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Abstract 
The multistrategy learning system WHY is used as a testbed for 
investigating a computational cognitive model of conceptual change in 
children learning elementary physics 1. Goal of the simulation is to support 
the cognitive scientist's investigation of learning in humans. 
The student's mental model is manually inferred by the cognitive scientist, 
and by interacting with WHY, from a sequence of interviews collected along 
a period of eleven teaching sessions. The hypothesized cognitive models are 
based on a theory of conceptual change, derived from psychology results and 
educational experiences, which accounts for the evolution of the student's 
-knowledge over a learning period. 
The multistrategy learning system WHY, able to handle domain knowledge 
(including a causal model of the domain), has been chosen as tool for the 
interactive simulation of the cognitive models evolution. The system is able 
to model both the answers and the causal explanations given by the children. 
An example of modelisation of an observed conceptual change is provided. 

1 Introduction 
People acquire, in their lifetime, models of the world that they use to interpret data, to 
explain phenomena and to make predictions. These models usually evolve when new 
information is gathered, and their evolution can be described as a particular aspect of 
learning, called conceptual change [Tiberghien, 1989, 1994; Vosniadou & Brewer, 
1994; Caravita & Halldtn,1994; Chi et aL, 1994; Vosniadou, 1994]. The issue of 
conceptual change has been addressed from a variety of perspectives, but, even 
though quite a large body of experimental findings has been collected, still no single 
definition of conceptual change is universally accepted [White,1994]. Conceptual 

1 This work has been performed within the project"Learning in Humans and Machines", 
supported by the European Science Foundation 
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change has been mainly studied in the context of learning Mathematics or Physics 
[Forbus & Gentner, 1986; diSessa, 1993; Vosniadou, 1994; Chi et al., 1994]. 

Goal of our research is to help the cognitive scientist in developing a 
computational model of the student. In turn, this could also produce a deeper 
understanding of how and when conceptual change happens thus allowing to fully 
automatize the model evolution process. Instead, we are not currently concerned with 
the task of providing the cognitive scientist with some machine-generated student's 
model to be tested with time consuming psychological experiments. 

Models of conceptual change proposed in Cognitive Science have a descriptive 
nature: they describe mental models or knowledge states, but do not provide an 
account for the actual mechanisms of transition from a knowledge state to another. 

Rumelhart and Norman [1977] have categorized the type of transitions occurring as 
Accretion, Tuning and Restructuration, which are reminiscent of Piaget's 
Assimilation, Accomodation, and Self-Regulation. Accretion involves addition of new 
information to existing theories, and presents no problem when the new information 
does not contradict previous knowledge. When the new information is inconsistent 
with previous theories, tuning or restructuration may occur. However, when a 
contradiction emerges, also failures in learning may happen, taking the form of inert 
knowledge or misconceptions. 

Computational model of human learning have been studied in [Sleeman et al., 
1990; Baffes & Mooney, 1996; Sage & Langley, 1983; Newell, 1990; Schmidt & 
Ling, 1996; Shultz et al., 1994]. However, two aspects are overlooked in these 
models: the first is the strict interconnection between the heuristic knowledge in a 
specific domain (substantially the one modelled in the Machine Learning systems) 
and pre-existing deeper knowledge structures or theories [Murphy & Medin, 1985; 
Vosniadou, 1994, 1995; Tiberghien, 1994; Chi et al. 1994]. The second aspect is the 
importance of explanation. Human learning is, to a great extent, a search for 
explanations; then, any model of human learning should provide an explanatory 
framework, allowing not only answers to questions to be predicted, but also reasons 
put forward in support of those answers to be formulated. Consequently, along the 
paper, we consider student's learning in the sense of EBL [Mitchell, Keller & Kedar- 
CabeUi; 1986]. That is the capability to explain previously unknown phenomena and, 
also, the ability to change the explanation level for the observed phenomena. 

The main novelty of our approach is in the differentiation between the pragmatic 
knowledge a student uses to answer questions and/or to interpret experimental results, 
and an explanatory framework, which the student uses to "make sense" of what 
he/she observes or is taught. A central hypothesis of the approach is that explanation 
corresponds to causal attribution. This hypothesis derives from a number of previous 
studies (for instance, [diSessa, 1993; Tiberghien, 1994]), and from the direct 
observation that children, even young ones, spontaneously use verbal constructs 
suggesting causality. The learning/teaching context we want to model envisages the 
task of acquiring basic concept in Physics, specifically Heat and Temperature 
concepts by middle school students. The specific learning context is: a group of 
secondary school students (12-13 years old, 6-5th grades), were exposed to a Physics 
course, outside normal teaching, consisting of 11 sessions, once a week, including 
experimentation, questions, discussions and explicit teaching. Content of the course 
were basic concepts and qualitative relations in the domain of heat transfer in 
everyday life situations. 
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As computational modelling tool it has been selected the multistrategy learning 
system WHY [Saitta, Botta & Neff, 1993; Giordana et al., 1997], which learns and 
revises a knowledge base for classification problems using domain knowledge and 
examples. The domain knowledge consists of a causal model C of the domain, 
stating the relationships among basic phenomena, and a body of phenomenological 
theory, describing the links between abstract concepts and their possible 
manifestations in the world. The causal model provides explanations in terms of 
causal chains among events, originating from "first" causes. 

The evolution of our modelling approach together with a critical discussion can be 
found in [Saitta, Ned and al., 1995; Ned, Saitta and Tiberghien, 1997a; Saitta, Neri 
and Tiberghien, 1997]. 

For sake of completeness, we note that WHY can automatically make changes 
from one model to the following by using automatic induction as in [Sleeman et al., 
1990; Baffes & Mooney, 1996]. But, this is not the primary goal of our research. In 
fact, we want to help the cognitive scientist in developing what she believe to be the 
evolution of the student's model. The long term goal of our research, instead, may be 
the (fully) automatization of the learning process. In order to accomplish this long 
term goal, we discuss some temptative computational definitions of the different 
kinds of conceptual change that have been observed during the psychological 
experiments. 

The last important point to be kept present while reading this work, is that we are 
going to study a model that capture the "functionality" of the student's understanding 
and answering to problems. Instead, we are not making any claim about the (unlikely) 
cognitive validity of the described model. 

2 T h e  M o d e l l i n g  Tool  WHY 

In this section a brief description of the functionalities of the learning system WHY is 
given. WHY learns and revises a knowledge base for classification problems using 
domain knowledge and examples. The domain knowledge consists of a causal model 
C of the domain, stating the relationships among basic phenomena 2, and a body of 
phenomenological theory, describing the links between abstract concepts and their 
possible manifestations in the world. 

The causal model C provides explanations in terms of causal chains among events, 
originating from "first" causes. The phenomenological theory P contains the 
semantics of the vocabulary terms, structural information about the objects in the 
domain, ontologies, taxonomies, domain-independent background knowledge (such 
as symmetry, spatial and temporal relations); finally, P contains a set of rules aimed at 
describing the manifestations of abstractly defined concepts in terms of properties, 
objects and events in the specific domain of application. 

The causal model C is represented as a directed, labelled graph. Three kinds of 
nodes occur in the graphs: causal nodes, corresponding to processes or states related 
by cause-effect relations, constraint nodes, attached to edges and representing 
conditions which must be verified in order to instantiate the corresponding cause- 

2 In general, C may contain any "deep" model of the domain, not necessarily a causal 
one.  
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effect relation, and con tex t  nodes, associated to causal nodes, representing contextual 
conditions to be added to the cause in order to obtain the effect. 

The goal of WHY is to build up or revise a knowledge base K B of heuristic 
classification rules. A causal explanation (justification) of any K B revision is 
automatically provided. 

It is important to clarify the relations between the causal model C and the heuristic 
knowledge base K B. The causal model could be used directly to obtain 
classifications. However, causal reasoning is slow, and the rules in KB act as 
shortcuts, compiled from C. On the other hand, the fact that the rules are justified by 
C (being derived from it according to the method described in [Saitta, Botta & Ned, 
1993]) guarantees their validity and correctness (with respect to that of C) and also 
allows for explanations of the given classification in terms of the deep knowledge. On 
the other hand, KB and C may not be related at all, for instance in the case that KB is 
not derived from C but is directly "taught" by a teacher or acquired by the learner on 
a pure inductive basis. In this case, KB will give unjustified classifications (correct or 
not), for which no explanation exists with respect to C. Exploiting these different 
types of relations between KB and C, all the learning models emerged in the 
experimentation can be modelled. In the interplay between KB and C, the knowledge 
in P supplies the links between the general principles stated in C and the concrete 
experiments. The content of P contributes, as well, to enrich the modelling of 
students' misconceptions and conceptual change. Actually, it is in P, for instance, that 
ontological shift occurs. 

3 The Modelling Methodology 
As WHY learns knowledge for classification tasks, and provide explanations thereof, 
the task considered in this paper has to be mapped accordingly. We have chosen to 
follow the individual evolution of three students over two years (6th and 5th grades), 
because our goal was not to verify general hypotheses about learning, but rather to 
show how conceptual change in an individual can actually be modelled with WHY. In 
this paper we will show how the model can be built up and used through a specific 
example: the knowledge evolution of the student "David" with respect to learning in 
the 6th grade. 

Before outlining the methodology used, we will briefly describe the material 
available from the David's history: 
T O = Before teaching 

Answers to Questionnaires Q1 and Q2 and their explanations. Answers to the 
initial Interview I0 and their explanations. (An example of the type of questions 
is reported in Appendix A) 

T i (1 _< 1 < 11) = During teaching 
Answers to questions, predictions of outcomes from practical manipulations, 
and given explanations during the i-th teaching session. 

Tf-- After teachin~ 
New answers to Questionnaires Q1 and Q2 and their explanations. Answers to 
the final Interview If and their explanations. 

T t = Post test 
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Answers to a test Interview I t and their explanations, six months after the end of 
teaching. 

In order to use WHY to model David, each practical experiment is represented as an 
example, consisting of two parts: a description of the experimental setting and a 
question. The experimental setting corresponds to the description of the example, 
whereas the possible answers to the question are considered as alternative classes. 
Then, the process of predicting the outcome of an experiment is mapped onto the 
problem of predicting the correct answer. An examples of this mapping is given in 
Appendix A. 

In the current experimentation, the various knowledge bodies C, P and KB have 
been manually constructed and encoded by the experimenters. WHY relies on a 
sophisticated algorithm for uncovering errors or incompleteness in its knowledge that 
can be triggered when one of WHY's explanations (answers) does not match the 
student's ones. This provides useful information to the educational/cognitive scientist 
in discovering where her hypothesized student's model is incorrect. 

4 An I n s t a n c e  o f  O b s e r v e d  C o n c e p t u a l  C h a n g e  

Due to space bound we cannot fully described our modelling methodology. So we 
only give an idea of the formalism used to represent the evolution of part of the 
knowledge of David (a student). Moreover, we also sketch how David's conceptual 
change can be pointed out by comparing its knowledge before and after teaching. 
In this section, we will compare two knowledge state of David represented as two 
WHY's causal models. A causal model consists in an oriented graph where causal 
relationships among the domain's abstract phenomena are represented. 

Y 
i,oo.<., ....... <.,v,. , . ,<.,  i/ii 

Figure 1 - Part of the causal model Co, hypothesized to represent David's 
knowledge before teaching. Elliptic nodes contains the domain relevant phenomena. 
Arrows represent causal relationships among them. Rectangle and clouds represent 
accessory conditions. 
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sand(x) ^ 

I person(z) ^ 
"1"0 -TOU Clt(z,x) 

F i g u r e  2 - Part of David's hypothesized knowledge after teaching. Conceptual 
change is represented by the bold causal path. 

David's knowledge before teaching has been manually inferred on the basis of his 
initial answers to questionnaires and interviews. Part of David's initial knowledge, 
represented as a WHY's causal model, appears in Figure 1. By analysing the causal 
model (network), we may notice that David uses a notion of material causality linked 
to the "substance" of a body; in fact, what happens to the body depends on what "it 
is". For instance, water will eventually boil, if heated, whereas lead or iron or gold 
will melt; for this reason, they become hot. Similarly, sugar becomes "caramel" and, 
again, it becomes hot. Questioned on the subject, David shows evidence to believe 
that "boiling" and "melting" are alternative (and mutually exclusive) behaviours, 
exhibited by different substance. In fact, he say that iron, gold and lead shall not boil, 
because they melt. 
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By linking the behaviour of the bodies, with respect to heating, to specific 
substances, David is then unable to answer questions about materials that he does not 
about: for instance, he answers "I don't know" to questions about the possibility of 
diamond, salt and aluminium to become liquid or gaseous. 

After the teaching course, during which David has seen several other experiments, 
involving different materials, he is able to fill the final questionnaires and the final 
interview in such a way that we may infer that his deep knowledge of the world is 
changed, under various respect. In the following, we will just illustrate one of the 
changes, which can be considered as a conceptual change. In Figure 2, David's 
hypothesized knowledge after the cycle of lesson is reported. Two changes can be 
noticed. The first one is that David is able to consider the importance of time in 
determining the final state of a material. At the beginning, in fact, he simply said that 
the sand would become hot, when heated. Now, he is able to understand that the 
effect of heating takes time to happens, suggesting the idea of a "process". This 
finding is confirmed by the fact that now David says that, in order for the water to 
start boiling, "at least a quarter of an hour is necessary". 

However, the most important change, with respect to the goal of the teaching 
course, is that David seems less committed to a material causality for determining 
behaviours. In fact, he is able to generalize, from "iron", "lead", "gold" and "ice", that 
any "solid" may become liquid is sufficiently heated. Moreover, "to boil" and "to 
melt" are no more mutually exclusive behaviours, but they are possibly in sequence, 
as it should be. David's causality shows a shift of the "cause" from the "substance" to 
some underlying process, which, on the other hand, he is not yet capable of pinning 
down. 

The actual transition from the two states of knowledge could be sketched as 
follows. During the lessons, David performs manipulation in which a number of 
different substances undergo a change of state: he observes ice transformed into 
water, water into ice and water into vapor, as well as lead and salt to melt. Then, he 
keeps adding to his causal network additional links, corresponding to the new 
observed substance. Observing commonalties (also helped by the teacher) he notices 
that all the substance that melt are solid and that vapors derive from liquids. 
Technically, the constraints on the edges of the causal net are generalized from 
specific substances to "solid" or "liquid", respectively and, then, all these edges 
collapse into a single one. 

5 Tentative Computational Definition of Conceptual Change 
In order to make possible the future automatization of the learning process, we 
associate, as described in the following, each type of observed change to the 
application of one or more WHY's revision operators. 
Accretion 
Learning by accretion increases coverage, in the sense that more experimental 
situations can be handled (independently of their correct interpretation/prediction). A 
rule is applicable to a situation when all the conditions specified by the rule's 
antecedent are defined, i.e. they have a "true" or "false" value. Accretion, then, 
affects both the phenomenological theory or the heuristic knowledge base, by adding 
to any of them a new rule. Accretion may also consists of addition of a property to an 
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ontological node. In our approach, accretion is not considered conceptual change in a 
strict sense. Accretion can be implemented with the "adding rules" operator. 

A typical situation in which accretion occurs is when a student memorizes, without 
explanation, a piece of information taught by the teacher. This information can be 
added, as a rule, to the student's knowledge, without checking for compatibility with 
previous knowledge. The rule can be accessed, on the basis of recency, for giving a 
correct answer for a while, until it is forgotten, or other pieces of knowledge, 
incorrect but supported by the student's deep beliefs, gain higher priority. 
T~ming 
Tuning increases the number of correct predictions or explanations, but does not 
modify the deep explanatory framework. It may affect the heuristic knowledge base 
or the phenomenological theory, by changing the preconditions in some rule or by 
adding new rules. Tuning may also involve the causal model, but only with 
addition/deletion in the constraint and context nodes (causal nodes and links between 
them cannot be changed). Tuning can be implemented with the operators that 
generalize or specialize rule antecedents, or add and delete rules. Also tuning is not 
considered here a conceptual change in a strict sense. 
Restructuration 
Restructuration affects the explanatory framework. It involves the causal model, via 
addition/deletion of causal nodes, or modification of causal links, and the ontologies 
of the domain, via addition/deletion of nodes or changing a node from one ontology 
to another. Restructuration is considered conceptual change. 

As it can be seen, we have given a stricter definition of conceptual change than in 
some approaches (for instance, [Vosniadou, 1994, 1995]), but larger than in others 
(for instance, [Chi et al., 1994]). 

6 Conclusion 

We discussed a way of interpreting learning in relation with teaching in the domain of 
physics. Our analysis is based on a type of knowledge processing which can be a 
relevant frame of reference from the points of view of both personal knowledge of a 
learner and "official" knowledge, such as that of Physics. Our framework allows us to 
establish an independence between analysis of the learner's acquisition and of Physics 
knowledge. Thus, it is possible to take into account the coherence of the learner per 
se, even if it is incompatible with Physics. The structuring of the analysis in terms of 
causal theory, phenomenological knowledge and field of applicability allows the 
learner's knowledge and Physics knowledge to be compared. This independence and 
this comparison are essential to the characterisation of different types of learning. 

Moreover, WHY's articulated knowledge representation allows most of phenomena 
observed in children learning elementary physics to be modelled, notably their 
explanation in terms of simple causality, and the interdependence of "surface" 
heuristic knowledge and deep beliefs. 

Appendix A. Representing Questionnaires in WHY 
In this appendix we will show, through an example, how questions are translated into 
a first order logic ground formula to become training instances for WHY. The 
questions in the interview are expressed in natural language and describe 
experiments, whose outcome the student is supposed to explain, guided by the 
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teacher. The experimental material is actually provided during the interview, and the 
student is allowed to freely manipulate it. The student is supposed to answer verbally. 

Question: "Two saucepans A and B, with thermometers inside, are put on two gas 
stoves ga and gb, which are equal (denoted by the predicate "same-feature"). A 
contains a smaller amount (a) of water than B does (b). The initial temperature of the 
system is 20 -°C. After a short time interval, the thermometer in A indicates 50 QC. 
1) Will the thermometer hb in B indicate the same, a greater or a lower temperature 
than that h a in A? 
2) Please, explain your answer" 
To answer the question is modelled as a classification problem, in which there are 
three classes 

{ GREATER-THERMOM-READING(hb,ha, t2), 
SAME-THERMOM-READING(hb,h a,t2), 
LOWER-THERMOM-READING(hb,ha,t2) }, 

among which David has to choose. Then, he is confronted with the actual outcome of 
the manipulation (In this case he answered correctly). 

person(David) A saucepan(A) A saucepan(B) A 
A same-features(A,B) A water(a) A water(b) A thermometer(ha) A thermometer(hb) A 
same-features(ha ,hb) A gas-stove(ga)A 
A gas-stove(gb) A same-features(ga,gb) A ignited(ga) A 
A ignited(gb) A on(A,ga) A on(B,gb) A person(Tournesol) A 
A person(Tintin) A person(Haddock) 
A to-put-inside(Tournesol,a,A) A amount(a,small) A 
A to-put-inside(Tournesol,b,B) A to-put-inside(Tournesol,ha,A ) A 
A to-put-inside(Tournesol,hb,B ) A amount(b,large) A 
^ temp(a, 20,initial) A temp(b, 20,initial)^ not-boiling(a, initial)^ 
m not-boiling(b,initial) A time-elapsed(a,short) A 
A time-elapsed(b,short) A time-elapsed(ga,short) A 
A time-elapsed(gb,short) A thermom-reading(ha,50,final ) 
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