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Abs t rac t .  We analyse a class of tandem fields invariant by stochastic synchronous updating of all 
sites, subject to a generaJlzed reversibility assumption. We give a formal definition and properties 
of the model, study the problem of posterior simulation, parameter estimation, and then present 
experimental resuIts Lu image restoxation. 

1 In t roduc t ion .  

We utilize in this work a new class of random fields on some given set of sites, which are invariant under 
the action of a transit ion probability which synchronously updates the states of all sites. We illustrate, 
with an issue of image restoration, the usefulness of these models, and their feasibility for practical 
applications. 

We begin by a summary  of the definition of p-periodic synchronous random fields. Let S be the finite 
set of sites, F a finite state space. The set of all configurations on S is F s,  and will be denoted by $2s 
(or $2 if no confusion is possible). A random field (r.f.) on S is a probability distribution on $2. 

D e f i n i t i o n  1 A synchronous kernel of order q is a family 7 ) of transition probabilities from $2q go F,  
denoted 

w(~(q) . . . . .  4 1 ) ;  v,), 

# ( l )  ~ $2, l = 1 , . . . ,  q, ~ ~ F ) .  
We say that 7 9 is positive. 

D e f i n i t i o n  2 If70 is a synchronous kernel, its associated (synchronous) lrausilion probabilily from Qq 
to D is 

P ( z (q )  . . . . .  z (1)  ; y ) =  I - [ w ( x ( q ) , . . . , x O )  ; Y~). 
~ES 

l l  corresponds to a simullaneous updating of all sites according to the local lransitions ps. 

For a function f defined on ~2~, define 

P f ( x ( q ) , . . . ,  z(1)) = / f ( x ( q  - 1) . . . . .  x(O))P(x(q) . . . .  , x(1) dz(O)). (1) 

Then, there exists a unique distribution ~" on $2q which satisfies : 

[ P fd f r  = / fd~r (2) 
J 

for all f .  We finMly define a probability distribution on $2, (rather than $2~), by 

D e f i n i t i o n  3 We say that a law 7r on $2 is associated to the synchronous kernel 7 ~ i f  zr is one of  lhe 
marginal distributions of  fr, where ~ is defined in (2). 

It  is easy to deduce from equation (2) that  all the marginMs of ~- are identical. 
We now define p-periodicity : 

D e f i n i t i o n  4 Let p = q + 1. The transilion probabilily P ( x ( q ) , . . . ,  x(1) ; z(0)) is p-periodic with respect 
to a distribution gr on $2q if, for  a~y functions fq, . . . ,  fo defined on $2, 

f fq[z(q)] . .  . . . . .  z(1)]d~ = [ P f q [ z ( q -  i) . . . . .  z(O)]fq_l[z(q - 1)] . . . f0[z(0)]d~ (3) 
J 
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In other terms, the compound distribution on ~2v, defined by 

#[x(q) . . . . .  x(0)] = #[x(q) . . . . .  x(1)lP[x(q) . . . . .  x(1) x(0)] (4) 

is iuvariant by circular permutation of x (q ) , . . . ,  x(O). 

We shall say that a synchronous field is p-periodic if it is the marginal distribution of ~" (or #) with 
respect to which P is p-periodic. 

In (younes I993), the following characterization theorem is proved. We identify X?v with ~2s~ |174 
where Si = S x {i}, i = 1 , . . . , p ,  are copies of S and add a new element to S, which can be considered 
as a "void site", and which we will denote by 0 (0 ~ S). 

T h e o r e m  1 Let ~r be a probability measure on $2. The following properties are equivalent : 

I. ~r is a synchronous p-periodic r.f. associated to a positive synchronous kernel. 
2. There exists a distribution # on fir such that 

i- # is invariant by circular permutation of the coordinates. 
it- For all i = 1 , . . . , p ,  the variables Xs, s E Si are g-conditionally independent given the other 

variables Xt,  t q~ Si. 
iii- The conditional distribution 

p(X,  ! X , , t  # s) 

for s G Si is positive. 
iv- ~r is the marginal distribution o f #  over s 

In that case, the associated synchronous kernel may be described as follows. 
For each p-uple in (S U {0}) v, where 0 is the void site, of the kind g = ( s l , . . . ,  sv), there exists a 

function 
h~[x(1) . . . . .  x(p)] = h~[x,l(1 ) . . . . .  x,,(p)] 

defined on ~v ,  which only depends on variables x,~(k) for indices k such that s~ 7~ O, such that 
p~[x(1), . . . ,x(q)  ; x~,(p)] takes the form:  

exp{5=(sl,,..,%_lE , u ) h g [ x ( 1 ) ' ' ' " x ( P ) ] } Z u [ x ( 1 ) ' ' ' " x ( p - 1 ) ] '  (5) 

Moreover, the functions h~ are invarianl by circular permutation of the indices, in the sense that, for any 
x(1) . . . . .  x(p), 

h d x 0 ) , . . . ,  x(p)] = h~jx(p), ~ ( 0 , - - ,  x ( p -  1)1, 

where sr = (sp, sl . . . .  Sv-1 ). 
The p-step distribution tz can be expressed in terms of the functions h~ : 

p[x(t) . . . . .  x(p)] = g e x p  hg[x(1) . . . . .  z(p)] . (6) 

We shall also refer to the following notion : 

Def in i t ion  5 A compound (or joint)partially synchronous distribution of order p is a Gibbs distribution 
# on ~$ such that the variables Xs,  s E Si are #-conditionally independent given the other variables X~, 
t~s, .  

I f  # is a compound synchronous dislribution, its marginal over ~2sl = ~2s will be called a partially 
synchronous distribution of order p. 

Remark .  To sample from a partially synchronous distribution, one needs to sample from p, which involves 
p - 1 auxilliary variables, each of which being synchronously sampled conditionally to the others. The 
efficacy of such a parallel sampling therefore decreases when p is large. 

]Prom the preceding definition, we see that p-periodic fields are partially synchronous distributions 
associated to # which is invariant by circular permutation of the coordinates. There is no such loss of 
efficiency in this case, since all auxilliary variables have the same marginals, 
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2 S y n c h r o n o u s  s a m p l i n g  o f  a p o s t e r i o r  d i s t r i b u t i o n .  

2.1 Si tewlse degrada t ion .  

This issue can be considered as critical to measure the usefulness of a model for applications. 
To formalize the situation, let J2 denote the configuration space of S, with state space F, and ~ denote 

some other configuration space on some state space G. Assume that we are given a family of functions 
(b~, s E S) from (2 to G, yielding a function b from f2 to (2' defined by b(x) = ( with ~ = b~(z) for all 
s. In a statistical interpretation, .('2 is the set of "original" configurations, and ~l the set of "observed" 
configurations. 

For a given probability distribution ~r on ~2, and a given configuration ~ E $2 ~, we are concerned with 
the issue of sampling from the posterior distribulion ~r( . [~). 

We shall consider the following important particular case in which the computation of ,~ from z is 
performed eoordinatewise, i.e. ~ only depends on z, (so that b~ is a function from F to G). Examples in 
which this is satisfied are 

- F = G x G ~ and only the G-component of az is observed (partial observations). 
- Let (z ~ s E 5) be an unobserved random field, and (e,) be a noise which is independent ofx ~ Assume 

that x ~ and e both follow a synchronous distribution, or more generally that the joint distribution of 
(x ~ e) is synchronous. Assume finally that the observation takes the form : ~ = b,(z ~ e~). 

P r o p o s i t i o n  1 Assume that 7:, is p-periodic and that for all s, be(x) = b~(x~) only depends on x, .  Then, 
the posterior dislribution ~( . [~). is partially synchronous of order p. 

This is not valid anymore when the condition b~(x) = b~(z,) is relaxed. Although this condition is 
true for a large range of applications, there remain some significant cases for which it is not satisfied. The 
most important among these, especially in the context of image restoration is the case of blurring. The 
next section addresses the case of linear blurring with additive Gaussian white noise. 

2.2 Res to r a t i on  of  b lu r r ed  p ic tures .  

In this section, the state space F is no more finite, but equal to the real line R. The random fields are 
assumed to have densities with respect to Lebesgue measure on [2, which are given by the same kind of 
formulae as in the finite ease, with the implicit integrability assumptions. 

We assume that the observation is obtained through the equation 

~, = ~ , , ,z ,  + e,, (7) 
t 

where e is some Gaussian white noise of variance cr 2, and ~/~ are the coefficients of a point-spread function 
around s. A particular case is when a S = 0, in which the restoration problem reduces to deblurring the 
picture. 

In order to restore the original picture from the observed ~, the problem is still to devise an efficient 
sampling algorithm of the posterior distribution. The previous methods cannot be applied, unless ~/,t = 
0 for s r t. The difficulty comes from the fact that, when expressing the energy of the conditional 
distribution of x given ~, there appears a term ~(~ ,  - ~ r/,~z~) 2, therefore yielding interactions between 
zs and xt for t r s. In the following proposition, we show how a very simple trick can be used to solve 
this problem. 

P r o p o s i t i o n  2 Assume that ~r is p-periodic and ~hai ~ is given by equation (7) above. Then, there ezisis 
a compound partially synchronous distribution p, of order p + 1, of the kind 

, ( z ,  ~, ~(2) . . . . . .  (p)), 

such lha~ the dislribulion of (z + 5)/2 is 7r( . [~). 

Proof"  Let P0[x(1),.. . ,  x(p)] be the density of the p-step distribution associated to ~ ; it is of the kind 

exp[-Q(=(0,..., =(p) )]/ z, 

Q being the associated energy function. To simplify notations, we set x = z(1). 
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The energy function associated to the joint field (z(1) , . . . ,  z(p) ,~)  is 

t 

1 a u 2 Introduce a new r.f., (u,), which is Gaussian with energy 2-~'( ~ ,  ~ - ~ , ( ~ t  7/~tut)~),, a being large 
enough for this quadratic form to be positive. Assmne that u is independent of the other fields (z(i), 
i = 1 , . . .  ,p and ~). After a simple transformation, the joint energy of z, x ( 2 ) , . . . ,  x(p), ~, u can be written 

2 - ~ { E  [~ - E %~(xt + u,)][(~- E ~la(z, - ut)] + a E u~} + Q ( z , x ( 2 ) , . . . , z ( p ) )  
s t t s 

It surfaces now to set zt = zt  - ut and St = zt + ut. The distribution of z, 2, x(2) , . . . ,  x(p) and ~ has 
for energy 

$ t t 

This provides the desired structure for the conditionnal distribution of z, 2, z (2) , . . . ,  x(p) given ~, 
which is the distribution # we were looking for. [] 

3 E x p e r i m e n t s .  

We now present examples to illustrate the restoration of noisy pictures in this last ease. 

3.1 Mode l ing .  

We include, as it is standard in image modeling, edge elements within the prior distribution and introduce 
two hidden fields, (hs, s E S) and (v~, s E S), with values in {0, 1}, respectively indicating the presence of 
a horizontal edge (h, = 1) or vertical edge (vs = 1). More precisely, if s = ( i , j )  is the representation of s 
on the image grid, hs indicates an edge between ( i , j )  and (i - 1,j), and v~ between ( i , j )  and ( i , j  - 1). 
To shorten notation, we set (i - 1,j) = s.h and ( i , j  - 1) = s.v. 

The prior distribution is therefore defined on the set of all configurations of (x,h,v).  To model 
a synchronous r.f., we must introduce auxilliary fields (y, h,~), and model a compound distribution 
# ((x, h, v), (y, h, ~)) with the property that, given (y, h, ~), all component (z.,, h~, v~), s E S are indepen- 
dent, and conversely ; we do not impose mutual independence of x~, h, and v,. Up to a scaling factor, 
the density of this distribution # is given by 

exp{-  ~ [ ~  ~ ( ~  + y~)+ ~ ( x , -  y,)~ + ~ ( ( x , -  y~ ~)~ + (y, - z,.o)~ - 2~0)0 - v,) (8) 

+~ ~((=~ - y , , )~  + (y. - =. . )~ - 2e0)(1 - h.) ] + Q(h, v, ~,, 0) } 
s 

This density is with respect to the product of Lebesgne measures at each site for xs and y~ variables, 
and counting measures on {0,1} for edge variables. The parameter 5 is an arbitrary, very small number 
ensuring the integrability of the above expression. In fact, when we will be considering the posterior, for 
which this problem disappears, we will let 5 tend to 0. 

The second sum forces gray-level variables xs and Ys to ha.re values which are not too far apart. This 
allows us to interpret the third and fourth terms, which are weighted by a positive parameter n, as terms 
forcing the differences of gray-level at neighboring pixe]s to be small unless an edge separates them. The 
parameter 00 appears like a threshold below which this difference should be in the absence of edge. For 
the experiments, we have heuristically fixed the values of % n and ~0. This is more or less made possible 
by the simplicity of this part of the model. 

The "edge energy", Q, is quadratic in its variables. It has the form 

O ( ~ ,  ~ ,  ~ s  ~ , )  = ~o E ~ z ~ E ~  + + ~ E ~ t ~  (9) 
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The sums ~ 1  . . . .  , ~ are made over specified families of indices i, s, j, t. For example, one of them 
represents self-relation (like the c~ parameter in the synchronous Ising model), and the sum is made over 
i, s, j, t such that  s = t and either i = 1 and j = 3 (horizontal edges) or i = 2 and j = 4 (vertical edges). 
Other contain interaction between adjacent aligned edge elements, of edge elements making a right angle, 
and so on. The constraint is that  there may not be an interaction within (h, v) nor within (/~, ~), which 
means that one may not have i = 1 together with j = 1 or 2, nor i = j = 2, and similarly for 3 and 
4. In our experiments, we used k = 15. It is clear that it is not possible to work with heuristics, nor 
by trial-and-error to set the value of such a number of parameters. This has been done with a help of a 
learning procedure which is summarized in remark R16. 

Using the method given in Proposition 3, we introduce two additional auxilliary fields, z and 2, such 
that  x, = (z, + 5,) /2,  and one obtains the distribution of (z, 5, y, h, h, v, ~) given ~. 

This distribution can be sampled by iterating the following sequence of synchronous steps ; assume 
that  a current configuration of (z, 5, y, h, [~, v, f~) is given. Then, a global updating of this configuration 
can be done by 

1. Update z, given 5, y, h, v and/~, ~ given h and v. 
2. Set x = (z + 2)/2 
3. Update y given x, h, v. 

4. Update h, v given x, y, h, 0 and set 5 = z. 

We give some results of experiments in this context. The noise is Gaussian, additive, with variance 
200, the image being coded in gray levels between 0 and 256. The blur is obtained through a 5 by 5 
Gaussian filter given by rh, = c. exp(- I l s  - ti]2/2() if max(Is1 - t i [, )2  - t2 [) < 2, and 0 if not, c being a 
normalization ensuring that  the sum of the r/~, is 1. 

Fig. 1. Restoration : blurred pictures (r = 2) with additive noise of variance 200 (Upper left : Original, upper 
right : Noisy, lower left : Estimated edges, lower right : restored picture). 
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