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Abst rac t .  Expert systems for decision support have recently been suc- 
cessfully introduced in road transport management. These systems in- 
clude knowledge on traffic problem detection and alleviation. The paper 
describes experiments in automated acquisition of knowledge on traffic 
problem detection. The task is to detect road sections where a problem 
has occured (critical sections) from sensor data. It is necessary to use 
inductive logic programming (ILP) for this purpose as relational back- 
ground knowledge on the road network is essential. Preliminary results 
show that ILP can be used to successfully learn to detect traffic problems. 

1 I n t r o d u c t i o n  

Expert  systems for decision support have recently been successfully introduced in 
road transport  management. Some of the proposals in this direction are TRYS 
[4], KITS [3] and ARTIST [6]. From a general perspective, the goal of a real 
time traffic expert system for decision support is to advise traffic management 
center operators by proposing control actions to eliminate or reduce problems 
according to the global state of traffic. To asses the global state of traffic, the 
system periodically receives readings from sensors on the road, which measure 
magnitudes such as speed (Km/h) ,  flow (veh/h) and occupancy (percentage 
of time that  the sensor is occupied by vehicles), as well as information about 
the current state of control devices, such as traffic signals at intersections, traffic 
signals at sideway on-ramps, CMS (Changeable Message Signs), etc. The system 
interprets sensor data, detects the presence of a problem, gives the possible cause 
mid proposes recommendations about  how to solve or reduce it. 

The  usual approach to building traffic expert systems is to use knowledge 
based architectures that  support  the strategies of reasoning followed by oper- 
ators. This approach requires to develop knowledge bases using symbolic rep- 
resentations (such as rules, frames, or constraints) that  include specific domain 
knowledge of t ransport  management corresponding to the city for which the sys- 
tem is developed. Among other things, knowledge on detecting specific traffic 
problems is necessary. 

On the other hand, traffic management centers have databases tha t  include 
basic information about  different traffic scenarios, such as congestions at cer- 
tain locations caused by lack of capacity due to accidents or excess of demand 
(rush hours). This data, collected from sensors on the road, can be used to ei- 
ther generate or improve the knowledge base for problem (incident) detection of 
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the expert system. The paper explores the possibility to use inductive learning 
techniques (such as ILP-inductive logic programming) to generate knowledge 
on traffic problem detection from from historical data that contains parameters 
recorded by sensors. 

The learning experiments described in this paper take place within the con- 
text of the traffic management expert system TRYS [4], developed for the cities 
of Madrid and Barcelona. The system uses knowledge distributed in a collection 
of knowledge bases that use different representations and address specific tasks 
(such as data abstraction, incident detection, problem diagnosis, prediction of 
behaviour, and recommendation of control actions). The knowledge for incident 
(tra~c problem) detection has been formulated by domain experts in a first- 
order frame-based representation. Therefore, ILP is a suitable tool for learning 
to detect traffic problems in this context. 

Overall, two kinds of input are available to the learning process. The first 
type is background knowledge on the road network, which is present in and used 
by the TRYS system. An object oriented representation is used to capture the 
different types of road sections, the relations among them, and the placement 
of sensors on individual road sections. The second type is sensor readings on 
three basic quantities describing traffic behaviour: speed, flow and occupancy. 
Both types of input will be described in more detail in Section 2. The goal of the 
learning process is to identify critical sections (where problems have occured) 
by using sensor readings and road geometry. Technically speaking, a critical 
section is a section of the road which constrains the road capacity the most, e.g., 
because an accident has occured just after this section in the immediate past. 
In the paper, the term accident critical section refers to such a section and not 
to a section where accidents occur frequently. 

Let us note at this point that in practice real sensor data are available. 
However, we have used simulated data in our experiments for three reasons. 
The first is that real sensor data were not immediately available because of 
management reasons. The second is missing sensor data from broken sensors 
(which amounts to approximately 20% of the sensors). Finally, using a simulator 
makes it possible to easily generate a wide range of different traffic problems 
(including accidents that should not be artificially produced in the real world). 

We used AIMSUN (Advanced Interactive Microscopic Simulator for Urban 
and Non-Urban Networks) [1], a software tool able to reproduce the real traffic 
conditions of any urban network on a computer. AIMSUN follows a microscopic 
simulation approach. It means that the behaviour of each individual vehicle in 
the network is continuously modelled throughout the simulation time period it 
remains inside the system (i.e. the tralfic network), according to several vehi- 
cle behaviour models. A model of the urban-ring of the city of Barcelona was 
developed using this simulator. This model includes exactly the same variables 
that the real information system records using sensors and was calibrated using 
information from the real system. Using this model, a collection of examples 
(including accidents and congestions due to rush hours) were produced for the 
learning experiments presented in the paper. 
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2 R o a d  n e t w o r k  a n d  s e n s o r  d a t a  

In TRYS [4], the road network is represented in an object oriented fashion. The 
basic object in the road network representation is the section. A section refers 
to a cross-section of the road and typically has an array of sensors associated to 
it. There exist several types of sections, such as off-ramp, on-ramp or highway. 
Relations between sections, such as previous and next, are included in the TRYS 
knowledge base. The complexity of road structures makes it possible for a section 
to have more than two previous or next sections. 

A link describes a logical group of sections. For instance, the section just  
before and just after an off-ramp, together with the off-ramp itself, form an off- 
ramp-link. There are about  ten different types of links. TRYS also uses other 
concepts like nodes, problem areas and measurement points, but  these were not 
used in our experiments. 

The information about sections and links is static. Each section is of a certain 
type and is associated to a number of sensors (as many sensors as there are 
lanes at that  cross-section of the road) and each link is of a certain type and 
links a predefined set of sections. These relationships can therefore be considered 
background knowledge for the learning process. 

Sensors provide us with a continuous stream of information, sending five 
readings each minute that  refer to the last minute and each of the four minutes 
preceding it. Typically, flow (number of cars tha t  passed the sensor in the last 
minute) and occupancy (the pro mille of time the sensor is occupied) are mea- 
sured. Some sensors (which are actually double sensors) also measure the average 
speed of the cars that  passed the sensor during the last minute. The measure- 
ments of sensors related to a single section are aggregated: flow is summed across 
lanes, while occupancy and velocity are averaged across lanes. Saturation is a 
derived quantity defined as the ratio between the flow and the capacity of a 
section: the latter depends on the number of lanes and is part  of the background 
knowledge. 

The TRYS system stores its information in two formats: in CONCEL for- 
mat,  which is a frame-based format, and in Prolog format. The Prolog format is 
object-oriented and consists mainly of facts about  the predicates i n s t a n c e  and 
value .  For simplicity reasons, we transform these facts in the following fashion: 
facts of the form i n s t a n c e  ( I n s t a n c e ,  C lass )  are translated to facts of the form 
Class ( I n s t a n c e )  and facts of the form value (Instance,Attribute,Value) 
are translated to facts of the form A t t r i b u t e  ( I n s t a n c e ,  Value) .  For example, 
the fact i n s t ance ( sa l ida_a .xambla l~ r im,o f f_ . r amp)  is transformed to 
off_ramp (sal ida_a_r ambla_Prim). 

3 A n  e x p e r i m e n t  w i t h  C L A U D I E N  

In a preliminary experiment, nine accidents and two congestions at two different 
off-ramp links were simulated. In addition to the data  transformation described 
above, the values for speed, saturation and occupancy were discretized according 
to expert provided thresholds that  are in use in TRYS. One of the reasons for 
discretizing was the small number of examples used. 
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The static information about sections and links was used as background 
knowledge. Examples consisted of facts specifying the speed, occupancy and 
saturation for all sections in the relevant problem area at one moment in time. 
Each example also contained exactly one fact of the form acc iden ta t  (X) or 
congest ionat(X),  where X is the critical section. The task was to find rules 
that identify critical sections by using sensor values and road geometry. 

The ILP system CLAUDIEN [5] was used in this experiment for two reasons. 
First, the small number of examples dictates the use of a strong declarative bias 
(which is provided by CLAUDIEN) in order to obtain reasonable rules. Second, 
CLAUDIEN generates all valid rules, providing some redundancy that might be 
useful in the light of missing sensor information which will occur in real world 
data. 

Three rules cover all 9 accident examples. The first says there is an accident 
at critical section X, which is the previous section of off-ramp link Y (enlace de 
salida) with next section O and ramp section R, if the speed (velocidad) at X 
is not high (alta), the speed at O is high and the saturation on R is low (baja). 
The predicate names originating from the Tl%YS-system are in Spanish. 

accidentat(X) :-  
seccion(X),  secc ion_anter ior (Y,X) ,  secc ion_pos te r io r (Y,0) ,  
enlace_de_sal ida(Y),  velocidad(X,VX), not VX = a l t a ,  
velocidad(0,VD), V0 = a l t a ,  
seccion_en_rampa(Y,R), sa turacion(R,SR),  SR = baja .  

There were also two examples of congestion at an off-ramp and two rules 
rules covered both examples. The first of these says there is a congestion at the 
ramp section X (seccion en tampa) of the off-ramp link Y (enlace de salida) 
when the occupancy of X is not low. All five rules describe sensible conditions 
that were already known to the domain experts. This indicated that ILP might 
be useful in this domain, and encouraged us to undertake further experiments. 

4 Experiments with TILDE 
An extended dataset containing 66 examples of congestion and 62 examples of 
accidents on different locations (off-ramp, on-ramp and highway sections) was 
generated using the simulator. The aim of the experiments with the extended 
dataset was to understand which measurements and road geometry predicates 
are relevant to the learning task at hand. Given this aim and the larger set of 
simulations, the task was formulated as a classification task. 

Each section at a particular moment of time was treated as an example, clas- 
sifted into one of three classes: an accident critical section, a congestion critical 
section or a non critical section. In this way we obtained a dataset consisting of 
5952 examples. Facts on sensor values (which were not discretized) were moved 
to the background knowledge, which also included facts on road geometry. Pred- 
icates that allow access to sections before and after a given section, as well as 
predicates that calculate the speed-, saturation- and occupancy-gain (also in 
percentages) between sections were added to the background knowledge. 
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The TILDE system [2] - -  based on top down induction of logical decision 
trees - -  was used for experiments with this dataset for a number of reasons. First, 
TILDE addresses classification problems in a first-order setting. Second, it allows 
for a very weak language bias that  easily handles a variety of situations (unlike 
our preliminary experiment where all critical sections were on an off-ramp). 
Third,  it can deal with real-valued sensor measurements directly, performing 
discretization itself. Finally, TILDE is very efficient, an important  aspect for our 
problem where we have background knowledge of size approx. 1 MB and 5952 
examples. 

Two experiments were performed. In the first experiment TILDE had to 
build a classifier for all three classes, while in the second experiment it was only 
given critical sections and had to build a classifier that  distinguishes between 
the two types of critical sections. In both experiments a 6-fold cross-validation 
was performed. 

The first experiment gave some encouraging results: 80% of the congestion 
critical sections were classified correctly and only 39 out of the 5824 non critical 
sections were classified incorrectly. None of the congestion critical sections were 
classified as accident or vice versa. The results for accident critical sections were 
much worse: only 38 out of the 62 examples (61%) were classified correctly. Why 
accidents are harder to classify than congestions needs to be investigated. A 
potential  problem is also the extremely skewed class distribution (only 128 of 
almost 6000 examples are critical sections). 

When we take a look at the predicates used, we see that  the trees very 
rarely refer to previous sections, but often refer to sections downstream (the use 
of the gain-predicates is not considered as a reference to the previous section). 
Regarding the predicates related to sensor measurements, speed (used 60 times), 
occupancy gain (57) and saturation (54) seem to be important  concepts, whereas 
the gain and percentage gain predicates seem to be less important.  

As expected, the second task of predicting the class of a given critical section 
is much simpler that  the first: 96.9% of the congestions and 96.7% of the accidents 
were classified correctly. Moreover, the decision tree was built very fast (about 3 
seconds, compared to the 4 hours it took in the first experiment). Surprisingly, 
very few predicates were used: saturation, occupancy and the type of section 
were used in most trees, whereas a reference to the next section appears in only 
one of the six trees. One of the decision trees states that  a section is accident 
critical if its saturation is below 42.75, otherwise it is congestion critical unless 
of type highway (when it is again accident critical). 

5 D i s c u s s i o n  
We have presented a novel application domain for inductive logic programming, 
namely the domain of detecting traffic problems. The task addressed was to 
learn rules that  identify critical road sections due to accidents or congestions. 
Background knowledge on road geometry is available, requiring the use of ILP 
for this task. While simulated da ta  were used for our experiments, it should be 
noted that  the simulator is very realistic and has been calibrated using real-world 
data. 
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In a preliminary experiment with CLAUDIEN interesting (but already known) 
rules were found, encouraging further experiments. A larger set of examples gen- 
erated using the simulator was supplied to TILDE. The trees generated indicate 
that sections downstream provide important information on whether the section 
at hand is a critical one, as well as the predicates providing the values of speed, 
occupancy gain and saturation. 

Much work remains to be done. High on the priority list is the task of learning 
to distinguish between non critical and any type of critical section. A difficulty 
that has to be taken into account is the skewed class distribution. Distinguishing 
among different types of critical sections seems to be an easier task as indicated 
by our second experiment with TILDE. 

Exploring the use of other ILP systems and other biases (background knowl- 
edge predicates) will also receive considerable attention. A practical issue of 
utmost importance is the issue of using real sensor data instead of simulated 
data. Missing sensor values are a problem that has to be dealt with here and 
redundant rules will have to be built for this purpose. 

Other issues to be addressed include mapping the induced problem detec- 
tion rules into a frame-based representation with which experts are familiar and 
using the time series of sensor values instead of the current values only. The 
domain of traffic control also holds other challenges for machine learning tech- 
niques. Detecting traffic problems is only one step of the traffic management 
process: suggesting actions to alleviate the problems is the natural next step. 
Since examples of operator actions in response to detected problems exist, there 
is hope that the problem of suggesting appropriate actions for alleviating traf- 
fic problems can also be addressed using machine learning and inductive logic 
programming. 

Acknowledgements  Nico Jacobs is financed by a specialisation grant of the 
Flemish Institute for supporting scientific-technological research in the industry 
(IWT). This work was supported by the ESPRIT IV Project 20237 ILP2. 

R e f e r e n c e s  

1. Barcelo, J., Fetter J.L., and Montero, L. (1989). AIMSUN: Advanced Interactive 
Microscopic Simulator for Urban Networks. Vol I: System Description, and Vol H: 
User's Manual. Departamento de Estadistica e Investigacion Operativa, Facultad 
de Informatica, Universidad Politecnica de Cataluna, Barcelona, Spain. 

2. Blockeel, H., and De R.aedt, L. (1997). Lookahead and discretization in ILP. In Proc. 
7th Intl. Workshop on Inductive Logic Programming, pages 77-84, Springer, Berlin. 

3. Cuena, J., Ambrosino, G., and Boero M. (1992) A general knowledge-based archi- 
tecture for traffic control: The KITS approach. In Proc. Intl. Conf. on Artificial 
Intelligence Applications in Transportation Engineering. San Buenaventura, CA. 

4. Cuena, J., Hernaadez, J., and Molina, M. (1995). Knowledge-based models for adap- 
tive traffic management systems. Transportation Research: Part C, 3(5): 311-337. 

5. De R.aedt, L., and Dehaspe, L. (1997). Clausal discovery. Machine Learning, 26: 
99-146. 

6. Deeter, D.L., and R.itchie, S.G. (1993). A prototype real-time expert system for sur- 
face street traffic management and control. In Proe. 3rd Intl. Conf. on Applications 
of Advanced Technologies in Transportation Engineering, Seattle, WA. 


