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Abst rac t .  We present compelling evidence that the World Wide Web is 
a domain in which applications can benefit from using first-order learning 
methods, since the graph structure inherent in hypertext naturally lends 
itself to a relational representation. We demonstrate strong advantages 
for two applications - learning classifiers for Web pages, and learning 
rules to discover relations among pages. 

1 I n t r o d u c t i o n  

In recent years, there has been a large body of research centered around the 
topic of learning first-order representations. Although these representations can 
succinctly represent a much larger class of concepts than propositional represen- 
tations, to date there have been only a few problem domains in which first-order 
representations have demonstrated a decided advantage over propositional repre- 
sentations. The graph-like structure provided by pages on the World Wide Web 
is one domain that  seems natural for first-order representation, yet has not been 
previously studied in this context. Cohen [1] has used first-order methods for 
text classification, but the focus was on finding relations between words rather 
than between documents. The lower half of Figure 1 illustrates the notion of the 
Web as a directed graph where pages correspond to the nodes in the graph and 
hyperlinks correspond to edges. Using this representation, we address two types 
of learning tasks: learning definitions of page classes, and learning definitions of 
relations between pages. In contrast to related efforts on similar Web tasks, our 
work focuses on learning concepts which represent relational generalizations of 
the inherent graph structure. 

Our work on these two learning tasks has been conducted as part of a larger 
effort aimed at developing methods for automatically constructing knowledge 
bases by extracting information from the Web [2]. Given an ontology defining 
classes and relations of interest, such as that  shown in the top half of Figure 1, 
along with training examples consisting of labeled Web pages, the system learns 
a set of information extractors for the classes and relations in the ontology, and 
then populates a knowledge base by exploring the Web. The task of recognizing 
class instances can be framed as a page-classification task. For example, we can 
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Fig. 1. The top part of the figure shows part of an ontology that defines page classes 
and relations between pages. The bottom part shows the Web represented as a directed 
graph, which forms examples of the classes and relations in the ontology. 

extract instances of the Faculty class by learning to recognize the home pages of 
faculty members. Similarly, we can identify relations that exist among objects by 
recognizing prototypical patterns of hyperlink connectivity among pages. Con- 
sider the lower half of Figure 1, which shows an example of an instance of the 
MembersOfProject relation: Dayne is a member of the Web Learning project. 

The applicability of these two learning tasks (learning page classes and learn- 
ing page relations) extends beyond the setting of building knowledge bases from 
the Web. A variety of applications, including information filtering systems and 
browsing assistants, have used trainable page classifiers. As an example of learn- 
ing relations among pages, consider the task of automatically extracting job 
listings by starting from company Web sites and finding the "employment op- 
portunities" page. This task can be framed as one of learning a concept definition 
that specifies search-control rules for navigating the Web. In general, there are 
many potential applications of such search-control rules for finding a particular 
Web resource from a given class of starting points. 

2 L e a r n i n g  F i r s t - O r d e r  D e f i n i t i o n s  o f  P a g e  C l a s s e s  

This section presents four classification problems and reports that a first-order 
learner can perform better than a more traditional document classifier which 
ignores document relationships. We first present two classification algorithms, 
a conventional text learning algorithm (Naive Bayes) which ignores document 
relationships, and a first-order learner (FOIL) which can use such information. 
More complete details of the data set, algorithms and experiments can be found 
elsewhere [2]. 
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Table 1. Recall (R) and precision (P) percentages on each binary classification task 
using Naive Bayes, FOIL with words only, and FOIL with words and finks. 

Student Course Faculty 

method R P R P R P 

Naive Bayes 51.4 % 42.6 % 46.4 % 28.2 % 23.0 % 16.8 % 
FoIL (words) 25.3 50.3 34.5 44.3 43.3 48.4 
FoIL (words & finks)] 73.0 70.2 39.5 53.8 58.2 61.2 

Project 

R P 
1.3% 3.6% 
6.1 10.0 

10.2 21.3 

For these experiments, we use a data  set assembled for our research in extract- 
ing knowledge bases from the Web. It contains 4,127 pages and 10,945 hyperlinks 
drawn from the Web sites of four computer science departments.  Each page was 
labeled as belonging to one of the classes Department, Faculty, Student, Research- 
Project, Course, or Other. We also labeled relation instances consisting of pairs of 
pages. For example, each instance of the InstructorsOfCourse relation consists of 
a Course home page and a Person home page. Our data  set of relation instances 
comprises 251 InstructorsOfCourse instances, 392 MembersOfProject instances, 
and 748 DepartmentOfPerson instances. 

As a representative conventional text classifier, we use the Naive Bayes clas- 
sifter [4]. To classify a document with n words (wl, w2 , . . . ,  wn) into one of a set 
of classes C we simply calculate: 

arg max Pr(cj)  I ~  Pr(wi[cj) 
ciEC i=1 

N(wi, cj) + 1 
where Pr(wi[cj) -- ~(¢~..~..~ 

N(wi, cj) is the number of times word wi appears in training set examples from 
class cj, N(cj) is the total number of words in the training set for class cj and 
T is the total number of unique words in the corpus. 

We use version 4.2 of Quinlan's FOIL [5] system for learning first-order 
clauses, and two types of background relations to describe the data: 
* has_word(Page) : This set of relations indicates that  word occurs on Page. To 
reduce the number of predicates, standard text categorization techniques were 
used, leaving between 500 and 800 word predicates per training set. 
, link_to(Page, Page) : This relation represents hyperlinks between web pages in 
our corpus. The first argument is the page on which the link occurs, and the 
second is the page to which it is linked. 

Using leave-one-university-out cross validation we build and test binary clas- 
sifters for four classes. We assess the classifiers using recall (R) and precision (P) 
defined as: 

correct positive examples p = # correct positive examples 
R "- # # of positive examples ' # of positive predictions 

To test the value of a first-order representation, we run FOIL using two differ- 
ent sets of background relations, one which has only the word predicates (words) 
and one which has both the word and link predicates (words & links). Table 1 
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Table 2. Some rules induced by FOIL with good test set performance. Also shown are 
the number of positive and negative test set examples covered by each rule. 

student_page(A) :- link_to(B,A), has_michael(B), has_graduat(B), 151 • 27 O 
has_richard(B), not(has_depart(B)). 

course_page(A) :- has_instructor(A), not(has_good(A)), link_to(A,B), 31 ~9 3 
not(link_to(B,_l)), has_assign(B). 

faculty_page(A) :- has_professor(A), has_ph(A), link_to(B,A), has_faculti(B). 18 ~ 3 O 

shows the precision and recall results averaged over the four test sets. Using 
descriptions of the words and links, FOIL outperformed the other methods on 
these binary classification tasks. The power of using a relational description is 
evident from the difference in performance between the two FOIL runs. 

Table 2 shows three of the rules induced by FOIL with high test-set accu- 
racy. After analyzing the results, we found that  the B variable in the sample 
student_page rule binds to directory pages of graduate students (the literals test 
for common names and the stemmed version of the word graduate). In effect, the 
rule states that  A is a student home page if it is linked to by a directory page of 
graduate students. On average, FOIL using words and links induced 20 clauses 
for Student, 19 clauses for Course, 12 for Faculty and 7 for ResearchProject. 

The results of this experiment lead us to believe that  first-order representa- 
tions and algorithms are well suited to Web page classification tasks. They use 
hyperlink information easily and can outperform traditional text-classification 
approaches which have no means to use such information effectively. 

3 L e a r n i n g  F i r s t - O r d e r  D e f i n i t i o n s  o f  P a g e  R e l a t i o n s  

In this section, we discuss the task of learning to recognize relations of interest 
that  exist among pages. An assumption underlying our approach is that  relations 
among pages are represented by hyperlink paths in the Web. Thus, the learning 
task is to characterize the prototypical paths of the target relations. We learn 
definitions for the following target relations from the ontology shown in Fig- 
ure I: department_of_person(Page, Page), instructors_of_course(Page, Page), and 
members_of_project(Page, Page). In addition to the positive instances for these 
relations, our training sets include approximately 300,000 negative examples. 

The problem representation we use consists of the following background re- 
lations: 
• class(Page) : For each class from the previous section, the corresponding rela- 
tion lists the pages that represent instances of class. These instances are deter- 
mined using actual classes for pages in the training set and predicted classes for 
pages in the test set. 
• link_to(Hyperlink, Page, Page) : This relation represents the hyperlinks that  
interconnect the pages in the data  set. 
• has_word(Hyperlink) : This set of relations indicates the words that  are found 
in the anchor (i.e., underlined) text of each hyperlink. The vocabulary for this 
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Table 3. Recall (R) and precision (P) results for the relation learning tasks. The 
symbols o and * precede each result that is uniformly superior (i.e. better than on all 
four test sets) to the same measure for FOIL, and m-estimate Fore, respectively. 

DepartmentOfPerson instructorsOfCourse MembersOfProject 

method R P R P R P 
Fore 26.9% 97.1% 53.8% 84.9% 32.1% 80.8% 
FOIL w/m-estimates 26.9 97.1 59.8 89.3 o 44.9 83.8 
PATtt-MCP :O~ 78.5 98.0 o,  64.9 89.1 o, 49.7 82.6 

set of relations includes about 350 words for each training set. 
• all_words_capitatized(Hyperlink) : The instances of this relation are hyperlinks 
in which the words in the anchor text all s tart  with a capital letter. 

• has_alphanumeric_word(Hyperlink) : The instances of this relation are hyperlinks 
which contain a word with both alphabetic and numeric characters. 
• has_neighborhood_word(Hyperlink) : This set of relations indicates the words 
that  are found in the "neighborhood" of each hyperlink. A neighborhood is 
the paragraph, list item, table entry, title or heading in which a hyperlink is 
contained. The vocabulary for this set includes 200 words. 

The algorithm we use for learning page relations augments FOIL's hill-climbing 
search with a deterministic variant of Richards and Mooney's relational pathfind- 
ing method [6]. The basic idea underlying this method is tha t  a relationM prob- 
lem domain can be thought of as a graph in which the nodes are the domain's 
constants and the edges correspond to relations which hold among constants. The 
algorithm tries to find a small number of prototypical paths in this graph that  
connect the arguments of the target relation. Richards and Mooney's algorithm 
is nondeterministic in that  it randomly selects an uncovered positive instance 
to use as a seed. We have developed a deterministic variant (PATH-MCP) that  
finds the most common path among the uncovered positive instances. Once such 
a path is found, an initial clause is formed from the relations that  constitute the 
path, and the clause is further refined by a hill-climbing search. Like D~eroski 
and Bratko's m-FOIL [3], PATH-MCP uses m-estimates of a clause's error to guide 
its construction. We have found that  this evaluation function results in fewer, 
more general clauses than FoIL's information gain measure. 

We evaluate our approach using the same four-fold cross-validation method- 
ology we used in Section 2. Table 3 shows precision and recall results for learning 
the three target relations using basic FOIL, FOIL with m-estimates, and PATH- 
MCP. The results in this table indicate several interesting conclusions. First, all 
of the methods are able to learn accurate (i.e., high-precision) rules for all three 
tasks. The primary differences are in terms of coverage. A second interesting re- 
sult is that  the PATH-MCP method achieves higher levels of recall than the non- 
pathfinding methods. This result is due to the fact that  both versions of FOIL 
fail to learn any clauses describing paths of more than one hyperlink, whereas 
PATH-MCP is able to learn clauses characterizing multiple-hyperlink paths. 
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Table 4. Two of the clauses learned by PATH-MCP, Also shown are the nnmber of 
positive and negative test-set examples covered by each clause. 

department_of_person(A,B) :- person(A), department(B), link_to(C,A,D), 
link_to(E,D,F), link_to(G,F,B), 
has_neighborhood_james(E). 

members_of_project(A,B) :- research_project(A), person(B), link_to(C,A,D), 
link_to(E,D,B), has_neighborhood_people(C). 

371 0 4 G 

1 8 G O G  

Finally, Table 4 shows two of the interesting clauses learned by PATH-MCP. 
Both of them describe relations represented by multiple hyperlinks, and the De- 
partmentOfPetson clause is similar to the Student clause shown in Section 2 in 
that  it has learned to exploit directory pages of people (referenced by the vari- 
able E) in order to find the people associated with a given department.  On aver- 
age, PATH-MCP learned 3 clauses for the DepartmentOfPerson relation, 7 clauses 
for InstructorsOfCourse, and 5 clauses for MembersOfProject. 

4 C o n c l u s i o n s  

We have presented experiments in two real-world learning problems that  involve 
mining information from the Web, an interesting testbed for first-order learning. 
Our experiments in learning page classifiers show that,  in some cases, first-order 
learning algorithms learn definitions that  have higher accuracy than commonly 
used statistical text classifiers. When learning definitions of page relations, we 
demonstrate that first-order learning algorithms can learn accurate, non-trivial 
definitions that  necessarily involve a relational representation. 

Finally, we note that although the background relations used in our experi- 
ments represent the graph structure of hypertext,  we could also use first-order 
representations that  describe the internal layout of Web pages. In future work, we 
plan to investigate the value of learning with this additional relational structure. 
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