

Ox 3~ : ~ o t e s  ~ ...... tOy ~ : X o t e ~  t tOt ~ : ~ o t ~  t 

+ ~---~(-~-Iox I z = m t o .  O,,~(ZtOy ) Z=Zo,oot O,,~(ZOt ) Z=Zot~ " (Zto. -- ZO,o~t) 

or - with the abbreviated notation (ul(~0,~,) ,  u2(xo,o~,)) T = (u l ,  u2) T - 

= + �9 . . . .  - (3 )  
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The partial derivatives of g(ae ) with respect to x, y, and t are computed by 
discrete convolution of g ( ~ k ~ e o )  with discretized versions of the corresponding 
partial derivatives of a trivariate spatiotemporal Gaussian distribution 

1 
w(~ ) = (2~r)-~ ~ exp-�89 :%vJ'~x ' (4) 

(5) 
are arranged into column vectors The samples of 0 ~ ( ~  = ~  

where i = 1, 2, 3 corresponds to x, y, t, respectively, and ksampie = 1, ..., nsarnpte. 
The convolution can then be written as the scalar product 

~saTr~plv 
) 

i = 1 , 2 , 3 .  (7) 

Since we shall have to study the optical flow vector (?.tl(~t~st), u2(~t~t ) )T 
as some function of all n t e ~  pixel positions a,o,~ in the test area, it will be 
convenient to index these positions and to write 

i = 1, 2, 3 ; jt~,t = o, 1, ..., ntest - 1; k~ampz~ = 1, 2, ..., n~ampl~. (8) 

3 E s t i m a t i o n  P r o b l e m  a n d  S o l u t i o n  A p p r o a c h  

We may now write the OFCEs as a set of nt ,~t  equations 

~tlj . . . .  (W Tj*~tg ) "q-~t2j . . . .  (W T T . . . .  g ) = O  or 

(~ t l j t~ tW ljt~s, -~'Zt2dt~tw 2jt~t  q-W 3j t~ t )T  g = O, j tes t  = 0 , . . . ,  n t e ~ t -  1. (9) 

This formulation exhibits the linear dependence of the nte~t OFCEs on the set 
of all samples from the irradiance field within the sampling area. It will be 
advantageous to consider this set of nt~t  OFCEs as a column vector with n ,~t  
components, where each component depends on the gray values g and on the 
set of npararneter = 8 parameters written as components of 
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We then have for each component cj,,~ (g, u )  of this column vector 

I u2 + 

+ 
I1Zlx ) T 

u l ~  ( ~  .... - ~0  . . . .  ) 
Ulr 

w U .... + (11) 

U2t 
jte~ = O, 1, 2, ..., nt~t - 1 

= 0 ,  

Since by assumption- see equ. (1) - we can write gobserved ---- g § 8g where the 
error vector 5g is assumed to be distributed according to 

1 
p(6g) = (27r0.~)~,.~,,/2 exp- �89 r ~-1~g (12) 

with - I,~• denoting the n x n unity mat r ix -  

cg = #~ �9 z,~.o..p,o •  (13) 

We are now in a position to precisely formulate the estimation problem: 
given the assumptions introduced above, determine the estimate f~ for the pa- 
rameter vector u which maximizes the joint probability to observe 6g, subject 
to the constraints cj~.~(g, u)  = 0 for j t~t  = O, 1, ...nte~t-1. This is equivalent 
to minimizing 

6g T~w-~16g + 2AT(Cj , .~ , (g ,u))  ~ minimum (14) 

by suitable choices of ,~ -= (Ao, A1, ...,An~o,_l) T and of the components of u .  
This is a non-linear constraint problem which is solved by an iterative approach 
- see [Nagel 94]. As usual, it is assumed that  all higher than first order terms in 
the constraint equations can be neg|ected, i.e. 

c j ,~ , t (g ,u)=cj , , , ,  (g(~)  + A(k)g , u ( k ) +  A(k)U ) (15) 

( Ocj,.., g (k), " A(k)g)  
=eJ'~ + \ Og u(k) 

0u g (~), u ( k )  

where (k) denotes an iteration index, k = 0, 1, ..., and A(k)g as well as A(k)u 
are assumed to be small corrections so that  higher than first powers of the 
components of A(k)g and A(k)u can be neglected. 
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It is further assumed that  a start estimate fi (0) for u is available and that  
the observed gray values g obse~wd may serve as start  values for the undistorted 
gray values g to be determined during the iterative estimation procedure, i.e. 
g (o) = g observed. In order to simplify the notation~ the iteration index (k) will 
be suppressed in subsequent expressions unless it is explicitly manipulated. The 
following abbreviations are introduced : 

c = ',(cJ*~ /~' a n t~ t  • 1 vector , (16a) 

( 
OCJt~t I ' a ntest X rtsarnpl e G=\ Og Ig(~),u(,) matrix , (16b) 

tg (k), u (k) 

The minimization problem can now be rewritten as: 

b6c) 

AgTZ~- IAg  + 2)~ "r (c + G A g  + C u A u )  ~ minimum (17) 

If we define ) - i  
xo  = ~_o , (is) 

the solution to this constrained minimization problem is given in [Nagel 94] : 

T - 1  A~. : -EgC[ (C, EgC[) -1 [I-C.X~CT~ (CgE, Cg ) ] c  , (19) 

,~, =-~, ,W (Gz, c [ ) - '~  , (20) 

x = (c x, c T ) - '  [I-coxoc  c (21) 

We thus have 

(k+l) = g (k) + zSg (k) for k = 0, 1, ... (22) 

w i t h g ( 0 ) = g o b  . . . . .  d , A g ( 0 ) = 0  , 

fi(~+l) = fi(k) + A i l  (k) for k = 0, 1, ... (23) 

with Aft (0) = 0, and u(0) = - ( G T G ) - I G T g ~  �9 The matr ix  G is built from 
partiM spatial derivatives of the grayvalues - see [Nagel 94]. The iteration will 
be stopped if 

II A~ (k+l) - Aft (~)11 < iteration threshold (24) 

As is well known, Ag TZ~-IAg follows a x%distribution with ( n t ~ t - n p a ~ t ~ )  
degrees of freedom. 
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If we possess an estimate of ~r~, for example from measurements, we can 
compute 

Z~g ~ 2 1 z ~ g  = ~;2z~gTz~g (25) 

and test whether this result is compatible with the assumptions: if 

 22z g > x2(n  . - npo om . ; 1 -  , (26) 

then the estimate fi is rejected, the estimated error being incompatible at a 
confidence level of 1 - c~ with the assumptions made. 

As can be seen from equ. 20, the inverse of Z u -  i.e. C~ (CazacTe) -~ Cu- has 
to have sufficiently large eigenvalues in order to ensure that  it can be inverted 
without numerical problems. We thus may require that the smallest eigenvalue 
of Z g l  does exceed a threshold. 

We are now able to detect algorithmically not only instability due to insuffi- 
cient gray value variations. In addition, we may use equ. (26) in order to perform 
a test on inappropriately large variations of the gray value distribution which 
will result in an excessively high value for ~-2 Ag ~r Ag and thus can be detected 
with a given confidence 1 - a. 

As a result of this analysis, we thus have tests for both situations, inap- 
propriately small as well as inappropriately large variations of the gray value 
distribution within the test area ! These tests can, of course, be easily extended 
for larger and less regular areas than discussed so far. 

4 R e s u l t s  

Quantitative experiments with the approach outlined in the preceding section 
have been performed with image frames from a sequence recorded by a camera 
on the moving arm of a calibrated robot - see Figure 1 [Otte & Nagel 94]. 

Since the x2-distribution requires the knowledge of the variance of the orig- 
inal measurements, a subseries of 29 image frames has been recorded at a fixed 
position of the robot hand with the illumination kept stationary, yielding 3.6 as 
the average gray value variance. Optical flow vectors estimated according to the 

Fig. 1. Three frames from a sequence of non-interlaced images. The video camera 
translates into the scene. In addition, the white marble parallelepiped is moving to the 
left with respect to the rest of the scene. 
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approach of [Nagel 94] outlined in the preceding section in an image area where 
we do not expect discontinuities of the optical flow field do not differ signifi- 
cantly from those obtained according to a version of the approach of [Campani 
& Verri 92] extended by the inclusion of temporal derivatives of the optical flow. 
Differences are significant only at those locations where the estimation has been 
suppressed in the approach of [Nagel 94] due to insuff• structure in the local 
gray value variation. 

It turned out, however, that in image areas with sufficient structure to de- 
termine all unknown components of the vector u ,  the estimated gray value 
variances are greater than expected. These image areas are selected by requir- 
ing that  the smallest singular value exceeds 0.3 as a threshold. If we plot the 

2 = (1.902)~, we histogram of Ag TAg /(4.2) 2 instead of ~r/2Ag Tz2g with cr 9 
observe acceptable compatibility with a x2-distribution for 3 degrees of freedom. 
The standard deviation of the gray values had to be increased, however, by a 
factor of roughly 2.3 compared to the measured standard deviation in order to 
shift the maximum of the histogram to the expected position. This observation 
could be taken as a hint that  the OFCE imposes constraints onto the recorded 
spatiotemporM data which are not quite compatible with the true variations. It 
should not come as a surprise that  these constraints make themselves felt more 
strongly in image areas with sufficient spatiotemporal variation to facilitate the 
estimation of all components of the unknown vector u than in image areas with 
only small variations. 

Significant differences in the histogram of cr~-2Ag TA g  can be observed if 
we compare one obtained from image areas where we do not expect discontinu- 
ities of the optical flow and a histogram computed for an image area in which 
discontinuities of the optical flow field occur. The tail of ~r~2Ag Tzhg extends 
to much larger values in the latter case. A threshold applied to such X2-values 
appears as a suitable local means to discriminate discontinuities in the optical 
flow field from image areas with a smooth variation of the optical flow field. This 
hypothesis is well supported by the results shown in Figure 2. Image locations 
with large values of o-~-2Ag TAg  clearly cluster along the expected lines of dis- 
continuity - in this case caused by both depth discontinuities and, in addition, 
by the movement of the white marble block relative to the scene background 
which itself moves relative to the camera due to the camera motion on the robot 
a r m .  

Figure 3 illustrates how moving object contours can be extracted in real world 
image sequences without depending on a-priori knowledge about a stationary 
camera. Significant contour segments of the moving bus can be detected solely 
by the requirement that  X 2 exceeds a threshold, in this case of 48. For a gray value 
standard deviation of ~rg = 1.902, the x~-threshold at the 99% confidence level is 
11.37. The estimate o'g = 1.902 for the standard deviation of the observed gray 
values has been obtained by recording with a CCD-camera whereas the image 
sequence 'Ettlinger-Tor-Platz'  has been recorded with an older tube TV-camera. 
We thus expect that  analogous noise measurements for this latter camera would 
yield larger values than those obtained with the CCD-camera under controlled 
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laboratory conditions. This would allow to lower the threshold for X 2 in the 
'Ett l inger-Tor-Platz '  image sequence from 48 to some more reasonable value 
without serious deterioration of the detection ability. 

5 Conclus ion 

Experimental evidence has been presented for the hypothesis that taking the 
stochastic aspects of gray value variation into account for the estimation of an 
optical flow field facilitates the segmentation of such a field based solely on a 
x2-test - even if the background should change due to camera motion. The pixel 
positions at which such a test will fail - and thus generate a cue towards the 
presence of a discontinuity in the estimated optical flow field - cluster around 
discontinuities. The width of such clusters depends on the size of the masks which 
are used to estimate the spatiotemporal derivatives of the gray value distribution. 
In the cases presented here, these masks had a width of seven pixels. It can be 
seen in the last Figure that  the )/S-test tends to emphasize the contour lines of 
the bus. Obviously, further experiments are required in order to consolidate the 
preliminary conclusions presented in this contribution. 
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