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Abst rac t .  In this paper we propose a novel, efficient and geometrically 
intuitive method to compute the four components of an aifine trans- 
formation from the change in simple statistics of images of texture. In 
particular we show how the changes in first, second and third moments of 
edge orientation and changes in density are directly related to the rota- 
tion (curl), scale (divergence) and deformation components of an affine 
transformation. A simple implementation is described which does not 
require point, edge or contour correspondences to be established. It is 
tested on a wide range of repetitive and non-repetitive visual textures 
which are neither isotropie nor homogeneous. As a demonstration of the 
power of this technique the estimated affine transforms are used as the 
first stage in shape from texture and structure from motion applications. 

1 I n t r o d u c t i o n  

The estimation of an affine transformation is often an integral part in structure 
from motion (or stereo) and shape from texture. In structure from motion relative 
motion between the viewer and scene induces distortion in image, and in small 
neighbourhoods this distortion can be described by an image translation and a 
four parameter  affine transformation [6]. In shape from texture the distortion in 
an image of a surface with a repeated texture pattern can also be modelled by 
affine transformations [4, 9]. 

Many methods have been proposed to extract the affine transformations. The 
simplest method is based on the accurate extraction of points or lines and their 
correspondences. This requirement of correspondences becomes a non-trivial 
problem in densely textured images. Cipolla and Blake [3] presented a novel 
method to recover the attine transformation from image contours. Although this 
method did not require point or line correspondences the extraction and tracking 
of closed contours is also not always possible in richly textured images. 

A large number of techniques have been developed which avoid the explicit 
correspondence of features. For small visual motions or distortions a common 
method is to estimate the affine transform from spatiotemporal gradients of im- 
age intensity [1]. The amount of visual motion allowed is limited by the smooth- 
ing scale factor. For estimating the texture distortion map Malik and Rosen- 
holtz [9] have at tempted to solve for the affine transformation in the fourier 
domain although this involves the choice of a suitable window and is compu- 
tationally expensive. Under the assumptions of directional isotropy [10] it is 
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possible to estimate the surface orientation from the second moment matrix 
of image element orientations [5, 2]. Modifications of the second moment matrix 
which also exploit image intensity gradients have also been used [8]. However it 
is impossible to recover the affine transformation (four independent parameters) 
uniquely from the second moment matrix. 

In this paper we propose a novel, efficient and geometrically intuitive method 
to compute the four components of an affine transformation from the change in 
simple statistics of the images of texture. A simple implementation is described 
which does not require correspondences to be established. It is tested on a wide 
range of repetitive and non-repetitive visual textures which are neither isotropic 
nor homogeneous. The estimated affine transform is also used in shape from 
texture and structure from motion applications. 

2 T h e o r e t i c a l  F r a m e w o r k  

2.1 Decompos i t ion  of the  Atfine Transformat ion  

Generally, an affine transformation, A, can be described by the product of an 
isotropic scale, S, and matrix, U, whose determinant is equal to one. Further- 
more, the matrix, U, can be decomposed into a symmetric matrix, D, which we 
will call the geometric deformation and an asymmetric 2D rotation matrix, R. 
An affine matrix can thus be described with these three fundamental transfor- 
mations: 

A = S(s)R(O)D(a, p) (1) 

where the isotropic scale, S, is specified by a scale parameter, s, and the rotation, 
R, is specified by an angle, 0. The deformation, D, is specified by an axis of 
deformation, #, and a magnitude of deformation, a, and can be described using 
a rotation, R(#), and symmetric matrix, M(c~), whose eigenvalues are a and 1 

= 

_- "cos# - s i n P l  
Lsinp cos ,  j [0 
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(2)  

Deformation is equivalent to a pure shear which preserves area, i.e. an expansion 
by a factor, (~, in the direction, #, with a contraction by the san-ie amount in a 
perpendicular direction. 

2.2 Rela t ionsh ip  be tween Changes in Image Or ienta t ion  and  the  
AfIine Trans format ion  

We now investigate the effect of these components of an afiine transformation on 
the orientation of image detail. Consider an element of texture represented by an 
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unit vector, v, with orientation, p. The afl=ine transformation, A, transforms the 
vector, v, into v' and changes its orientation by A~p. The change in orientation, 
A~, can be written as the sum of two components: one due to rotation, 0, which 
changes the orientation of all elements equally and one due to deformation, A~fld. 

A~ = 0 + A~d (3) 

A~oa, can be computed from the vector product (A) of v and the deformed vector, 
v "  = D(oe, #)v as follows: 

sin(n d) - Iv A v"l 
[vtIv"l 

= 2 (4) 

Note that the isotropic scale, S, does not affect orientation, while the change in 
orientation due to the deformation term depends on the initial orientation, 9~, 
the axis of deformation, p, and magnitude of deformation, a. 

If the magnitude of deformation is small, the change in orientation can be 
described as follows from (3) and(4). 

1 ( 1  a) sin 2(~0 - #) (5) 

Koenderink and Van Doorn [7] derived a similar approximate equation for small 
displacements. 

2.3 Texture  M o m e n t s  under  Afflne Transformation 

In this section, we propose a novel method to calculate the four parameters of 
the affine transformation reliably without any correspondence of spatial image 
features using moments of the orientation and density of the texture. In previous 
work on shape from texture, the texture was often assumed either to be spatially 
homogeneous or isotropic in orientation, though such textures are limited in the 
real world. Here, we consider any visual pattern in the real world as a texture, 
and consider the change in the statistics of the visual texture under an aifine 
transformation. 

Consider the texture to have oriented elements with distribution, f(~o), which 
will be changed to f ' (~)  by an affine transformation. From (5), the rotation term, 
R, changes the orientations of the texture elements equally. This means that 
rotation is related to a shift in the mean value of f(~) (i.e. the first moment of 
f(~)),  and does not affect higher moments. The deformation term, on the other 
hand, depends on the original orientation of the element and hence affects the 
variance of f(~o) (i.e. the second moment). Furthermore because there is a term 
# in the deformation term, we can infer that the changes in the distribution of 
orientation will not generally be symmetric about the mean of the orientations, 
(except for the case when # = O) and hence the skewness of f({o) (i.e. the third 
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moment) will be affected. Thus changes in first moment of orientation are related 
to the rotation, _R, and the deformation, D. Changes to the second and third 
moments are only affected ,by D. Scale, S, affects the area of texture elements 
and their density, leaving orientations unaffected. 

We show below how these simple geometrically intuitive relations can be used 
to directly recover the parameters of the affine transformation from changes in 
the density and orientation statistics of image textures. 

From (5), an element with orientation, ~, is transformed into ~' such that: 

~' = ~o+0 + ),sin 2(~ - ~) 

= 9 + 0 + ,~(sin 29 cos 2/, - cos 29 sin 2/*) (6) 

where, ,~ is related to the magnitude term of the deformation by: 

1 

The change in the first moment of f (~) ,  AI~,, in terms of the rotation, 0, axis, 
#, and magnitude, )~, of the deformation is given by summing equation (6) for 
all elements. 

A i r =  A(/~in 2~o cos 2/* - fcos 2v sin 2#) + 0 (8) 

where,/sin 2v and Icos2~ are the mean values of sin 2~ and cos 2~o respectively. If 
we assume that the deformation is small, that is ), << 1, then we can derive the 
relationships between the changes in second and third moments, A I ~ ,  A I ~ v ,  
and the rotation and deformation in closed form. 

AI~v = 2;~(/v si~ 2~ cos 2p - / ~  r 2~ sin 2/*) (9) 

= a (g= cos  2/* - s in  2/ , )  ( l o )  

where I v si, =v and I v cos %, are the covariances between ~o and sin 29, and ~ and 
cos 2~o respectively. Iv= sin =V and / ~  cos =v are third moments. 

The rotation, 0, the axis of deformation, #, and the magnitude of deformation, 
a, can be computed from: 

= ~ t an  -1 (11) # 

< 1 ( i M  , /  ~ ) e + M~ + 4M~ - v M ,  + M~ (12) o~ 

1 
0 -- z~f~ 2M3 (/sin 2~oM2 - Icos2vM1) (13) 

where: 

Mi = 3A [~v[~  sin 2v - 2A  IvvvIv  ~in 2v 

M2 = 3 A Ivv I ~  r 2 v - 2 A I v v v I v c o s 2 ~  

M3 = 3 (fv2cos2Jv in2v - r 2 i. 2Jvco0 v) 

(14) 

(15) 

(16)  
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The special case where M3 = 0 does not occur in practice. The change in scale, 
s, of the anne transformation can be obtained from the first moment of density 
or area of the texture elements [6, 3]. Having computed rotation, 0, the axis of 
deformation, #, the magnitude of deformation, a, and the change in scale, s, we 
have recovered all four independent parameters of the anne transformation. 

The properties of the proposed method are: (1) It does not require corre- 
spondence of individual image features. (2) This allows much greater interframe 
motions than spatio-temporal techniques. (3) The method relies on the compari- 
son of statistics of the image patches. This therefore requires that corresponding 
areas of interest are identified. (4) The recovery of scale from the texture den- 
sity assumes that the texture is homogeneous. If, instead, we can determine the 
changes in area of the texture elements [8], this assumption is no longer required. 

3 Preliminary Results 

In this section, we will present several results which show that this method does 
not need any assumptions like directional isotropy or spatial homogeneity to 
estimate the rotation and the deformation, though we need homogeneity of the 
texture to compute the scale component properly. Fig.1 shows the results from 
this method tested on a wide range of images. To demonstrate the accuracy 
of the extracted anne transform we have chosen to assume that the original 
images (upper most images in Fig.l) are of textures on a fronto-parallel plane 
and we use the affine transformation to estimate the new orientation of the plane 
assuming it is viewed under weak perspective (second row of images in Fig.l). 
The two ellipses in Fig.1 show that the estimated orientations are qualitatively 
good even with non-uniform textures. Table 1 compares the accuracy of this 
method quantitatively. The accuracy is seen to degrade when the texture in 
the image does not have preferred orientations. This was caused by filtering of 
orientation to avoid aliasing. 

A second method for testing the accuracy of this method is to exploit the 
results in real applications. 

Shape f rom Texture:  For a repetitive texture on a curved surface the 
texture distortion in different directions is well modelled by an anne transform 
and the scale and deformation components of this anne transform can be used 
to recover the relative orientations and positions of the surface patches [9]. Fig.2 
shows the result of using affine transforms by the method presented in this paper 
to recover the shape of a curved surface. The proposed method derives qualita- 
tively good results, though there are some errors in the estimated orientations. 
These errors arise from (1) the difference in the sampling areas, (2) errors caused 
in the sampling of orientation, (3) the small deformation approximation used in 
the proposed method. 

Qual i ta t ive  Visual Navigation:  In the next application, we will show 
how a moving observer can determine the object surface orientation and time 
to contact from the aNne transformation estimated from texture moments. The 
relations between the motion parameters and the surface position and orientation 
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were presented in [3, 6]. A translation along the optical axis towards the surface 
patch leads to a uniform expansion in the image. This determines the distance 
to the object which is conveniently expressed as a time to contact. A horizontal 
translation perpendicular to the visual direction results in image deformation 
with a magnitude determined by the slant and an axis determine by the tilt of 
the surface. In this case the axis of deformation bisects the tilt and direction of 
translation in the image. Table 2 shows the results of estimation of tilt angle of 
the surface and time to contact computed from Fig.3. 

4 Conclusions 

In this paper we have proposed a novel method to compute the four components 
of an affine transformation from the changes in moments of edge orientation and 
density. This method does not require point, edge or contour correspondences to 
be established, though the problem of selecting the area of interest still remains. 
It is extremely simple and efficient and the four parameters are linked to changes 
in orientation and texture density in a geometrically intuitive way. 

Preliminary results have been presented and tested in simple applications 
exploiting the derived affine transformation. The estimated a n n e  transformation 
has been of useful accuracy. However the sensitivity and error analysis as well 
as a quantitative comparison with other methods remain to be carried out. 
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(a) (b) (c) (d) (e) (f) 

Fig.  1. Results of preliminary experiments. Examples of the images distorted by ar- 
bitrary affine transformations were processed by our affine transform from texture 
moments algorithm. Images in the first row and the second row are fronto-parallel im- 
ages and transformed images respectively after changing the position and orientation 
of the plane viewed under weak perspective. The estimated orientations (upper ellipses) 
and true orientations (lower ellipses) of the transformed images are shown using nor- 
real vectors and oriented circles whose size and shape correspond to the scale change 
and distortion. Examples include (a) single triangle, (b) randomly oriented lines, (c) 
oriented grass, (d) leaves, (e) a cloth with texture and (f) s toned glass as an example 
of a non-uniform texture. 

Tab le  1, Accuracy of the surface parameters, scale, s, rotation, 0, tilt, r, and slant, c~. 

True  E s t i m a t e d  
I m a g e s  s 0(~ r(~ ~r(~ s 0(~ r(~ ~(o) 
(a) triangle 1.0 0.0 30.0 15.0 1.0 0.0 30.0 15.0 
(b) lines 1.0 -5.0 135.0 20.0 0.98 -3.8 133.0 25.1 
(c) grass 0.95 5.0 60.0 25.0 0.95 5.1 60.3 24.8 
(d) leaves 1.0 0.0 120.0 25.0 0.99 -2.7 117.0 25.8 
(e) cloth 0.95 5.0 60.0 25.0 0.92 5.4 56.6 34.0 
(f) stained glass 0.95 0.0 100.0 25.0 1.02 -2.3 112.3 26.9 
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(b) 

F ig .  2. Shape from texture using the affine transform. Surface orientation of patches 
on a cylindrical object are est imated using the affine transform from texture moments. 
Est imated local orientations at each point are shown in (b) using oriented circles and 
their normal vectors. 

F ig .  3. Two set of images are taken from a moving observer. Motion and optical 
direction are parallel in (a) and perpendicular in (b). The time to contact and the tilt  
angle of the surface recovered from the texture moments are shown in table 2. 

T a b l e  2. Tilt angle and time to contact. Scale, s, rotation, 0, axis and magnitude of 
the deformation, p, cq recovered from the texture moments were used to compute the 
time to contact, t , ,  in (a) and tilt angle of the surface, r ,  in (b). Mean values and 
variances were estimated by changing the area of interest in each image. 

II I m a g e s  

True 
(a) p a r a l l e l  Est imated 

p e r p e n -  True 
(b) d i e u l a r  Est imated 

sl 0(~ 41 .(~ ,(~ toll 
1.20 0.0 1.0 10.0 

1.19 4- 0.07 0.1 4- 0.1 1.01 4- 0.01 - 10.4 4- 3.2 
1.04 3.2 1.07 281 56 e~ 

1.03 4- 0.01 1.3 • 0.1 1.07 4- 0.001 33 4- 2!56 4- 4 882 4- 496 


