
Coevolutionary, Distributed Search for Inducing
Concept Descriptions

C. Anglano, A. Giordana, G. Lo Bello, L. Saitta
Dipartimento di Informatica, Universitk di Torino,

C.so Svizzera 185, 10149 Torino, Italy
e-maih {mino,attilio,lobello,saitta) @di.unito.it

Abstract . This paper presents a highly parallel genetic algorithm, de-
signed for concept induction in propositional and first order logics. The
parallel architecture is an adaptation for set covering problems, of the
diffusion model developed for optimization.
The algorithm exhibits other two important methodological novelties re-
lated to Evolutionary Computation. First, it combines niches and species
formation with coevolution, in order to learn multimodal concepts. This
is done by integrating the Universal Suffrage selection operator with the
coevolution model recently proposed in the literature. Second, it makes
use of a new set of genetic operators, which maintain diversity in the
population.
The experimental comparison with previous systems, not using coevo-
lution and based on traditional genetic operators, shows a substantial
improvement in the effectiveness of the genetic search.

K e y w o r d s : Concept Learning, Parallel Genetic Algorithms, Coevolution.

1 I n t r o d u c t i o n

In the recent literature, Genetic Algorithms (GAs) emerged as valuable search
tools in the field of concept induction [2, 8, 6, 3]. The feature that looks partic-
ularly attractive for this task is the exploration power, potentially greater than
that of traditional search methods.

This paper describes a GA-based inductive learner, oriented to acquire con-
cepts described in First Order Logic. Its architecture relies on a computational
model characterized by the absence of global memory, which extends the diffu-
sion model previously developed for GAs. The underlying distributed architec-
ture allows a natural introduction of coevolution. Coevolution has been defined
by [7, 10] and refers to the possibility of guiding evolving populations through a
global feed-back.

Our starting point is the theory of niches and species formation, which al-
ready proved to be effective in learning disjunctive concept definitions. A dis-
junctive concept definition consists of a set of conjunctive logical formulas, each
one capturing a different modality of the target concept. As niches and species
formation is a way of addressing multi-modal search problems, disjunctive con-
cept induction naturally fits in this framework. Several recent algorithms, such

323

as COGIN [6] and REGAL [3], exploit this idea, even though they adopt different
methods for promoting species formation.

As discussed in [3], methods only based on species formation may require very
large populations when small species are required to survive in the presence of
very large ones. For this reason, REGAL adopts a long term control strategy
resembling to coevolution, in order to reduce the pressure among the species.
Here, we propose a new method which combines the Universal Suffrage selection
operator with an explicit coevolutionary strategy similar to the one proposed by
[10].

Moreover, this paper presents another substantial novelty, with respect to
REGAL and other GAs designed for concept induction tasks, which consists
of a new set of genetic operators, which explicitly aim at preserving the diver-
sity in the population. Preserving diversity reduces premature convergence and
increases the effectiveness of the genetic search.

As it will be shown in Section 7, the new algorithm, while preserving (or
even increasing) the accuracy of REGAL, shows a substantial reduction in the
complexity of the genetic search.

2 L e a r n i n g C o n c e p t s w i t h G e n e t i c A l g o r i t h m s

The task of learning concept definitions from examples can be stated as follows:
given a learning set E = E + U E - , consisting of positive and negative examples
of a target concept ~v, and a logical language L, the task consists in finding a
logical formula ¢ E L, which is true of all the positive examples E + and false
of all the negative ones E - . If such a ~5 is found, the definition ~ -+ w holds.
Depending on the case, the logical language L can be a propositional or a First
Order one. Independently of the order of L, the general structure of a concept
definition ¢ is a disjunction • = ¢1 V ¢~ V . . . V ¢~ of conjunctive definitions
¢1, ¢2 , - - . , ¢n, each one representing a different modali ty of the concept w. In
the following we will assume that L is a VL21 language like to the one used by
Induce [9] and by REGAL [3].

As previously mentioned, an appealing method to exploit GAs in Machine
Learning consists in combining species and niches formation [5] with eoevolution
[10]. Several examples can be found in [10] for learning behavioral strategies. In
the following we will consider a two-level architecture, whose lower level is a
distributed GA, which searches for conjunctive descriptions by promoting the
formation of species in the populations. The upper level applies a coevolutive
strategy that performs two tasks: on one hand, it continuously updates a dis-
junctive description, combining together individuals chosen from the different
species evolved at the first level; on the other hand, it interacts with the lower
level with the aim of favoring the evolution of those species that better go to-
gether in the current disjunctive description. The system REGAL [3] is a first
example of how such an architecture can be implemented.

However, the way niching and coevolution are integrated in REGAL and in
other systems like Samuel [10] is not very suitable to exploit large network corn-

324

puters. In fact, these systems are still based on the network (or island) model
described by Goldberg [4], where niches tend to be identified with single com-
putational nodes. Therefore, the available parallelism is limited by the number
of emerging species. In order to overcome this limitation, we designed a dif-
ferent computational model, where the notion of global mating pool has been
abandoned. As described in Figure 1, the architecture of the resulting system,
G-NET, encompasses three kind of nodes: 1) Genetic nodes (G-nodes), where
individuals mate and reproduce, 2) Evaluation nodes (E-nodes), where individu-
als are evaluated, and 3) a Supervisor node, which coordinates the computation
of the G-nodes according to the coevolutive strategy.

DoluC~Om

Fig. 1. Parallel Architecture

In G-NET, positive concept instances are considered elementary niches, and
each G-node computes an elitist GA, which evolves a micro-population settled
on a specific niche. In other words, each G-node searches for the "best" formula
covering the positive learning instances associated with it. The same elementary
niche can be assigned to many G-nodes at the same time, so that the number
of actually active G-nodes depends only upon the available resources and not
upon the problem. The Supervisor decides when and how many active copies of
a niche must exist.

Upon receiving an individual, an E-node evaluates it on the learning set,
computes a fitness value and sends it back (together with the computed infor-
mation) to the set of G-nodes (broadcast communication), activating thus new
genetic cycles. When a G-node finds a solution which is better than the ones it
already has, according to a local fitness function fL, it sends it to the Supervisor
as a candidate for assembling the global disjunctive description. Periodically, the
Supervisor resumes and actuates the coevolutive strategy: first, it assembles a
global disjunctive solution, out of the locally best solutions it received from the

325

G-nodes, trying to optimize a global fitness function fc- Afterwards, it gives
a feed-back to the G-nodes, in order to guide the genetic search towards solu-
tions that better integrate each other in a global disjunctive description. This
coevolutive strategy consists of two components, which act independently. The
first component controls the amount of search that has to be done on different
niches, and determines the number of G-nodes assigned to each niche. Those
niches, which developed solutions "weak" in a global context, are given more
processors in order to increase the chance of improving their local solutions.
The second component supplies a corrective term to the local fitness function,
which allows the genetic search to be explicitly guided towards local solutions
which contribute to increase the quality of the global solution. To this aim, the
Supervisor broadcasts the current disjunctive description to G-nodes.

The separation of the genetic cycle from the evaluation process simply aims
at increasing the explicit parallelism available.

3 T h e F i t n e s s

In G-NET, two different fitness functions f c and fL are used in order to eval-
uate global (disjunctive) and local (conjunctive) concept descriptions, respec-
tively. The function f c is a combination of three different terms, correspondings
to three different features of a concept description, namely: completeness (v),
consistency (w) and syntactic simplicity (z), which are three standard criteria
used in machine learning since [9].

In order to introduce the analytic form of f c we need to introduce some basic
definitions. The symbol M + shall denote the cardinality of E +, i.e the number
of positive training instances, and M - shall denote the cardinality of E - , i.e
the number of negative training instances. Let ~ be a inductive (disjunctive or
conjunctive) hypothesis; m + (~) and m- (~) shall denote the number of positive
and negative instances covered by T, respectively. For the sake of simplicity we
will write m +, rn-, and so on, being the argument ~ evident from the context.

The completeness is evaluated as v = m + / M +, whereas the consistency is
evaluated as an exponential function w = e - m - of the covered negative exam-
ples. The syntactic simplicity is evaluated as the ratio z = m + / (N a + m+),
being No the number of conditions occurring in a formula. In practice z tries
to capture the information compression represented by the syntactic form with
respect to its extension on the learning set. As long as Na decreases, z increases
approaching to 1.

The analytic form for the global fitness fG is then defined by the expression:

fa(q~) = (1 + Av(¢) + Bz(~))w(q)) C (1)

where A, B and C are user tunable constants, which allow the different compo-
nents to be weighted.

The local fitness fL for an hypothesis ¢ adds a corrective term to expression
(1), in order to account for how much ¢ contributes to improve (worsen) the
current global concept description. Let ~ be the disjunctive concept description

326

currently elaborated by the Supervisor and broadcast to the G-nodes. Let, more-
over, ¢ be a conjunctive hypothesis in a G-node. The fitness fL (¢) is evaluated
a s :

fL(¢) ---- (1 -b Av(¢) + Bz(C))w(¢) C + (fG(q5') -- fG(qS)) (2)

being ~' the formula obtained by adding ¢ to (P and eliminating all redundant
disjuncts but ¢.

4 T h e G e n e t i c N o d e s

Conjunctive solutions (individuals) are represented as bitstrings of fixed length
as in REGAL [3]. In the bitstring every bit represents a logical condition; if the
bit is "1", the condition occurs in the formula, if it is "0", it does not. This
correspondence can always be established, provided that a limit is imposed on
the maximum complexity of a conjunctive formula.

Every G-node executes a genetic algorithm aimed at finding the formula
that better covers the concept instance it has been assigned to. As described in
Figure 2, the basic architecture is quite simple, in order to have a light weight
computational object, which can easily be dynamically allocated on a network
computer; the architecture comprises the program encoding the genetic cycle,
a small memory containing the local population, an input port receiving the
individuals sent by the E-nodes, and an output port sending the new individuals
to the E-nodes. As the local population is kept small (from 5 to 40 individuals)
a non-standard replacement policy (similar to that described in [1]) is used, in
order to enforce diversity: all the individuals in the same node are required to
be different, so that a richer genetic information is present in the population.

The individuals arriving at the input gate of a G-node are all those evalu-
ated by the E-nodes; then, they may or may not cover the specific instance e
assigned to it. Even though the goal of the G-node is to find formulas covering
e, individuals not covering e can nevertheless carry information useful to find
better generalizations for the individuals which actually cover e. Therefore, in-
dividuals both covering and not covering e are allowed to enter the population,
but a policy is adopted which does not allow the individuals not covering e take
over the other ones.

A G-node repeats the following cyclic procedure, until stopped by the super-
visor:

Cellular Genetic Algorithm

1. Select two individuals from the local population with probability propor-
tional to their fitness

2. Generate two new individuals ~01 and ~2 by applying the genetic operators
3. Broadcast copies of ~1 and !P2
4. Whi le the network is ready do

(a) Receive some individuals lb from the network according to rule (3) (see
below)

327

(b) Replace ¢ in the local population by playing a tournament step for each
one of them

5. Go to step 1

Fig. 2. G-node architecture.

Proportionate selection is used, whereas replacement is made using the tour-
nament policy, adapted to the local need, as it will be explained in the following.
First of all, every individual arriving from the network is subject to a probabilis-
tic filter which can accept or refuse it.

i f ~ belongs to the local population t h e n reject ~ (3)

else i f ~ matches the learning event e

t h e n accept ~ with probability per

else accept ~o with probability Puc

In (3), pc~ 6 [0, 1] is a user defined parameter, whereas, Puc is computed as
Pc. (1 - u) 6 being u the proportion of individuals non covering e in the popula-
tion. In this way the pressure of the individuals not covering e is automatically
limited. Each individual that goes through the filter competes for entering the
population by playing a tournament: an opponent is randomly selected and the
victory is assigned with probability proportional to the respective fitnesses.

An elitist strategy is used so that in each G-node the currently best solution
cannot be replaced by a worse individual. This is obtained by avoiding to choose
the best solution as opponent in a tournament. Periodically, all G-nodes send
a copy of the best found individuals to the supervisor, which reacts reassigning
the examples to the G-nodes.

5 T h e G e n e t i c O p e r a t o r s

Being conjunctive formulas encoded into fixed length bitstrings, the reproduction
operators are straightforward to implement, and borrow many ideas from the
Genetic Algorithm theory [4]. In particular, the reproduction operators are: a
task specific crossover, a task specific mutation, and the seeding operator [3],
used for initializing the population when this last is empty. All operators are
implemented in such a way that they always produce offsprings different from
the parents.

3 2 8

The crossover is a combination of the two point crossover with a variant of
the uni form crossover [11], modified in order to perform either generalization or
specialization of the hypotheses. More specifically, the crossover operator can be
activated in three different modalities: exchanging, specializing and generalizing,
which are stochastically selected depending on the consistency and completeness
of the selected chromosomes. Given a pair of chromosomes 91,92, the modality
to use is decided in two steps. At the first step it is decided whether to apply
the exchanging modality, with probability Pec, or to proceed through the second
step, with probability 1 -Pec, being Pec a user definable parameter. Afterwards,
if the second step is entered, the system independently decides whether to apply
generalization or specialization to each one of the parents. Let 9i be one of
the parents; the probability Pgc(gi), of using generalization, and ps~(gi) = 1 -
pgc(gi) , of using specialization, are computed according to the rule:

pgc(9) = + m-(9)))" (4)

being a a user defined parameter. Afterwards, if the same modality has been cho-
sen for both parents, the crossover will be applied with this modality. Otherwise,
if the modalities are discordant, the exchanging modality will be used.

In this way, the generalizing modality tends to be used when the parents
are both consistent, the specializing modality when the parents are both incon-
sistents, and the exchanging modality when one is consistent and the other is
inconsistent. The first decision step guarantees that an assigned percentage of
pure information exchange takes place in any case.

In order to guarantee the actual exchange of information, the crossover algo-
rithm first construct an index I = {i l , i 2 , . . . , in} of pointers to the positions in
the bitstring where the corresponding bits in the two parents have different value.
Afterwards, if the generalization/specialization has been chosen, two temporary
offsprings ¢1 and ¢2, identical to 91 and 92, respectively, are created.

Then, for every element ij E I the following procedure is repeated:

- i f generalizing modatity has been chosen then with probability p~, replace in
¢1 and ¢2 the value of the bit b(ij) with the logical or of the corresponding
bits in the parents.

- i f specializing modality has been chosen then with probability pu (a-priori
assigned) replace in ¢1 and ¢2 the value of the bit b(ij) with the logical and
of the corresponding bits in the parents.

If, after applying this stochastic procedure, no bit has been changed, one bit
chosen at random in I is generalized/specialized.

When the exchanging modality is chosen, the classical two-point crossover is
applied, with the difference that, in order to guarantee an information exchange,
the two crossover points are chosen on the index vector I instead of on the whole
chromosome.

The mutat ion operator adopts a strategy similar to the one described so far
for crossover, and tries to generalize or to specialize an individual, depending
on its consistency or inconsistency. Also the mutation operator may have three

329

modalities, namely seeding, generalizing and specializing, which are selected with
probability Pseea, Pg,, and psm, respectively. The seeding probability Ps~ed is
given a priori, whereas the probabilities pgm for generalizing mutat ion and p~,~
for specializing mutation are computed with the rule:

P~rn = (1 - p . ~ a) (r n - / (m - + m+)) ~, pg, . = 1 - P~eect - P.,~ (5)

If the specializing mutation is chosen, the mutat ion is applied as follows: let nl
be the number of bits set to "1" in the bitstring; then, the mutat ion operator
turns to "0" a fraction 7 of them, which is obtained by randomly selecting a
real number in the interval [0, titan1], being tim E [0, 1] a user defined parameter.
The bits to be set at "1" are selected in an analogous way, when the generalizing
mutation is chosen.

It is easy to recognize that specializing and generalizing mutations are noth-
ing else than the dropping condition and adding condition operators defined in
[2].

In the genetic loop executed by each G-node, two individuals are selected at
each iteration with probability proportional to their fitness fL . If the population
is empty, a new individual will be created using the seeding operator. Otherwise,
if the two selected individuals 91 and ~a2 are genetically different, crossover is
applied. On the contrary, if the same individual is selected two times, two new
offsprings will be created using mutation.

The nice aspect of this strategy is that it automatically adapts to the com-
position of the population. When the population in a node is dominated by an
individual that has a fitness much higher than the others (and, then, it is fre-
quently selected for reproduction with itself), the genetic search turns into a
stochastic hill climbing.

6 T h e C o e v o l u t i v e S t r a t e g y

The medium-term control strategy actuated by the Supervisor node is based on
a coevolutive approach. It basically goes through a cycle, which has a period
measured in terms of the number" of iterations performed by the G-nodes, in
which it receives the best solution found by each one of the G-nodes, elaborates
the current disjunctive concept description ~, and then gives a feedback to the
G-nodes which enforces a coevolutionary model.

At the moment, the algorithm used for working out a disjunctive description
is very simple and is based on a hill climbing optimization strategy. At first, all
conjunctive solutions collected from the G-nodes are included into a redundant
disjunctive description ~1. Then, q~r is optimized, by eliminating the disjuncts
which are not necessary. This is done by repeating the following cycle until 4~'
reaches a final form ¢, which cannot be optimized further:

1. Search the disjunct ¢ such that f c (~ ' - ¢) shows the greatest improvement.
2. S e t q ~ l = ~ l - ¢

330

$ o l u ~ l o a

Fig. 3. The medium term coevolutive strategy

The first component of the co-evolutive control strategy on the G-nodes' ac-
tivity is reminiscent of the techniques used in Operating Systems for multiplexing
the Cpu among the processes in execution. According to the model in Section
2, every positive example in the learning set is associated to a local learning
task performed by one or more processes executed by the G-nodes. For distin-
guishing G-nodes from the elementary learning tasks, we will denote the latter
as VG-nodes (Virtual Genetic nodes); more specifically, VG~ (1 ~ i ~ [E+[) will
denote the learning task associated to the example ei E E +.

The Supervisor keeps track of the solution state of every VG-node VGi, i.e.
the best solution found for it, a selection (possibly empty) of the individuals
found in the populations evolved by the G-nodes associated to it, and other
information, such as the number ci of computational events, related to task VGi,
occurred during the past computation. The kernel of the co-evolutive control
strategy is the method used for accounting the events related to every task. As
soon as formulas covering many examples will begin to develop, we will find
spontaneously born clusters of G-nodes which elect the same formula as current
best individual in their population. This can be interpreted as a form of implicit
cooperation which led to the generation of a formula representative of the work
of all of them. Therefore, the Supervisor attributes to a VG-node VGi all the
events produced by the G-nodes sharing the best formula attributed to VGi.

When, at the end of a cycle, the control strategy is actuated, the VG-nodes
are reassigned to G-nodes. The criterion for the reassignment is that of balancing
the work spent for every task VGi on the basis of the number ci of computa-
tional events. Let C be the maximum value for ci (1 ~ i _~ [E+[); the Supervisor

331

computes for every VGi the amount gi = C - ci of computat ional events nec-
essary to balance the computational cost for it. Afterwards, the VG-nodes are
stochastically assigned to G-nodes with probability proportional to gi divided by

¢(best) the fitness .tLi of the currently best formula covering VGI. Then the G-nodes
are initialized with the information saved in the corresponding VG-nodes and
restart.

The effect of this strategy is that of focusing the computat ional resources on
the VG-nodes covered by formulas having a low fitness or a low ratio m + / M +.

In fact, the VG-nodes falling in these cases will have either a 10w value for f~b~t)
or a high value for gi, because they will accumulate the computat ional events
with few other VG-nodes.

The second component of the co-evolutive strategy reduces to broadcasting
the current disjunctive description • to all G-nodes, so that they can update the
local fitness fL for the individuals in the local populations.

7 E x p e r i m e n t a l E v a l u a t i o n

In order to have a comparison with REGAL, which can be considered the source
of inspiration of the current system, we will report a benchmark on the Mush-
rooms dataset and on Thousand Trains dataset, used in [3].

A first comparison shows the benefits of using the co-evolutive control strat-
egy illustrated in Section 6 and the new reproduction operators described in
Section 5. A second comparison is with REGAL and shows how our system can
obtain solutions of at least the same quality as REGAL with a smaller compu-
tational cost.

For the Mushrooms dataset the task consists in discriminating between edible
and poisonous mushrooms. The dataset consists of 8124 instances, 1208 of edible
mushrooms and 3196 of poisonous ones. Each instance is described by a vector
of 22 discrete, multi-valued attributes. By defining a condition for each one of
the at tr ibute values, a global set of 126 constraints is obtained, which leads
to bitstrings of 126 bits for encoding the individuals. Randomly selected sets
of 4000 instances (2000 edible + 2000 poisonous) have been used as learning
sets, while the remaining 4124 instances have been used for testing. The system
can always found a perfect definition for both classes, covering all the examples
and no counterexamples on the test set, as also REGAL and other induction
algorithms can do.

The Thousand Trains dataset represents an artificial learning problem in
First Order Logic obtained by extending the well known Trains Going East
or Going West problem proposed by Michalski in order to illustrate Induce'
learning capabilities [9]. In this case 500 examples of trains going east and 500
trains going west have been generated using a stochastic generator. A detailed
description can be found in [3].

The parameter, which has been used by the previous Genetic Algorithms
to evaluate the quality of the found solution, has been the complexity of the
final disjunctive solution, measured as the total number of conditions present in

332

it. In the machine learning literature, simple solutions are considered preferable
among a set with the same performances.

In Figure 4 we report the evolution of the complexity for the Mushrooms
dataset, in terms of the number of genetic cycles executed by all the G-nodes,
globally. The curves labeled as "cv", "ncv", and "rough" correspond respectively
to using the complete operator set and the coevolutive strategy, disactivating the
co-evolutive strategy, and using random assignment and using REGAL' repro-
duction operators.

i ~ " ~ ~ i . . .

\

Fig. 4. Mushroom dataset: Complexity of Fig. 5. Thousand Trains dataset: complex-
the solution vs. the genetic cycles, ity of the solution vs. the genetic cycles.

Here it is possible to appreciate the effect of the co-evolution and of the new
reproduction operators, separately. When the co-evolution was disactivated, the
G-nodes were assigned to VG-nodes using an equal probability.

An analogous comparison which illustrates the benefit of co-evolution on the
Thousand Trains dataset is reported in Figure 5, where the curves labelled as
"coev" and "no-coev" correspond to using the co-evolution strategy and dis-
activating it, respectively. In both experiments the same default setting for
A = B = C = a = 1 in the fitness function and the same number (400) of
G-nodes have been used. It is worth noting that these parameters are not criti-
cal, and very similar results have been obtained with quite different settings.

A comparison between REGAL and G-NET on the task of finding a definition
for the concept of poisonous mushroom is reported in Table 1. We notice that G-
NET can reach a complexity smaller than REGAL with a smaller computational
cost. We believe that this improvement is substantially due to the use of the
mutation operator.

8 C o n c l u s i o n

A new distributed model for a Genetic Algorithm designed for concept induction
from examples has been presented. The algorithm presents several important
novelties. A first novelty is represented by the fine-grained distributed mating

333

Table 1. Comparison between G-Net and REGAL

System G-Net REGAL
avg min avg min

Complexity 11 11 21.40 13
Cost 12423 11738 31130 23900

pool, which eliminates every notion of common memory in the system so that it is
easy to exploit distributed computa t ional resources such as Connection Machines
and Network Computers. Other novelties are represented by the coevolutive
s trategy inspired by the model proposed by [10], and by the new set of genetic
operators.

The new algorithm has been evaluated on non trivial induction tasks ob-
taining good results. Therefore, the new architecture seems to be a promising
one for facing comput ing intensive induction problems emerging in da ta mining
applications.

References

1. AUGIER, S., VENTURINI, G., AND KODRATOFF, Y. Learning First Order Logic
Rules with a Genetic Algorithm. In Proc. of the First International Conference on
Knowledge Discovery and Data Mining (1995).

2. DEJONG, K., SPEARS, W., AND GORDON, F. Using genetic algorithms for concept
learning. Machine Learning Journal, 13 (1993), 161-188.

3. GIORDANA, A., AND NERI, F. Search-intensive concept induction. Evolutionary
Computation Journal (1996), Winter, 1995.

4. GOLDBERG, D. Genetic Algorithms. Addison-Wesley, Reading, MA, 1989.
5. GOLDBERG, D., AND RICHARDSON, J. Genetic algorithms with sharing for mul-

timodal function optimization. In Int. Conf. on Genetic Algorithms (Cambridge,
MA, 1987), Morgan Kaufmann, pp. 41-49.

6. GREENE, D., AND SMITH, S. Competition-based induction of decision models from
examples. Machine Learning Journal, 13 (1993), 229-258.

7. HUSBANDS, P., AND MILL, F. Co-evolving parasites improve simulated evolution
as an optimization procedure. In ~th Int. Conf. on Genetic Algorithms (Fairfax,
VA, 1991), Morgan Kaufmann, pp. 264-270.

8. JANIKOW, C. A knowledge intensive genetic algorithm for supervised learning.
Machine Learning Journal, 13 (1993), 198-228.

9. MICHALSKI, R. A theory and methodology of inductive learning. In Ma-
chine Learning: An AI Approach (Los Altos, CA, 1983), J. C. R. Michalski and
T. Mitchell, Eds., Morgan Kaufmann, pp. 83-134.

10. POTTER, M., DEJONG, K., AND GREFENSTETTE, J. A coevolutionary approach to
learning sequential decision rules. In Int. Conf. on Genetic Algorithms (Pittsburgh,
PA, 1995), Morgan Kaufmann, pp. 366-372.

11. SYSWEnDA, G. Uniform crossover in genetic algorithms. In 3th Int. Conf. on
Genetic Algorithms (Fairfax, VA, 1989), Morgan Kaufmann, pp. 2-9.

