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Abst rac t .  This paper describes an original approach to the problem 
of edge-based binocular stereovision. The tokens to be matched are sub- 
chains of the chains of connected pixels. Local constraints of the stereovi- 
sion problem are first used in associating to each token a set of potential 
matches. Global constraints are embedded in a cost function and we 
look for the minimum of this cost function. The optimisation search is 
conducted using genetic algorithms. 

1 I n t r o d u c t i o n  

In this work, we propose an original approach to the problem of edge-based 
binocular stereovision. Classical solutions are: feature point based approaches 
([Gri85], [PMF85], [OK85]), line segment based approaches ([MN85]), curve 
based approaches ([BB89], [RF91]). An extensive survey of the literature is done 
in [DA89]. 

Here, we propose to use chains of connected edge points as tokens to be 
matched. The number of such features is relatively small (less than 300 in typ- 
ical images). The matching process is implemented by first reducing the set of 
potential matches for each chain by using local constraints (epipolar constraint, 
disparity constraint, disparity gradient constraint and orientation of the gradient 
intensity constraint). In a following step, the solution of the matching problem 
is searched by using more global constraints. These constraints are embedded in 
a cost function and we look for a minimum of this cost function. This optimisa- 
tion problem is solved using a genetic algorithm. The cost function evaluates the 
mapping from the set of features of the first image to the set of features of the 
second image and NIL. This problem reveals itself well adapted to the philoso- 
phy of the genetic algorithms. Using genetic algorithms, the optimisation of this 
function is done through a competition between different possible solutions to 
the problem of matching. This competition is assessed using the cost function. 
The different mappings are combined to form a new one using the cross-over 
operator.  For example, in the ideal case of two mappings, one which is good for 
the upper part of the image but introduces errors for the lower part and the 
other which is only good for the lower part of the image are combined in such a 
way that  the two good parts are joined in one new solution. 

2 B i n o c u l a r  S t e r e o v i s i o n  

The problem of binocular stereovision is the reconstruction of the 3D coordi- 
nates of a number of points in a scene given two images obtained by cameras of 
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known relative position and orientation. In this paper, we are more specifically 
interested by the correspondence problem. This problem has been widely studied 
and various constraints have been proposed. 

The first and most important is the epipolar constraint (see [Fau93]). We 
simplify its use by first rectifiying the images (see [HAL88]). 

The edges of the images are extracted by classical techniques ([Der87]) and 
we form a set of chains of connected pixels for each image. We propose to divide 
each chains of pixels in sub-chains such that, in the rectified image, the ordinates 
of the pixels change monotically when we move from the beginning of the sub- 
chain to its end. Consequently, the intersection between an epipolar line and 

each sub-chains contains at most one point. 
Individual constraints We now introduced a set of individual constraints. 

These constraints have to be verified for a match of a token of the first image with 
a token of the second image. By using them, we associate to each sub-chain chl of 
the first image, a subset of the sub-chains of the second image which are potential 
matches for chl. These individual constraints are: the epipolar constraint, the 
disparity constraint, the disparity gradient constraint and orientation of the 
gradient of intensity. Details on the integration of these constraints are in [VG93]. 

Global Constraints The global constraints apply for the major part of 
the tokens of the scene. These constraints are the uniqueness constraint, the 
order constraint and the continuity constraint. These last two constraints are 
not always verified and it is not possible to build an algorithm which enforces 
them for all the tokens. So, we choose to impose these constraints to a solution of 
the matching problem globally and to look for the solutions among the mimima 
of a cost function. This function increases whenever some pair of matches violates 
one of the constraints. The cost function is a mapping ~ from the set of valid 
solutions to JR. We call valid solutions the ones which respect the uniqueness 

constraint. 

- fm~t~h(a) is the sum of the length of the matched sub-chains. 
- ford~(o) is the sum of the length of the common part of the couples of 

matched chains which violate the order constraint. 
- fd~(~) and f~gze(~) evaluates the local continuity. 

)~.~t~a, )~o~d~, ) ~ t  and )~gl~ are appropriate weighting coefficients. 

3 Genet ic  Algor i thms applied to Binocular  Stereovis ion 

The genetic algorithms mimic the mechanisms involved in natural selection to 
conduct a search through a given parameter space for the maximum/minimum 
of some objective function. Here, we will present the main features of the genetic 
algorithms. A detailed presentation can be found in [Go189]. A point of the pa- 
rameter space is called a chromosome. The algorithm maintains a population of 
N individuals which are represented by their chromosomes. It is rather different 
from the classical optimisation algorithms which maintains only one point in the 
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search space. Operators are applied to the population and successive generation 
of the population are derived. These operators rely on probabilistic rules. The 
search for an optimal solution starts with a randomly generated population of 
chromosomes. The objective function f is estimated for each individual of the 
population. A new set of individuals, obtained by the application of the different 
operators, is the next generation. A stop criterion is tested. If it is decided to 
continue, the process for computing new generations is iterated. 

E n c o d i n g  of  t h e  So lu t ions  We denote Chl (resp. Ch2) the set of sub- 
chains of connected pixels of the first image (resp. the second image) which 
vary monotically (see section 2). A valid solution a of the matching problem 
associates to each element of Chl one or zero element of Ch2. For each element 
chl of Chl, (r(chl) must belong to the set of potential matches of chl or be NIL 
(i.e. no match). Each element ch2 of Ch2 must be associated to at most one 
element of chl. This is the uniqueness constraint for the elements of Ch2. 

The description of an individual is an array which gives the number of the 
element of Ch2 (or NIL) associated with each element of Chl. The elements 
of Chl are introduced in the table according to a precise order defined by the 
position of their highest point in the image. 

Se l e c t i o n  The operator of selection chooses, among the N individuals of the 
population of the current generation, the elements which will be present in the 
next generation. The selection is based on the cost function. 

C r o s s - O v e r  This operator is used for mixing two individuals and deriving 
from them two new viable individuals. In accordance with the basic principle 
set out in [Go189], a cut site is randomly chosen. It defines two sections on each 
individual. Two new individuals are derived by combining the opposing sections 
from the two initial individuals. Of course, the uniqueness constraint for the 
elements of Ch2 is no longer necessarily respected and both new individuals 
must be corrected. The correction is done by scanning each individual from the 
first element to the cross-over site. For each element chl of Chl, we test if the 
uniqueness constraint is respected for the element of Ch2 which is associated 
to it. If it is not, we associate to chl a randomly chosen element among the 
potential matches of chl. We restrict this choice to the elements which are not 
already used in this individual. If, the set of such elements is empty, no element 
is associated to Chl. 

M u t a t i o n  A random site, which represents a sub-chain ch~ of Chl is replaced 
randomly by one of the other potential matches of ch~ which are still free. If none 
is free, no element of Ch2 is associated to ch~. Processing like this, the result of 
the mutation is viable (respect the uniqueness constraint). 

T h e  A l g o r i t h m  
Normal Algorithm 

1. Initialization of a random population of viable individuals. An individual 
is randomly constructed by choosing successively for each element chl of 
Chl its associated element among the potential matches of Chl that are not 
already used. If none exists, no element is associated to chl. For this process, 
the elements of Chl are scanned in random order, tn this way, the individuals 
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built cover correctly the set of possible viable individuals. 
2. Computation of the cost function associated with each individual and ap- 

plication of the selection operator. Application of the cross-over and the 
mutation. 

3. While a stop criterion is false, goto 2. 

The stop criterion that we have used is the total number of generations. 
A Coarse to Fine Approach The proposed algorithm does not make any 

distinction between the most important structures that are a priori described by 
the longest sub-chMns and the details which are described by shorter sub-chMns. 
A solution to this problem is to use only the longest sub-chains at the beginning 
and progressively to insert the others. The number of genes of the individuals 
is increased. This operation is done simultaneously for all the individuals of the 
population. The insertion operation is a variant of the selection, 

4 E x p e r i m e n t a l  r e s u l t s  a n d  c o n c l u s i o n  

Exper imenta l  results In this section, we show the results obtained using our 
algorithm. Figure 1.(a) shows the original doublet of images. Figure 1.(b) shows 
the extracted edges before rectification 1. Figure 1.(c) shows the edges that have 
been matched by the algorithm. Figure 1.(d) shows the erroneous matches 2. 
These results have been obtained by using the coarse to fine approach: the sub- 
chains are inserted progressively in the chromosome. 

In these experiments, we have used the following parameters, number of 
individuals in the population: 100, probability of cross-over: 0.7, probability of 
mutation: 0.2, 2000 generations. The size of the population is increased by 20 
every 200 generations. The computational time is directly proportional to the 
complexity of the cost function. In our case, the construction of a new generation 
needs several seconds. 

The values of these parameters have not been thoroughly optimised. Only a 
few experiments have been done with different values. These experiments have 
shown that the results are quite insensitive to the precise values of the parame- 
ters, However, we think that some of these parameters, especially the increment 
of the population size and the number of generations with a fixed size could be 
set to decrease the computational time. 

Conclusion In this article, we have presented an original approach to the 
edge-based stereovision problem. We propose to match sub-chains of connected 
edge pixels, The split of the chains in sub-chains is done using the epipolar 
constraint. This solution allowed us to operate on curved objects. We have first 
shown how we organized the specific constraints of the stereovision problem in 
such a way that finding a solution to the problem of matching is equivalent 
to a search for the minimum of a specific cost function, The cost function is 

t For each sub-chain, we have only dr&wn a polygonal approximation of the part of 
the sub-chain which corresponds exactly to its match. This part is defined using the 
epipolar constraint. 

z The classification between correct and incorrect matches has been made by hand. 
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Fig.  1. (a) the original doublet of images and (b) the extracted edges, (c) the matched 
edges and (d) the erroneous matches 
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minimized using genetic algorithms. It is remarkable to notice that only a few 
modifications have been given to the classical operators of genetic algorithms. 
The operator of cross-over appeared to be remarkably adapted to the problem 
of stereovision, as two solutions which are not correct in the same parts of the 
image, could be merged in such a way that their correct parts are joined. 

It is straight forward to combine a coarse to fine strategy with the genetic 
algorithms approach. In this article, we have proposed to integrate first the 
main features of the image in the cost function and to add successively the less 
important  ones. Other strategies could be devised. A possible idea is to divide 
the image in several horizontal strips (three for examples) and to run the genetic 
algorithm independently for each of these strips. Afterwards, the obtained results 
are merged using a variant of the selection operator and the genetic algorithm 
is run another time on the resulting population. We hope that,  by using these 
strategies, the global computation time will be reduced. 
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