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Abstract. An explicit representation for the surface corresponding to a 
shaded image is presented and proven to be correct (under standard con- 
cUtions). Uniqueness of the surface is an immediate consequence. Using 
this representation, various iterative algorithms for shape reconstruction 
are derived. It has been proven that all these algorithms converge mono- 
tonically to the correct surface reconstruction, and they have been shown 
experimentally to be fast and robust. Some of the results of this paper 
extend previous ones to the case of illumination from a general direction. 

1 I n t r o d u c t i o n  

Shape from shading has proven to be a difficult problem, even under the stan- 
dard idealizing assumptions of a Lambertian surface, known light source, and no 
shadowing or occlusion. Recently, a new approach has been developed, based 
on relating shape from shading to an "equivalent" optimal control problem 
[7,8,4,9,13,14,1]. The advantages of this approach are both theoretical and practi- 
cal. First, it makes possible an easy uniqueness proof for the surface correspond- 
ing to a shaded image (under standard conditions); thus shape from shading, 
contrary to previous belief, is often a well-posed problem. Second, the approach 
leads naturally to an algorithm for surface reconstruction that  is simple, fast, 
provably convergent, and (under standard conditions) provably convergent to the 
correct surface. In contrast, traditional algorithms typically require thousands 
of iterations for reconstruction with no guarantee of convergence [5]. 

In this paper we prove the correctness of an optimal control representation 
for shape from shading, extending previous work to the case of illumination 
from a general direction (Section 2). Uniqueness of the surface is an immediate 
consequence. 

Prom this representation, we derive in Section 3 two provably correct surface 
reconstruction algorithms (see also [8]). An advantage of our approach is that  
it gives a great deal of freedom in constructing algorithms, all of which can 
be proven to produce the same surface approximation. This is useful since one 
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of the presented algorithms has a simple theoretical interpretation and can be 
used to prove the correctness of the surface reconstruction [3], while the other 
is more efficient computationally. Note that  although the algorithms described 
here require some information about the imaged surface in order to reconstruct 
it, they have recently been embedded in a global algorithm capable of surface 
reconstruction with no a priori information about the surface [7]. 

2 T h e  R e p r e s e n t a t i o n  T h e o r e m  

We consider the idealized problem of shape from shading under the usual as- 
sumptions. Note that although we assume Lambertian surface reflectance and 
illumination from a single direction, our results can be extended easily to any 
"convex" reflectance function. Under these^assumption~ the intensity at an im- 
age point r - (z, y) is given by I(z,  y) = L .  ~, where L is a unit vector in the 
fight source direction, the optical axis is along the - z  direction, and r is the 
surface normal at the corresponding surface point. I(.) is defined on a bounded 
open subset 7) of ~ 2  In terms of the surface height function z(z, y), which is 
assumed continuously differentiable (though this is not essential), 

( - V z ,  1) fi__= 
(1 + IIWlP)l/~" 

For illumination from a general direction, we represent the surface not by z(.) 
but by its height f (z ,  y) =_ L .  (z, y, z(z,  y)) measured along the fight direction 
I,. Without loss of generality, assume that  Lz = O, Lz > 0. In terms of f(.) ,  the 
image irradiance equation can be rewritten after some algebra as H(r ,  Vf (z ) )  = 
0, where the Hamiltonian 

H(r,  a)  -- I(r)  (1 + II ll - 1 / 2  + - 1. 

Note that  H(r,  a) is a strictly convex function of a.  The fact that  the image 
irradiance equation can be rewritten in terms of a strictly convex H is the 
essential property used below. Our results can be extended to essentially any 
image irradiance equation that can be so written. 

Singular points--those image points where the intensity achieves its maximal 
brightness I(.) --- 1--play a critical role in constraining the surface corresponding 
to a shaded image [8,11,16,2]. Only at these points is the local surface orientation 
determined from the intensity alone. Let S denote the set of singular points in the 
image. It is easy to see that  V f  = 0 on S, so that  ~q includes all local maxima 
and minima of f (z ,  y). We will focus on those singular points corresponding 
essentially to the local minima, and use these in determining the surface from 
its image. (Alternatively, our results could be derived using the local maxima.) 

To specify precisely the conditions under which our results hold, we introduce 
some nonstandard terminology. We say that  a set A C ~2 is smoothly connected 
ff given any two points r and r '  in A there is an absolutely continuous (" smooth") 
path connecting the two. We will assume that  the set of singular points is a finite 
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collection of smoothly connected sets. Then since Vf = 0 on 8, f(-) is constant 

over each connected component Sc C S. We will refer to a connected subset ,gv 
as a set of local minima ff there exists an e > 0 such that d(r, $c) < e implies 
f(r) > f(r') for r' C 5c, i.e., ff the "heights" f of nearby points are larger than 
the value of f on 5c. We will refer to a point as a local minimum of f only ff it 
is contained in such a connected subset So. An analogous definition is used for 
local maxima. Finally, a connected subset that is neither a set of local maxima 
or local minima will be called a set of saddle points. Let .A4 be the set of all the 

local minima in the above sense. 
The Lagrangian corresponding to H(-) is: 

L(r, ~/) = sups [ - a .  f~ - H(r ,  or)] 
= - - L z  - - + L I2) ( 2 . 1 )  

ff Ifl~[ 2 + lily + Lvl ~ <- I2(r) and co ff [fl~[2 + [flu + Lv[2 > I2(r). Define 

u ( r )  = { z :  iz l 2 + + _< �9 

Thus H(r) is the domain on which L(r, .) is finite. The Lagrangian L serves as 
the running cost in the "equivalent" optimal control problem, which we now 
define. Consider an arbitrary path r in the image plane starting at some r, and 
continuing for a time p. More precisely, the path is defined by r - r, r = u(t), 
where the control u : [0, oo) --+ N 2 is any integrable function. For each such path, 
we define a cost which is the sum of two terms: 1) the total running cost, given 
by the integral of the running cost L(r u(r over the path, and 2) a terminal 
cost, which depends only on the end point of the path. The control problem is to 
find the path giving the minimal total cost. The representation theorem states 
that  under appropriate conditions the infimal value of the cost for starting point 
r is just f(r). 

Assume we are given an upper bound B for {f(r) : r E 7)}. Then define the 
terminal cost 

f ( r )  f o r r E A 4  
g ( r ) -  B for r • 2A ( 2 . 2 )  

The terminal cost imposes the large penalty B on any path terminating at a 
point r g A~. Finally, the total cost is the sum of the running and terminal costs 

[/0 1 V(r) = inf L(r u(s))ds + g(r A T)) , (2.3) 

where p A v denotes min(p, v), T = inf{t : r E 07) U A4} and the infimum is 
over all paths r and stopping times p E [0, co). Thus, V is the "minimal" cost 
over all finite time paths, where the path terminates either at time p determined 
by the controller, or else at the first time that the path exits 7) or enters .AA. We 
want to show that  f(r) = V(r). 

P r e l i m i n a r i e s .  For any H,  it is easy to show that  the definition (2.1) implies 
that  the running cost L(r,-) is convex on U(r): here it is strictly convex. More- 
over, a direct calculation shows that  L(.,-) > 0, and L(r, fl) = 0 only for r E ,9 
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and/3 = 0. Also, since H(r, .) is strictly convex, it follows by standard arguments 
that 

H(r,a) = sup [-a./3 - L(r,/3)], (2.4) 
~6u(,) 

and for each a 6 ~2 there exists a unique vector u(r, a) such that 

H(r, a) - - a .  u(r, a) - L(r, uCr, a)). 

Define fi(r) for r 6 :D by 

0 = H ( r ,  V f ( r ) ) =  - V f ( r ) . a ( r ) - L ( r , ~ ( r ) ) .  (2.s) 

From (2.1), ~2(r)is given by 

V~H(r,c~)[v/= -~(r). 

If (as we assume) Vf( r )  is continuous, then the fact that H(r , . )  is C 1 implies 
R(r) is continuous on 2). An explicit calculation shows that ~(r) is proportional to 
the projection in the (z, y) plane of the steepest descent direction on the surface 
[10], where %teepest descent" is defined with respect to the light direction ],, 
rather than the vertical direction (0, 0, 1). 

We consider subsets ~ of :D satisfying the following assumption. 

A2.1 Assume that S consists of a finite collection of disjoint, compact, smoothly 
connected sets, and that V.f(.) is continuous on the closure of 7). Let ~ C 2) be 
a compact set, and assume ~ is of the form ~ = N]=1~i, J < oo, where each G1 
has a continuously differentiable boundary. Let ~ be the set of local minima of 
f( .)  inside ~. Then ~oe assume that the value of f ( . )  is known at all points in .M. 
Let f~ denote the "steepest descent" direction given by (~.5) above. Define nj(r) 
to be the inward (with respect to ~) normal to OG i at r. Then we also assume 
that ~(r) .  ~ (r) > 0 for all r ~ O~ n OGj, j : 1,_., J. 

It will turn out that the minimizing trajectories correspond to paths of steep- 
est descent on the surface. The assumption on ~ above thus guarantees that any 
minimizing trajectory that starts in ~ stays in ~. When this assumption is vio- 
lated for some point r, then f(r)  cannot be represented as the minimal cost V(r) 
but may be computable in terms of a maximum cost for an analogous optimal 
control problem. If neither of these possibilities holds, then the surface at r is 
not well determined. In general, this will occur only for small image sections 
near the image boundary [10]. 

T h e o r e m  2.1 Assume AZ.1, and that B is an upper bound for f(~) onG. Define 
n(., .) by (~.1), g(.) by (~.~), and Y(r) by (ZS). Then Y(r) = f(,') for all r e ~. 
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P ro o f .  We first show that  V(r) _> f( r ) .  Let u(.) be any admissible control and 
define 

r = r + u(s)ds, r = inf{t : r e ~ n .hi}. (2.6) 

Since L is the Legendre transform of H and since g ( r ,  Vf( r ) )  ---- 0 for r e G, 
0 _> - V f ( r ) .  fl - L(r, fl) for all fl E ~ ,  and in particular - V f ( r  �9 u(t) < 
L(r u(t)) for t e [0, p A ~-]. This implies that 

fp^r f,^~ - y ( r  ^ r))  + y(r) = - v y ( r  �9 u(t)dt <_ L(r u(t))at, 
J o  d o  

and thus 

o p^~ L(r u(t))dt + f ( r  ^ r)) > f ( r ) .  

Since g(r A 7-)) > f ( r  A r)),  we obtain V(r) > f(r) .  
Next we show V(r) < f (r) .  In order to do so we will verify that  for each 

> 0 there exists a control u(.) such that for r and r defined by (2.6) we have 

0 ~ L(r u(t))dt + g(r < / ( r )  + e. (2.7) 

Let Sc be a maximal smoothly connected component of S. For any two points 
r, r '  in Sv,  there exists a path r and a time t* < oo such that  r e Sc  for 

t e [0, t*], r = ~b(0) and r '  = r Write r = r + f~ u(s)ds in terms of the 
control u(t). Define a new control u~(t) =__ )~u(t~), where ~ > 0 is a constant, and 
let ex(t) = r be the corresponding path. Since L(r, u)/llull -~ o as Ilull -~ o, 
for r such that  I (r)  -~ 1, we can choose ~ such that 

~x t"  for" L(r ux(t))dt -= L(r ~u(t))dt  < - .  
)~ - 3  

Further, since ILyl < 1, there exists a > 0 such that  for any component 
Sv as above, and r such that  d(r, So) < a, we have the following. Let r ~ be 
the point in Sv closest to r. Then there exists a time t~ E [0, r constant 

control ~(.)  = (r' - ~ ) / t .  and corresponding path r = ~ + f0' ~(~)ds,  snch 

that  r = y and fo" L(r u(t))dt _< e/3. Finally, this shows that  for any 
So, and r, r '  such that  d(r, So) < a and d(r', So) < a, there exists a control 
~ , , ( t )  and time o'~,, C [0, oo) such that for the corresponding path r  we 
have r  = . ,  r -- r', 

and 

o ~' ' '  L(r  a , , , ( t ) )dt  ~ e. 

Since f is constant on So, then by choosing a > 0 smaller if need be we can also 
assume that  If(r) - f ( r ' ) l  < ~. 

We now construct the control that satisfies (2.7). If r is a local minimum 
then we simply take 7- -= 0 and are done. There are then two remaining cases: 
(1) r is contained in some Sc with S c n  .A4 -- I~, or (2) r q~ S. If case (1) holds 
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then  s  N A~ ---- r implies the existence of  a point  r '  such t h a t  f ( r ' )  < f ( r )  and 
d( r  ~, s  _ a. Since A2.1 implies s C G o  we can assume t h a t  r '  E G. In this 
case we will set u( t)  = ~ , , , ( t )  for t E [0, or,,,). 

Next  consider the definition of the control  for ~ > a , , , .  For c > 0 let b -- 
in f{L( r ,  a ) :  r E •,  d(r,  s  > c, u E ~2}. The  continuity of  I ( . )  and  the fact  t ha t  
I ( r )  < 1 for r ~ s imply  b > 0. Consider any  solution ( there m a y  be more  than  
one) to  

~(~) : ~(~(~)), ~(0) : r ' .  (2.8) 

According to (2.5), for any  t such tha t  ~b(t) E ~ \ s  and  d(qb(t), s  > c 

= 

= - L ( ~ ( t ) ,  ~(~bCt))) (2.9) 

< - b .  

A2.1 implies ~b(t) cannot  exit ft. Thus,  since f ( r )  is bounded  on g ,  (2.9) implies 
tha t  ~b(t) mus t  enter  the set { r :  d(r, 8)  < c} in finite t ime,  for any c. I f  ~b(t) E S 
for some t < oo we define 7/~, = inf{t  : ~b(t) E S} and  w = ~b(7/,,). Otherwise,  let 
ti be  any  sequence tending to oo as i -+ oo. Since ~ is compac t  we can ex t rac t  
a subseqnence (again labeled by i) such t ha t  ~b(t~) ~ v for some v E s  Let g be  
large enough tha t  IIqb(t~)-vtt < a. Since f (~( t~) )  J, f ( v ) ,  we have f(~b(t~)) > f (v ) .  
For this case we define 7/~, = t i  and w = ~b(7/,,). 

In tegra t ing  (2.9) gives 

f ( r ' )  - fCzv) - L(q)(t), f~(~(t)))dt. 

The  control  u(t) for t E [cr,,,, a , , ,  + ~,,)  is defined to be ~(~b(t + a , , , ) ) .  
We now consider the point  w. We first examine  the case in which the solution 

to (2.8) does not  enter S in finite t ime. Since -~11 _< a, ~ , ( t )  gives a control  
such tha t  the appl icat ion of  this control  moves  ~(.) f rom w to v with accumula ted  
running cost less than  or equal to z. We define u(t)  = ~ , ( t  - (~/,, + c~,,,)) for 
t E [cr,,, + r/,,, o-,,, + ~/~, + c%,) .  I f  the solution to (2.8) reached s in finite t ime 
we define w = v and  cr~v = 0. Let a = a ~ ,  + ~1,, + or , , .  

Let us summar ize  the results  of  this construct ion.  Given any  point  r E S 
t h a t  is not  a local m i n i m u m  we have cons t ruc ted  a piecewise cont inuous control  
u(.)  and  cr < oo such t ha t  if  d(~) = r + f o  u(s)ds,  then  

f ( r )  - f(~b(~')) = f ( r )  - f ( r ' )  + f ( r ' )  - f ( w )  A- f(~o) - f ( v )  

f _> + 

We have also shown tha t  f ( r )  > f (v )  = f(~b(a)), ~b(~) E S. Thus ,  either the 
componen t  S e  containing ~b(cr) satisfies S c  n.hA r 0, and  we are essentially done, 
or we are back into case (1) above,  and can repea t  the procedure.  Let K be the 
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number of disjoint compact connected sets that comprise 5.  Then the strict 
decrease f(r) > f ( r  and the fact that f(-)  is constant on each So imply 
the procedure can be repeated no more than K times before reaching some Sv 
containing a point from .a4. If case (2) holds we can use the same procedure, 
save that  the very first step is omitted. Thus, in general, we have exhibited a 
control u(.) such that  

fo r L(r  (t))dt + g(r < + (gg + 

Since e > 0 is arbitrary, the theorem is proved. �9 

3 S h a p e  R e c o n s t r u c t i o n  A l g o r i t h m s  

In this section, we describe how algorithms for shape reconstruction can be 
derived from control representations such as (2.3). It is important  to note that  
many different algorithms can be derived, depending on how the image irradiance 
equation is rewritten as a Hamiltonian, and that all compute the same surface 
approximation from the image. Thus, for example, an algorithm can be generated 
from the Hamiltonian of the previous section, which we henceforth denote by 
H (1). Another possibility [8] is to write the image irradiance equation in the 
form H(2)(r, Wf(r)) = 0, with 

1 [i2a2_ + va~ + 2(1 - I2)Lyav - ( 1  - 12)], (3.10) H(~)(r, a)  ~ 

2 Note that when v(r) ( 0 HC2)(r, a)  is n o t  a convex where v(r) = 12 (r) - Ly. 
function of a.  Nevertheless, an algorithm can be derived from this form of the 
Hamfltonian, which, although it differs from the algorithm generated from H (1), 
reconstructs the same surface approximation. 

The algorithms are derived using a discrete approximation of the continuous 
control representation. In this discrete control problem, the object is to minimize 
the cost over all discrete paths on a grid of pixels. A difficulty in doing this is 
that  a discrete trajectory, in which at each time step the path jumps between 
neighboring pixels, is generally a poor approximation to a continuous trajectory. 
In order to better  approximate a continuous trajectory on a discrete grid, an 
element of randomness is introduced. Thus the continuous optimal control prob- 
lem is approximated by a discrete stochastic optimal control problem, and the 
cost of the continuous problem is approximated by the expectation of the cost 
for the discrete problem. Note that the algorithms themselves are deterministic, 
even though the discrete control problem is stochastic. 

Thus, given a control u, we define the probabilities for the path to jump to 
neighboring pixels so that  on  a v e r a g e  the discrete motion approximates the 
continuous motion r = u. Let p(r, r']u) denote the transition probability for the 
path to move from r to a 4-nearest neighbor site r '  in the current time step, 
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given that control a is applied. We define 

I ,I (3.11) p(r, r + sign(u,)(1, O){u) - [u,i + {%} 

I•I (3.12) p(r, r + sign(%)(O, 1)lu ) - I=-I + I I' 

with all other probabilities zero. We also define the size of the time step to 
be At(u) -- 1/(lull  + ]%1). With this definition, and assuming for example 
u=,uy > O, the average motion is 

(I, O)u, + (0, 1)u, = uAt(u) ,  
I ,I + I%1 

which approximates the continuous motion. This definition actually makes sense 
only when u # O. For u = O, we define p(r, riO ) = 1, and At(O) = 1. 

For a given sequence of controls {u~}, let {~i : ~0 = r} denote the path start- 
ing at r which evolves at each time step i as determined by the control sequence 
{ui} and the transition probabilities. Then for the representation and Lagrangian 
(now denoted L(1)) of the previous section, the approximating stochastic control 
problem is 

"(NAM)- 1 ] 

V(I)(r) = infE= ~ L(1)C{i,m)At(u/) +g({(~r̂ M))] , 
i=0 

where N = inf{i : {i {/7) or {i E A4}, and the minimization is over all control 
sequences {ui} and stopping times M. Ez denotes the expectation. Thus, V (I) 
is the minimum of the expectation of the cost over all finite length control 
sequences, where the path terminates either at discrete time M chosen by the 
controller, or else at the first time that the path exits 7) or enters At. 

Suppose that instead of considering paths of arbitrary length, we consider 
paths continuing for at most n time steps: 

vOl ( r )  =- infEz L({i ,ui)At(ui)  + g({(NAMAn)) , (3.13) 
L i_-0 

Then V~l)(r) is clearly nonincreasing in n and V(1)(r) $ V(1)(r) as n -+ oo. 
As discussed in [8], it follows from the principle of dynamic programming that 
Vn(1)(r) and V (1) (r~ n+lx / are related by 

Clearly, we also have the initial condition V0(1)(r) = g(r). This, together with 
the recursive equation (3.14), gives an algorithm which converges monotonically 
down to V. 



267 

For the second control problem, we get a similar algorithm. Vo(2)(r) = g(r), 
and 

L,,,L,<o " ' ~  \ ,, ] J 
(3.15) 

where the first expression applies when v(r) >_ O and the second when v(r) < O. 
The Lagrangian L(2) is derived from an equation analogous to (2.1): 

LC")Cr, fl) : s u p o  [ - , ~ . ~ -  nC~)(r,a)] if v(r) > 0 
i n %  sup~ [-~./~- eC~)(,., ~)] i f , , (r )  < O. 

(The case ,,(r) = 0 is given by the appropriate limit as v(r) ~ 0 from either 
direction.) The difference from the previous algorithm is due to the nonconvexity 
in the Hamfltonian for image regions where v(r) < 0. For more detail, and 
experimental results obtained with the second algorithm above, consult [8, 3]. 

The algorithms described above are of the Jacobi type, with the surface 
updated everwhere in parallel at each iteration. The algorithms can also be shown 
to converge ff implemented via Gauss-Seidel, with updated surface estimates 
used as soon as they are available. In fact, the Gauss-Seidel algorithms converge 
for any sequence of pixel updates [3]; for example, it is possible to change the 
direction of the sweep across the image after each pass [1]. Our experiments show 
that this produces a significant speedup, changing the computation time from 
order N to order 1 with a small constant, where N is the linear dimension of 
the image. Specifically, we have proven the following [3]: 

P r o p o s i t i o n  3.1 Consider either of the recursive algorithms derived in (3.14) 

or (3.15). Let an initial condition Vo(a) , where a E {1, 2}, be given and define the 
sequence {Vi(a) , i E N }  according to either the Jacobi iteration [e.g. (3.14)] or the 
Gauss-Seidel iteration, where the pixel sites are updated in an arbitrary sequence. 
Assume that V0(~)(r) > g(r) for all r E ~D. Then the following conclusions hold. 

1. For each r E :D, V~(~)(r) is nonincreasing in i and bounded from below. 
Define V(~)(r) = limi_~o~ V(~)(r). Then the function V(~)(.) is a fixed point 
of (3.14) (or (3.15) if  appropriate). 

2. The function V(a)(-) can be uniquely characterized as the largest f~ed point 

of (3.14) (or (3.15) if  appropriate) that sat isf ies V(a)(r) <_ voCa)(r) for all 
r E D .  

3. A function w(r) is a f~ed point of (3.14) if  and only if it is a f~ed point of 
(3.15). 

R e m a r k .  Thus, taking V0Ca)(r) = g(r), where g(r) is denned by (2.2), both 
algorithms reconstruct the same surface approximation: V(1)(r) = V(2)(r). The 
correct surface approximation is obtained by taking the largest of all the fixed 
points of the iterations in (3.14) or (3.15). 
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